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ABSTRACT Here, we present the genome sequence of Pseudomonas sp. strain
MM211, which was isolated from garden soil. The complete circular genome consists
of a 5,281,862-bp chromosome, with a GC content of 61.5%.

The Gram-negative rod-shaped bacterial genus Pseudomonas lives in diverse
habitats (1–3) and is well characterized (4). Currently, 258 validated species

are published (5), including human, animal, and plant pathogens (6). In addition,
some species interact with plants and can promote plant growth and influence re-
sistance against plant diseases (7, 8). Some Pseudomonas species are able to grow
in association with other organisms in highly polluted environments and degrade
various substances (9). Because of these many different properties, the organisms
of this genus have great potential to be some of the most influential bacteria in
research and development (10).

We isolated Pseudomonas sp. strain MM211 from a soil sample obtained in
Langenfeld, North Rhine-Westphalia, Germany (51°06931.10N, 6°56940.20E), from
dark humus at a depth of 10 cm. The sample was diluted with 0.9 NaCl, filtered
(431015; Macherey-Nagel, Düren, Germany), plated (1.5% agar, 1% peptone from
soy, 0.3% NaCl, 0.1% sucrose, 0.1% cellulose, 0.1% xylan, 0.1% chitin, and 0.05%
Tris-HCl), and incubated at 28°C until colonies were observed. DNA was isolated
from a single colony with a NucleoSpin microbial DNA minikit (Macherey-Nagel)
with RNA digestion. DNA was barcoded with the native barcoding kit (Oxford
Nanopore Technologies, Oxford, UK) and sequenced on a GridION system with a
R9.4.1 flow cell (Oxford Nanopore Technologies). Sequences were called using
the super accuracy base-calling model in MinKNOW (v1.4.3; Oxford Nanopore
Technologies). Adapters were trimmed using Porechop (v0.2.4) (11). The genome
was assembled with Canu (v2.1.1) (12) set to a genome size of 8 Mb and was pol-
ished with Racon (v1.4.20) (13) in combination with BWA (v0.7.17) (14) and Medaka
(v1.4.3; Oxford Nanopore Technologies). Completeness was examined with
Benchmarking Universal Single-Copy Orthologs (BUSCO) (v5.1.2) (15) set to ge-
nome, with the lineage set to pseudomonadales_odb10. The final single-contig as-
sembly was circularized and oriented with berokka (v0.2.3) (https://github.com/
tseemann/berokka) and uploaded to NCBI. Default settings were used for all tools
unless stated otherwise. All relevant assembly statistics, including BUSCO results,
are listed in Table 1.

The genome sequence of Pseudomonas sp. strain MM211 presented here has
Pseudomonas flavescens LMG 18387 (GenBank accession number GCA_900100535.1)
(16) and Pseudomonas seleniipraecipitans LMG 25475 (GenBank accession number
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GCA_900102335.1) (17) as its closest relatives (Fig. 1). The digital DNA-DNA hybridization
(dDDH) shows values of 41.8% with P. flavescens LMG 18387 and 36.4% with P. seleniiprae-
cipitans LMG 25475, both well below the 70% cutoff value for dDDH (18). A carotenoid bio-
synthetic gene cluster was identified using the antiSMASH server (19, 20). A KEGG analysis
showed that Pseudomonas sp. strain MM211 is likely able to grow a flagellum (21).
Furthermore, MM211 may be auxotrophic for biotin. P. flavescens, the most closely related
species, is also capable of producing a flagellum and pigments (16).

Data availability. The MM211 assembly, RefSeq annotation, and reads are available at
NCBI GenBank under accession numbers GCA_020386635.1, CP081942.1, and SRR15526917,
respectively.

TABLE 1 Sequencing and assembly statistics for Pseudomonas sp. strain MM211

Parametera Finding
Raw read sequencing
No. of reads 168,644
N50 (bp) 13,834
Total length (bp) 1,579,810,087

Assembly
Coverage (�) 286
GC content (%) 61.5
Length (bp) 5,281,862

Annotation
Total no. of genes 4,853
No. of coding genes 4,645

BUSCO results (%)
Complete 98.8
Single copy 98.3
Duplicated 0.5
Fragmented 0.4
Missing 0.8

a Coverage was based on mapping of the trimmed reads to the assembly with SAMtools (v1.12) (25). Annotation
was based on NCBI PGAP (v5.3) annotation of GCA_020386635.1 on 15 November 2021 (26). BUSCO values
represent complete, single copy, duplicated, fragmented, and missing single-copy orthologue genes.

FIG 1 Genome BLAST Distance Phylogeny (GBDP) tree. The phylogenetic tree was created with the Type (Strain) Genome
Server (TYGS) (22). The tree was inferred with FastME (v2.1.6.1) (23) from GBDP distances calculated from genome
sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers at the branches are GBDP
pseudo-bootstrap support values of .60% from 100 replications, with an average branch support of 100.0%. The tree was
rooted at the midpoint (24).
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