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Bone mineral density response 
prediction following osteoporosis 
treatment using machine learning 
to aid personalized therapy
Thiraphat Tanphiriyakun1,3, Sattaya Rojanasthien1 & Piyapong Khumrin2,3*

Osteoporosis is a global health problem for ageing populations. The goals of osteoporosis treatment 
are to improve bone mineral density (BMD) and prevent fractures. One major obstacle that remains 
a great challenge to achieve the goals is how to select the best treatment regimen for individual 
patients. We developed a computational model from 8981 clinical variables, including demographic 
data, diagnoses, laboratory results, medications, and initial BMD results, taken from 10-year period 
of electronic medical records to predict BMD response after treatment. We trained 7 machine learning 
models with 13,562 osteoporosis treatment instances [comprising 5080 (37.46%) inadequate 
treatment responses and 8482 (62.54%) adequate responses] and selected the best model (Random 
Forests with area under the receiver operating curve of 0.70, accuracy of 0.69, precision of 0.70, and 
recall of 0.89) to individually predict treatment responses of 11 therapeutic regimens, then selected 
the best predicted regimen to compare with the actual regimen. The results showed that the average 
treatment response of the recommended regimens was 9.54% higher than the actual regimens. In 
summary, our novel approach using a machine learning-based decision support system is capable 
of predicting BMD response after osteoporosis treatment and personalising the most appropriate 
treatment regimen for an individual patient.

Osteoporosis is a major health problem, leading to fragility fractures which cause significant mortality in affected 
patients up to 3–4 times higher than the general population within one year after diagnosis1–3. With the grow-
ing ageing population, this results in substantially increasing costs to global health-care systems4. The goals of 
osteoporosis treatment are to reduce risk of osteoporotic fractures and improve bone mineral density (BMD), a 
gold standard tool for diagnosing osteoporosis and assessing response to therapy5,6. BMD is also used to assess 
general health condition and used as a predictor of mortality7.

A general strategy for osteoporosis treatment usually begins with oral bisphosphonates as a first-line therapy 
because of its efficacy, safety, and favorable cost. Nonetheless, physicians still need to subsequently monitor BMD 
response8 and adverse events of the treatment. Focusing on BMD and fracture risk as treatment goals, a goal-
directed therapy was proposed to individually select an initial treatment on its probability of reaching expected 
BMD. By following this treatment approach, physicians are required to regularly assess the risk of fracture during 
treatment using Fracture Risk Assessment Tool (FRAX)® score and adjust regimens with patient-related factors9. 
To identify the failure of treatment, serial 12–24 month check of lumbar spine BMD and hip or femoral neck 
BMD are used to monitor the response of osteoporotic treatment. A decrease of less than 3% of lumbar BMD 
or less than 5% total hip or femoral neck BMD are considered “response” to therapy, while those who have new 
fractures or a BMD decrease exceeding the aforementioned criteria are considered “inadequate response”10–12. 
However, this optimal approach is not always fully implemented depending on the availability of medications13 
and the cost of treatment which varies across countries.

Although there is an increasing range of approved therapeutic options; for instance, weak antiresorptive, 
potent antiresorptive, or anabolic agents that efficiently improve BMD and prevent fractures8, one fourth of 
osteoporosis patients receiving treatment fail to respond with BMD improvement14,15. The failure rate is high 
because the treatment outcome does not only depend on treatment regimens and dosage. There are several other 
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factors that interfere with the treatment outcome, such as BMD before treatment, history of falls, laboratory 
results, FRAX® score, comorbid conditions, current use of glucocorticoid, secondary osteoporosis, and adhering 
to treatment14,16,17.

Accordingly, modern clinical practice guidelines were adjusted to be more personalized and to precisely 
choose treatment options based on the risk of 10-year fractures according to country-specific guidelines together 
with patient lifestyle and nutrition. These strategies seem to help to increase the successful rate of treatment 
outcomes and are reasonable to apply in clinical practice, but it is hard to find a clear and discrete protocol to 
make universal decisions because of the uncertainty of clinical adjustment and complex information regarding 
individual clinical factors and personal history18–21. These challenges instigated the idea to consider filling this 
research gap to find a way of effectively choosing the right choice of initial treatment for an individual patient by 
taking into account patient characteristics and risk factors as currently there is still no definite approach which 
is able to identify an appropriate treatment regimen regarding individual treatment outcomes19.

Machine learning-based decision support systems is a promising research area which is capable of learning 
multiple patterns of treatment profiles together with a large number of complex parameters. Application of 
machine learning has been utilized in the medical field such as a decision support system which recommended 
a drug of choice that best fit a patient and provided a personalized prediction of therapeutic outcome22,23. In the 
osteoporosis field, machine learning-based solutions have been studied for a while in different aspects including 
detecting postmenopausal women with osteoporosis risk, and beyond diagnosis purposes, such as identifying 
osteoporosis patient risk groups using various clinical features24–27. Application of machine learning with genom-
ics data have shown an ability to predict BMD and osteoporotic fractures risk28–30. In the research area of image 
analysis, machine learning was applied with magnetic resonance imaging (MRI) and computerized tomography 
(CT) data and the results showed the capability of screening and predicting osteoporotic fractures31,32. However, 
studies of machine learning with osteoporosis treatment outcomes using BMD information combined with 
clinical features were still limited.

With the increased use of electronic medical records (EMR), patient data including demographic data, clinical 
features, hospital visit history, clinical diagnosis, laboratory results, and medication prescriptions were exponen-
tially accumulated and enabled us to research the area utilizing machine learning. Because of the crucial impact 
in the health-care community and prior successful research outcomes in similar areas, we believe that machine 
learning-based decision support systems could be potentially leveraged with relevant patient information to 
inform a new way of improving therapeutic effectiveness in osteoporosis treatment.

In this study, we proposed a personalized osteoporosis treatment approach guided by a machine learning 
model prediction. We trained machine learning models with previous 10-year osteoporosis treatment profiles 
and a patient-specific clinical dataset acquired from a real-world database. Then, we leveraged the best machine 
learning model to develop an automated algorithm which was able to recommend appropriate treatment regi-
mens and dosages, in order to achieve an optimal BMD improvement.

Materials and methods
This was a retrospective study using EMR dataset collected between January 2010 and December 2019 at a tertiary 
care teaching hospital serving high-volume osteoporosis treatment services. The study protocol was approved 
under an ethical approval by the Research Ethics Committee of Faculty of Medicine, Chiang Mai University 
(Study code: ORT-2562-06764). All methods were carried out with exemption criteria (waiver of informed 
consent) in accordance with the Research Ethics Committee Faculty of Medicine, Chiang Mai University. All 
identification data including patient name, surname, address, national identification number, address, phone 
number, and hospital number were removed. Statistical analysis was performed using R Version 4.0.2 on RStudio 
Version 1.3.959 (RStudio, Boston, Massachusetts). The data pre-processing and machine learning development 
steps were performed using Python Programming Language Version 3.8.5 (Python Software Foundation, Wilm-
ington, Delaware). Scikit-learn version 0.23.2 Machine Learning library33 was used. All computational processes 
of the machine learning algorithm were performed on Windows Server 2019, 64-bit Operating System, 8 vCPUs 
of 2.5 GHz Processor, and 32 GBs of Memory (RAM).

Data acquisition.  A dataset of 141,510 EMR entries from 15,420 patients who had BMD results was 
acquired from the EMR database All previous International Classification of Disease 10th version (ICD-10) 
diagnoses, out-patient encounters, in-patient admissions, laboratory results, and medication prescription his-
tory in the EMR of enrolled patients were extracted to the dataset, illustrated in Fig. 1a.

The raw datasets were linked by a visit number (TXN), a unique key assigned to a patient on an individual 
hospital visit or admission. The admission data included visit and admission date (date), gender (categorical 
values: male or female), age (integer), weight (integer), diagnostic type (categorical values: principal diagnosis 
or co-morbidities), and ICD-10 codes (categorical values). The drug prescription data included visit/admission 
date (date) and drug codes (categorical values). The laboratory result data included visit/admission date (date), 
laboratory items (categorical values), and values (float). All categorical features were split into a one-hot numeric 
array fashion using the Scikit-learn OneHotEncoder and then grouped by TXN. All codes were additionally 
mapped with description text for data visualization.

We were not able to include some important factors that are associated with risk of fracture34 such as height, 
parental history of hip fracture, current tobacco smoking, daily alcohol consumption of three or more units 
daily, due to the lack of digital-format data records within our institute. We identified 28,983 BMD results from 
institute’s PACS database. In our setting, Hologic Horizon® DXA was used as bone densitometer equipment. 
The results were stored in the database as semi-structured textual format narrated by certified radiologists. The 
BMD, T-score, and Z-score of femur (hip), lumbar (vertebral), and radius were extracted to structural variables 
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Figure 1.   Study protocol to develop machine learning models. (a) A high-resolution clinical information was 
acquired from EMR database. (b) Feature construction of ICD10 diagnosis, drug prescription and treatment 
response labeling. (c) Machine learning development process.
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using regular expression search technique. The BMD dataset (Fig. 1b) was consolidated with the patient dataset 
resulting in the treatment profile dataset (Fig. 1c). Figure 2 shows an example of the BMD features which were 
extracted from the BMD report.

An individual treatment profile was created by integrating all information between sequential BMD encoun-
ters. This protocol excluded visits which had no follow-up BMD or unable to extract BMD results. This strategy 
was designed to include not only osteoporosis patients (BMD T-score less than −2.5 ) by WHO classification35, 
but also normal (BMD T-score more than −1.0 ) and osteopenia patients (BMD T-score between −1.0 and −2.5 ) 
who were treated by history of fragility fracture, high-risk screening, and followed up patients with increased 
BMD T-score. A total 13,562 treatment profiles with 8965 categorical and numerical variables were obtained 
for this study (Fig. 1c).

Statistical analysis.  Baseline characteristics of 13,562 treatment profiles were reported. Continuous vari-
ables were described with mean and standard deviation (SD), a Student’s t-test was used to test the differences 
between response and inadequate response groups of treatment profiles regarding BMD change. Categorical 
variables were described with count and percentage, and were analyzed as differences of treatment response 
between groups with Chi-square test, p value less than or equal to 0.05 indicating statistical significance.

Data pre‑processing.  Within the treatment profile features, we were able to include relevant variables 
which may affect BMD response14,16,36 including Age, Sex, Weight, Previous vertebral fractures and pelvis 
(ICD10-S32*), Fracture of shoulder and upper arm (ICD10-S42*), Fracture of forearm (ICD10-S52*), Fracture 
of femur (ICD10-S72*), Fracture of lower leg including ankle (ICD10-S82*), Medical history of Gout (ICD10-
M10*), Rheumatoid arthritis (ICD10-M051), Essential (primary) hypertension (ICD10-I10), Diabetes mellitus 
(ICD10-E1*), Disorders of lipoprotein metabolism and other lipidemias (ICD10-E78*), Heart failure (ICD10-
I50), and Ischemic heart disease (ICD10-I2). Previous steroid usage history was collected including Budesonide 
inhaler, Hydrocortisone injection, oral or intravenous Dexamethasone, and oral Prednisolone. Associated labo-
ratory results including Serum Albumin, Alkaline Phosphatase, Blood Urea Nitrogen, Creatinine, Hemoglobin, 
Phosphate, and Calcium level were acquired from the database.

Fourteen treatments were identified as features including Calcium (600/835/1500 mg), Vitamin D (Alfacal-
cidol 0.25/0.5/1 mcg, Ergocalciferol 20,000 IU), Calcitonin (Nasal spray 200 IU/Injection 50 IU), Menatetrenone 
(5 mg) three times a day, daily oral Raloxifene (60 mg), daily oral Strontium (2 g), weekly oral Alendronate (70 
mg with or without Vitamin D), weekly oral Risedronate (35 mg), monthly oral Risedronate (150 mg), monthly 
oral Ibandronate (150 mg), 3-month intravenous Ibandronate (3 mg), 6-month subcutaneous Denosumab (60 
mg), 12-month intravenous Zoledronic acid (5 mg), and daily subcutaneous Teriparatide (20 mcg/dose). Similar 
comorbidities were grouped into eight new features including Diabetes mellitus (ICD10-E10*), Dyslipidemia 
(ICD10-E780*), Gout (ICD10-M10*), Vertebral fractures (ICD10-S320*), Fracture of shoulder and upper arm 
(ICD10-S4200*), Fracture of forearm (ICD10-S520*), Fracture of femur (ICD10-S720*), and Fracture of lower 
leg including ankle (ICD10-S82*). All anti-osteoporosis agents were grouped by drug generic name to seven 
features (Calcium, Vitamin D, Calcitonin, Teriparatide, Alendronate, Risedronate, Zolendronate) (Fig. 1d).

Figure 2.   Unstructured pattern of a bone mineral density result in PACS-database was processed using a 
regular expression search. Lumbar BMD, T-score, Z-score, femur BMD, T-score, Z-score, radius BMD, T-score, 
and Z-score were extracted, respectively.
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We identified outcomes of the model as the next femoral BMD and lumbar BMD change after treatment, from 
hip and lumbar BMD in continuous variables, respectively (Fig. 1e). Patients who maintained lumbar BMD more 
than −3% and femoral BMD more than −5% from baseline were labeled “response” to therapy, whereas patients 
with BMD loss more than this criteria were labeled to have an “inadequate response” to therapy37. We simplified 
the definition of inadequate response to cover the period during 12–24 month follow-up BMD because in practice 
the BMD follow-up date can vary from 12 to 36 months after treatment12,18. Because of this time variation, the 
treatment outcome may be affected among patients12,18.

Finally, the dataset of treatment profiles (8981 variables) contained features of 3672 drug prescriptions, 5273 
ICD-10 diagnoses, 7 laboratory results, 4 demographic variables, 9 BMD variables, and 16 newly constructed 
variables.

Machine learning development.  The dataset was randomly partitioned into 90:10 training and testing 
dataset with stratified random sampling. The training dataset was used to train and adjust parameters by inter-
nal cross-validation, while the testing dataset was used to assess the model performance and its generalizability 
(Figs. 1f, 3). All categorical variables in the dataset were encoded with 0 and 1. Missing values were imputed with 
mean. All numeric features in the dataset were normalized between 0 to 1 scale and BMD response was set as 
a labeled output. We implemented a feature selection algorithm (SelectKBest with the score function ANOVA 
F-value between label/feature for classification tasks) to rank the variables according to highest F1 score to 
the outcome. We fine-tuned the model examining the number of features from 5 to 8981 during the training 
and testing process. The results showed that the number of features beyond 20 provided no further significant 
improvement of the model performance (Fig. 4). However, the number of features at 225 was the best number 
when considering the highest performance of accuracy, ROC, precision, and recall. Thus, the top 225 features 
were selected for the model development process. This step reduced the dimension of features in the dataset 
in order to improve accuracy and reduce computational complexity by removing irrelevant variables (Fig. 1g).

We applied the Shapley (SHAP)38,39 and Bayesian inference40 to find the top 20th most relevant features and 
explored how these features influenced the prediction outcome. According to the Bayesian inference interpreta-
tion guidelines40, we used the pymc3 python package41 (version 3.11.2) to calculate 95% Bayesian credible inter-
vals (CrI). We trained the Bayesian logistic regression model with the entire dataset with the top 20th features 
and reported the result with mean and 2.5th and 97.5th percentile (95% CrI). The guidelines40 suggested that 
if the CrI did not cover zero, this indicated a statistically significant result. Then, we interpreted these features 
with significant results by describing with the most plausible values (from the lowest to the highest value of CrI) 
with higher probability of representing the true (unknown) estimate indicating that the mean of the feature of 
the response group would be different (lower or higher depending on the negative or positive CrI, respectively) 
compared to the inadequate response group, with at least a 95% probability.

We selected seven machine learning models from the Scikit-learn library33 for solving classification prob-
lems, consisting of Random Forests Classifier, Gradient Boosting Classifier, Logistic Regression Classifier, Sup-
port Vector Machine Classifier, Naive Bayes Classifier, Neural Network (Multilayer Perceptron), and K-Nearest 
Neighbors Classifier. The manual parameter tuning, grid search, and random search techniques were used to 
properly obtain the best tuned parameters42. The parameters which provided highest accuracy were applied to 
each algorithm. Accuracy, Precision (Positive Predictive Value), Recall (sensitivity), F1-score, and Area Under 
Receiver Operating Characteristic curve (ROC) were used to evaluate the performance of each model on the 
training dataset and testing dataset (Figs. 1h, 3).

Results
Exploratory data analysis.  The dataset of 13,562 osteoporosis treatment profiles taken from January 2011 
to December 2019 were used for this study. The baseline characteristics are shown in Table 1, of which there were 
37.46% (5080) entries in the ‘inadequate response to treatment’ group (referred to as the inadequate response 
group) and 62.54% (8482) entries in the ‘adequate response-group (henceforth referred to as the response group). 
The average changes of femoral BMD ( −6.09%± 8.24 ) and lumbar BMD ( −8.65%± 22.89 ) for the inadequate 
response group were significantly lower than for the response groups (femoral BMD 2.33%± 11.06 and lumbar 
BMD 3.80%± 6.83 ), respectively. The average age of the total group was 62.23± 10.76 years old with the average 
age of the inadequate response group significantly lower than the response group (63.36 and 64.75, respectively)
(p value < 0.01 ). Co-morbid conditions and basic laboratory results were not different between the two groups, 
except Alkaline Phosphatase (ALP) which was significantly lower in the response group than in the inadequate 
group. There were no differences in previous history of hip fractures and vertebral fractures between the groups, 
whereas forearm fracture history was found significantly more often in the response group than in the inad-
equate group (p value = 0.02).

Distribution of treatment response in the dataset.  Calcium and Vitamin D prescriptions were significantly 
higher in the response group than the inadequate response group (p value < 0.01 ), while Calcitonin and Mena-
tetrenone were not significantly different. The number of treatment profiles receiving anti-osteoporosis agents in 
the response group (70.39%) was significantly higher than the inadequate response group (29.61%) (p value was 
< 0.01 ). This was true for all anti-osteoporosis agents (p value < 0.05 ), except for 3-month Ibandronate (3 mg) 
with p value 0.46. Figure 5a shows the distribution of lumbar and femoral BMD changes after treatment. The 
majority of treatment profiles responded to treatment (located in the adequate response area). The dataset was 
described according to the WHO Osteoporosis Classification (Normal, Osteopenia, and Osteoporosis)35 as seen 
in Fig. 5b. The treatment profiles with anti-osteoporosis agents positively contributed to response patterns for 
both femoral and lumbar BMD, especially in 3, 6, 12-month and daily injection routes.
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Machine learning prediction of treatment response.  Performance comparison.  Seven machine 
learning models were evaluated for treatment response classification performance using 225 variables with the 
highest respective F1-scores shown in Table 2. For the training dataset, the accuracy was: Random Forests model 
= 0.95; Gradient Boosting model = 0.79; Logistic Regression model = 0.68; Support Vector Machine (SVM) 
model = 0.70; Naive Bayes model = 0.64; Neural Network (Multi Layer Perceptron (MLP)) model = 0.69; and 
K-Nearest Neighbor model = 0.69. The Random Forests model achieved the highest overall performance in the 
testing dataset with Accuracy = 0.69, Precision = 0.70, Recall = 0.89, F1-score = 0.78, ROC = 0.70.

Model selection and interpretation.  All seven machine learning models demonstrated a high Recall (Sensitiv-
ity) to predict a response to treatment. Among all algorithmic approaches, the Random Forests (RF) model43, a 
tree-based machine learning algorithm, produced the highest accuracy, and positive predictive value (precision), 
F1-score, and ROC. The final parameters with the best fine-tuned results of all models are presented in Table 3. 
The value of the area under the receiver operating characteristics curves of Random Forests algorithm and Preci-
sion and Recall curve are shown in Fig. 6a,b.

Figure 3.   Machine learning development process.
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To interpret feature contributions to the selected model, the Shapley (SHAP)38,39 and Bayesian credible 
interval40 were used. SHAP value explanation method was used to rank the 20 most important predictors in 
Fig. 6. The five most influential variables were: Initial femoral BMD, Anti-osteoporosis agents, Initial lumbar 
BMD, Age, and Lumbar T-score. Regarding the analysis of Bayesian credible interval, Table 4 shows the mean 
difference, standard deviation (sd) of the features in the population, CrI, and value interpretation. The High 
Density Interval (hdi) at 2.5th (hdi-2.5%) and 97.5th (hdi-97.5%) represent the lower and higher value of the 95% 
CrI. Analysis suggests that the most plausible values with higher probability of representing the true (unknown) 
estimate are the mean difference of the BMD (Femur), age, lumbar Z-score, femur T-score, radius Z-score, 
Calcium (oral), laboratory result of Alkaline Phosphatase, Analgesic Balm, and Codeine with Acetaminophen, 
with the response group results significantly lower than for the inadequate response group, with at least a 95% 
probability. Conversely, the mean difference of anti-osteoporosis agent, lumbar T-score, femur Z-score, radius 
T-score, Ibandronate (oral, monthly), and weight of the response group are significantly higher than for the 
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Figure 4.   Machine learning performance patterns of different amount of features (5–275 features). (a) Accuracy 
of training dataset. (b–f) Accuracy, Precision, Recall, F1-score, and AUROC of the testing dataset.
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Table 1.   Baseline characteristics and clinical features of study population with inadequate response and 
adequate response of BMD after treatment. p value significant at 0.05 level. Italics font in the "p value" column 
emphasizes the statistical significance at p value < 0.01.

Variables Total Inadequate response Response p value

Treatment profile, n (%) 13,562 5080 (37.46%) 8482 (62.54%)

Age (mean ± SD) years 62.23 ± 10.76 63.36 ± 10.87 64.75 ± 10.66 < 0.01

Sex, n (%)

Women 12,731 (93.87%) 4790 (37.62%) 7941 (62.38%) 0.12

Men 831 (6.13%) 290 (34.90%) 541 (65.10%) 0.12

Medical history, n (%)

Hypertension 483 (3.56%) 182 (37.68%) 301 (62.32%) 0.96

Diabetes 194 (1.43%) 81 (41.75%) 113 (58.25%) 0.24

Dyslipidemia 367 (2.71%) 137 (37.95%) 230 (63.71%) 1.00

Gout 9 (0.07%) 6 (66.67%) 3 (33.33%) 0.14

Laboratory (mean ± SD)

Calcium 9.48 ± 1.46 9.47 ± 0.54 9.48 ± 1.80 0.61

Phosphate 4.00 ± 0.54 4.00 ± 0.21 4.00 ± 0.66 0.57

Albumin 4.30 ± 1.75 4.28 ± 1.27 4.30 ± 1.99 0.43

ALP 69.90 ± 15.95 70.42 ± 19.38 69.58 ± 13.48 < 0.01

BUN 14.29 ± 3.16 14.34 ± 3.33 14.26 ± 3.06 0.13

Creatinine 0.98 ± 0.83 0.99 ± 0.85 0.97 ± 0.81 0.26

Hemoglobin 12.24 ± 0.94 12.23 ± 0.97 12.25 ± 0.91 0.24

Fracture history, n (%)

S32* Vertebral fractures 28 (0.21%) 9 (32.14%) 19 (67.86%) 0.70

Non-vertebral fractures

S42* Shoulder and upper arm 25 (0.18%) 9 (36%) 64 (72.73%) 1.00

S52* Forearm 62 (0.46%) 14 (22.58%) 48 (77.42%) 0.02

S72* Hip and Femur 62 (0.46%) 18 (29.03%) 44 (70.97%) 0.21

S82* Lower leg and ankle 16 (0.12%) 8 (50%) 8 (50%) 0.44

Treatment regimens, n (%)

Calcium 10,285 (75.84%) 3776 (36.71%) 6509 (63.29%) < 0.01

Vitamin D 9939 (73.29%) 3558 (35.80%) 6381 (64.20%) < 0.01

Calcitonin 282 (2.08%) 110 (39.01%) 172 (60.99%) 0.63

Menatetrenone 2819 (20.79%) 1091 (38.70%) 1728 (61.30%) 0.13

Anti-osteoporosis drug 7179 (52.93%) 2126 (29.61%) 5053 (70.39%) < 0.01

Weak antiresorptive agents

Daily oral regimens

 Raloxifene (60 mg) 420 (3.10%) 187 (44.52%) 233 (55.48%) < 0.01

 Strontium (2 g) 1188 (8.76%) 313 (26.35%) 875 (73.65%) < 0.01

Potent antiresorptive agents

Weekly oral regimens

 Alendronate (70 mg) 2383 (17.57%) 649 (27.23%) 1734 (72.77%) < 0.01

 Risedronate (35 mg) 1064 (7.85%) 356 (33.46%) 708 (66.55%) < 0.01

Monthly oral regimens

 Risedronate (150 mg) 87 (0.64%) 23 (26.44%) 64 (73.56%)  0.04

 Ibandronate (150 mg) 1,711 (12.62%) 529 (41.15%) 1182 (58.85%) < 0.01

Injection regimens

 3-Month Ibandronate (3 mg) 48 (0.35%) 15 (31.25%) 33 (68.75%) 0.46

 6-Month Denosumab (60 mg) 176 (1.30%) 32 (18.18%) 144 (81.82%) < 0.01

 12-Month Zoledronic acid (5 mg) 809 (5.97%) 218 (26.95%) 591 (73.05%) < 0.01

Anabolic agent

Injection regimen

 Daily teriparatide (20 mcg/dose) 295 (2.18%) 88 (29.83%) 207 (70.17%) < 0.01

 Initial femoral BMD (mean ± SD) 0.61 ± 0.13 0.65 ± 0.14 0.60 ± 0.11 < 0.01

 Initial lumbar BMD (mean ± SD) 0.79 ± 0.14 0.81 ± 0.15 0.78 ± 0.14 < 0.01

 Femoral BMD changes (mean ± SD) −0.82%± 0.12 −6.09%± 8.24 2.33%± 11.06 < 0.01

 Lumbar BMD changes (mean ± SD) −0.87%± 0.18 −8.65%± 22.89 3.80%± 6.83 < 0.01
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inadequate response group, with at least a 95% probability. The mean difference of the other features apart from 
those just described are not statistically significantly different.

Individual BMD response prediction.  In clinical application, the personalized osteoporosis manage-
ment approach aims to tailor therapy to individual patients for improving BMD. The proposed machine-learn-
ing model identifies possible BMD response patterns of different treatments based on complex personal clinical 
data.

A set of selected 225 features from the EMR database was given to the computational model with 11 different 
inputs of anti-osteoporosis treatment regimens (Fig. 7). The output was a patient-specific probability for each 
treatment outcome. Administration route and frequency of regimens were also labeled. We applied the prediction 
algorithm to 1357 treatment profiles in the testing dataset. In Table 5, we present the treatment response prob-
ability of actual regimens and the recommended regimens. The difference of average probability between actual 
and recommended regimens were 8.36% in the response group (see an example of a response case in Scenario 
II), 11.47% in the inadequate response group (see an example of an inadequate response case in Scenario I), and 
9.54% in the whole testing dataset.

Scenario I: inadequate response to treatment (Fig. 7b).  An 80-year-old female with comorbidities of Diabetes 
and Cataracts. The initial lumbar and femoral BMD were 0.583 and 0.534, respectively. The lumbar and total 
femoral BMD T-score were −3.7 and −2.5 , respectively (WHO classification of Osteoporosis35). The patient 
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Figure 5.   Exploratory data analysis of the dataset. (a) The plot was created using lumbar and femoral BMD 
change after treatment, which consisted of n = 13,562 treatment profiles. The color intensity of hexagon bins 
represent the density of treatment profiles. (b) The boxplot, with outliers removed, of anti-osteoporosis drug 
prescription and treatment response pattern of normal-BMD, osteopenia, and osteoporosis groups were shown.

Table 2.   Performance of each classifier model on training and testing dataset on the top 225 features.

Classifier models

Training dataset Testing dataset

Accuracy Accuracy Precision Recall F1-score ROC

Random Forests 0.95 0.69 0.70 0.89 0.78 0.70

Gradient Boosting 0.79 0.68 0.70 0.85 0.77 0.69

Logistic Regression 0.68 0.66 0.67 0.89 0.76 0.68

Support Vector Machine 0.70 0.64 0.65 0.94 0.77 0.66

Naive Bayes 0.64 0.65 0.67 0.87 0.75 0.65

Neural Network (MLP) 0.69 0.66 0.68 0.87 0.76 0.67

K-Nearest Neighbors 0.69 0.63 0.66 0.84 0.74 0.61
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did not receive an anti-osteoporosis agent. At her 1-year follow up, she was considered as having an inadequate 
response to treatment: her serial lumbar and femoral BMD were 0.585 (+ 0.34%) and 0.506 ( −5.24% ), respec-
tively. The actual situation showed the lowest predicted probability of response (0.55), while the best recom-
mended regimen (Denozumab 6M) showed 0.76 probability of response. The difference between actual and 
recommended regimen was + 21%.

Scenario II: response to treatment (Fig. 7c).  A 71-year-old male with initial lumbar and femoral BMD of 0.66 
and 0.515, respectively. The lumbar and total femoral BMD T-score were −3 and −2.7 , respectively (Osteopo-
rosis according to WHO classification35). The patient received an anti-osteoporosis agent (weekly oral Alen-
dronate). At the 1-year follow up, he was considered as having an adequate response to treatment: his serial 
lumbar and femoral BMD were 0.663 (+ 0.45%) and 0.539 (+ 4.66%), respectively. The algorithm predicted the 
actual regimen’s response probability of 0.60, while the best recommended regimen (Denozumab 6M) showed 
0.77 probability of response. The difference was + 17%.

Discussion
This study demonstrated the development of a machine learning-based clinical decision support system. The 
model, which was trained with clinical features, laboratory results, and prescription records from an EMR data-
base, can predict the probability of a BMD response after osteoporosis treatment. This method is an automated 
data pipeline process which can be potentially integrated into hospital EMR systems. Eventually, it has potential 
benefits for physicians when selecting therapeutic regimens.

In this study, the majority of patients responded to osteoporosis treatments (see the treatment response in 
Table 1). However, the percentage of inadequate responses in patients with osteoporosis was relatively high 
(37.46%) compared with the previous study (25.8%)14. Since our dataset was larger and uncontrolled, repre-
senting real-world circumstances, this may affect adherence to therapy and response to treatment. In some 
real-world studies, the adherence rates were reported as low as 25% for one-year treatments44,45. This finding 
of inadequate response confirmed that the poor-compliance issue is a serious problem in our hospital service 
and also remains a worldwide challenge, and the causes of inadequate response after osteoporosis drug therapy 
initiation must be explored.

We found that patients in the response group were older than the inadequate response group but baseline 
femoral and lumbar BMD of the inadequate response group were significantly lower than the response group 
while the average serum ALP in the inadequate response group was significantly higher than the response 
group. These results confirm findings by previous research14 as relevant factors for predicting the response of 
osteoporosis treatment. Apart from the relevant factors, another interesting finding is the history of forearm 
fracture (ICD10-S52).

The number of patients with a history of forearm fractures in the response group was higher than for the 
inadequate response group (see Table 1). This was the only feature among the history of fractures which was 
significantly different. This means the patients with a history of forearm fractures had a high successful rate of 
treatment (77.42%), while the other types of fractures were not different. We manually explored the cause of this 
finding and found that the average BMD of femur and lumbar ( 0.61± 0.13 and 0.79± 0.14 , respectively) in the 
forearm fracture group were lower than the average of the population in this study. Because of the low initial 
BMD before treatment, this group intentionally had a higher chance of receiving anti-osteoporosis treatment. We 
confirmed this assumption by exploring this patient group and the data showed that 37 of 62 forearm fractures 
patients (59.68%) received anti-osteoporosis agents which were more than the average of treatment profiles in 
the population of this study (52.93%). In clinical practice, distal forearm fractures of the wrist are commonly 
found in the older population who tend to have bone degeneration with high bone loss (low BMD) at the distal 
forearm46. Therefore, the low BMD and high number of treatment resulted in a higher rate of BMD improve-
ment. However, when we explored the treatment response in hip, femur, shoulder, and upper arm fractures, the 
results showed that the number of the response group was also found more often that the inadequate response 
group but not at a statistically significant level. We believe that if we could further investigate in a larger and 

Table 3.   The best tuned parameters of the models.

Classifier models Parameters

Random Forests n_estimators = 400, min_samples_split = 5, min_samples_leaf = 2, max_features = auto, max_depth = 80, 
bootstrap = False

Gradient Boosting max_depth = 5, max_features = ‘sqrt’, min_samples_leaf = 2, min_samples_split = 50, n_estimators = 800, 
random_state = 8

Logistic Regression class_weight = None, multi_class = ‘multinomial’, random_state = 8, solver=‘lbfgs’, C = 1.0

Support Vector Machine
C = 1.0, kernel = ‘rbf ’, degree = 3, gamma = ‘scale’, coef0 = 0.0, shrinking = True, probability = True, tol = 0.001, 
cache_size = 200, class_weight = None, verbose = False, max_iter = −1 , decision_function_shape = ‘ovr’, break_
ties = False, random_state = None

Naive Bayes alpha = 1.0, fit_prior = True, class_prior = None

Neural Network (MLP) activation = ‘logistic’, alpha = 0.0001, batch_size = ‘auto’, hidden_layer_sizes = 1, learning_rate = ‘constant’, learn-
ing_rate_init = 0.001, max_iter = 500, solver = ‘lbfgs’

K-Nearest Neighbor n_neighbors = 11
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controlled study, we might find some interesting information and significant clinical impact as they are also a 
common osteoporosis fracture.

For the treatment profiles, we found that Calcium and Vitamin D supplementation were routinely used in 
the treatment of osteoporosis patients. Calcium and Vitamin D supplementation with/without anti-osteoporosis 
agents showed significant outcomes from the treatment except in conjunction with 3-month Ibandronate (3 mg) 
which had a higher number in the response treatment group but not at a statistically significant level, possibly 
because the sample size was too small.

Receiver Operating Characteristic Precision and Recall Curve (Threshold at 0.5)a. b.
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We observed the major characteristics between the response and inadequate response group recognized by 
the machine learning model according to the SHAP explanation in Fig. 6c and the CrI interpretation in Table 4 
that were relevant to predict response outcome of the treatment. Typical patients in the response group had lower 
levels of initial femoral and lumbar BMD, received the treatment with anti-osteoporosis agents, and were of a 
slightly younger age. Meanwhile, the characteristics of the inadequate response group were patients with higher 
initial femoral BMD, were not treated with anti-osteoporosis agents, and were of a slightly older age compared 
with the response group.

By the design of this study, we developed a supervised machine learning model using real-world EMR-derived 
clinical information which consists of elementary variables such as demographic data, co-morbidities, previous 
diagnosis of fracture, basic laboratory results, and drug prescriptions. These high availability features are basic 
information stored in almost all EMRs. We assessed the performance of 7 algorithms (Table 2). We decided to use 
Random Forests algorithm to develop a prediction model according to its overall performance which was slightly 
higher than the other algorithms. The important step was the feature selection; we compared the performance of 
machine learning between training with all 8981 features and various amounts of selected features (Fig. 4). We 
found that using all 8981 features contributed similar or slightly higher performance comparing to lesser amount 
of features, but the dataset was very large and the model took a much longer time for computational processing. 
As a result, a smaller set of relevant variables (as lower as 20 features) is more practicable to develop a lightweight 
machine learning model and to apply in general-setting hospitals where these clinical variables are available.

Feature contributions using SHAP value (in Fig. 6c) revealed that initial BMD results, T-score, and Z-score 
were potent features to predict response to treatment. However, in clinical practice, some patients with osteoporo-
tic fractures might receive anti-osteoporosis treatment without having a BMD result due to the unavailability of 
bone densitometry equipment in some remote areas. In that situation, using the general standard guidelines12,18–21 
might be appropriate for choosing an initial treatment.

This work offers a potential clinical application by recommending a personalized choice of the best anti-
osteoporosis regimen based on the prediction of BMD response and clinical factors. In Table 5, a higher prob-
ability of response for the recommended regimen was shown compared to the actual regimen that the patient 
received; this is especially important for inadequate response patients. This additional information could be 
crucial for physicians to identify low-response osteoporosis patients and choose alternative anti-osteoporosis 
agents which provide optimal response to the treatment47.

We demonstrated two scenarios of clinical application that could be further used in a hospital setting. The 
first scenario showed that Patient 1 (Fig. 7b) had not been prescribed with any anti-osteoporosis agents, result-
ing in decreased BMD at the 1-year follow up. The algorithm predicted low probability of response in this actual 
situation (Probability 0.55). However, if the patient had received at least one of the anti-osteoporosis regimens, 
the treatment outcome would be better compared to the actual situation. The quantification of the predicted out-
come difference between actual and alternative regimens may provide evidence to support a physician’s decision 
to choose the best anti-osteoporosis agent to achieve a desirable outcome. In the case of Patient 2 (Fig. 7c), the 
patient received an actual regimen of weekly oral Alendronate (predicted response probability 0.60). The model 

Table 4.   Analysis of Bayesian logistic regression of the top 20th features.

Features Mean sd hdi-2.5% hdi-97.5% Interpretation

Intercept 4.778 0.648 3.498 5.947 –

BMD (Femur) −  3.796 0.352 −  4.473 −  3.146 Lower

Anti-osteoporosis agent 0.657 0.048 0.569 0.752 Higher

BMD (Lumbar) −  0.696 0.547 −  1.745 0.313 Not different

Age −  0.017 0.003 −  0.023 −  0.013 Lower

Lumbar T-score 0.289 0.069 0.169 0.423 Higher

Lumbar Z-score −  0.302 0.056 −  0.407 −  0.120 Lower

Femur Z-score 0.554 0.054 0.448 0.649 Higher

Radius T-score 0.133 0.038 0.059 0.201 Higher

Femur T-score −  0.402 0.057 −  0.509 −  0.295 Lower

Radius Z-score −  0.105 0.042 −  0.189 − 0.030 Lower

Calcium (oral) −  0.39 0.073 −  0.524 −  0.253 Lower

Ibandronate (oral, monthly) 0.488 0.065 0.357 0.601 Higher

Lab Alkaline Phosphatase (ALP) −  0.003 0.001 −  0.005 −  0.002 Lower

Weight 0.003 0.001 0.001 0.005 Higher

Analgesic Balm −  0.446 0.079 −  0.605 −  0.304 Lower

Risedronate (oral, weekly) −  0.127 0.08 −  0.278 0.016 Not different

Calcium 600 mg (oral) 0.094 0.065 −  0.023 0.211 Not different

Tramadol + acetaminophen 0.061 0.057 −  0.041 0.172 Not different

Prednisolone 5 mg −  0.044 0.079 −  0.193 0.097 Not different

Codiene + acetaminophen −  0.189 0.079 −  0.342 −  0.043 Lower
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predicted that another anti-osteoporosis treatment would provide a higher probability of response (Probability 
> 0.60 ). This recommendation would aid a physician to select an alternative better-response treatment, taking 
into consideration the adhering ability of a different administration protocol such as monthly or 6-monthly 
treatments to obtain a higher possibility of BMD improvement. However, the application of the model on a 
recommendation system might need to incorporate awareness of atypical cases. For instance, a patient with 
co-morbid conditions such as chronic kidney disease might be a contraindication for some anti-osteoporosis 
drugs. Other special considerations exist, such as risk of atypical femoral fracture, and osteonecrosis of the jaw, 
for which the prediction model is not able to make an appropriate recommendation.

Machine learning-based prediction models and their application to osteoporosis treatment have shown poten-
tial opportunity for widespread adoption, as seen in the FRAX® scenario which has been widely adopted by the 
World Health Organization (WHO) as indicating standard guidelines to assess individual risk of fracture over 
10 years with 12 variables8,12,18,48. Although FRAX® has been efficiently used to predict probability of osteoporotic 
fractures and has been validated in many countries, there are some limitations: physicians need to manually 
complete a form to calculate the risk on a website and individually assess complex patient information in order 
to select the treatment of choice. Our proposed model has demonstrated some points of clinical service improve-
ment. First, this machine learning model could be embedded in an automated clinical decision support system in 
EMR which can be seamlessly implemented to support a clinical practice, without the need for manual variable 
input. Second, the machine learning development process is scalable and reproducible which enables the model 
to continuously learn with larger or newer information. Third, the model is applicable to be customized in other 
institutes to develop a personalized model using their own dataset that suits the characteristics of local patients.

This study has a few notable limitations worth mentioning. First, our prediction model is developed from 
retrospective information. We were unable to include important missing variables such as weight, height, parental 
fracture history, smoking history, and alcohol consumption characteristics. These lifestyle features are not rou-
tinely recorded in our EMR in a digital format. This missing information might affect the accuracy of the model. 
Second, this study excluded treatment profiles with no serial BMD which therefore excluded poor-compliance or 
loss of follow-up patients. As a result, the actual inadequate response group may be higher than in this study and 
some characteristics of the inadequate response group may not be reflected in the real-world situation. Since the 
general treatment adherence rate is typically low, even though we included all 10-year treatment profiles in our 
institute, the number of eligible patients with a long-term follow-up BMD was still limited. Thus, we decided to 
study only the initial treatment and a single serial BMD, taken 12–24 months after treatment. Third, the current 
criteria to define inadequate response to osteoporosis treatment is different among different studies49. This study 
complied to our national guidelines to consider BMD decrease as an inadequate response12. We determined 
change of total femoral BMD and lumbar BMD as output variables, despite a femoral neck BMD also being a 
variable used to evaluate response of treatment. We could not gather the incidence of fracture information after 
treatment as part of our definition of inadequate response in this study. Lastly, we conducted the experiment in 
a single-center design which may lead to an over-fitting model; future external validation in other populations 
is required. Further study should include a cross-institution dataset to broaden the range of the variables, or 
incorporate genomic information29 which may individually affect the response of treatment. We also encourage 
investigators to create prediction models for long-term treatment outcomes.

Conclusion
In summary, our results show that it is feasible to use a combination of EMR-derived information to develop 
a machine learning algorithm to predict a BMD response following osteoporosis treatment. This alternative 
approach can aid physicians to select an optimal therapeutic regimen in order to maximize a patient-specific 
treatment outcome.

Data availability
De-identified data are available upon reasonable request from qualified investigators.

Code availability
The code is available upon reasonable request from qualified investigators.
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Table 5.   Treatment response prediction of 1357 treatment profiles in the validation set, comparing average 
response probability of actual regimen and recommended regimen.

Treatment profile N

Predicted treatment response probability (SD)

Actual regimen Recommended regimen Difference (%)

Response 845 0.66 (± 0.13) 0.75 (± 0.10) + 8.36

Inadequate response 512 0.55 (± 0.16) 0.67 (± 0.13) + 11.47

Total 1357 0.62 (± 0.15) 0.72 (± 0.12) + 9.54
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