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Clearance of virus infection from the CNS
Diane E Griffin and Talibah Metcalf
Viruses that cause encephalomyelitis infect neurons and

recovery from infection requires noncytolytic clearance of virus

from the nervous system to avoid damaging these irreplaceable

cells. Several murine model systems of virus infection have

been used to identify clearance mechanisms. Quantitative

analysis of Sindbis virus clearance over 6 months shows three

phases: day 5–7, clearance of infectious virus, but continued

presence of viral RNA; day 8–60, decreasing levels of viral RNA;

day 60–180, maintenance of viral RNA at low levels. Antiviral

antibody and interferon-g have major roles in clearance with a

likely role for IgM as well as IgG antibody. Long-term residence

of virus-specific immune cells in the nervous system is

necessary to prevent virus reactivation.
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Introduction
RNA viruses that cause encephalomyelitis, including

many arthropod-borne viruses, infect neurons, terminally

differentiated, irreplaceable cells essential for function of

the nervous system. Recovery from viral encephalomye-

litis requires immune-mediated virus clearance from the

brain and spinal cord, a process that is organ and cell type-

dependent [1,2]. For virus infections of many organs (e.g.

lung and gut), cytotoxic processes that eliminate infected

cells are an efficient mechanism for virus clearance. The

infected cells targeted for elimination by T cells can be

replaced quickly with new uninfected cells of the same

type. However, recovery from neuronal infection is more

challenging for the immune system because preservation

of neuronal function requires survival of the infected cells

and a noncytolytic clearance process.

In identifying the in vivo mechanisms involved in recov-

ery from viral encephalomyelitis, it is useful to consider

the multiple aspects of the clearance process, the time
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frames for the development of innate and adaptive

responses in relationship to the phases of virus clearance

and the potential role(s) of different components of the

immune response in each of these phases. Clearance of

infectious virus is the first step and the aspect of clearance

most often measured by investigators. However, if

infected cells that are no longer producing virus are

allowed to survive, intracellular viral RNA must also be

eliminated for clearance to be complete. If it is not, a

mechanism for prevention of reactivation of virus replica-

tion must be established.

Models of RNA virus CNS infection
We have employed Sindbis virus (SINV) infection of

mice as a model system for understanding recovery from

encephalomyelitis in relationship to virus clearance from

neurons. SINV is an enveloped plus-strand RNA virus

that is geographically widespread and transmitted by

mosquitoes. SINV causes rash and arthritis in humans

and encephalomyelitis in mice [3]. After intracerebral or

intranasal inoculation of mice, SINV quickly spreads

throughout the central nervous system (CNS) with virus

replication mostly in neurons of the olfactory tract and

hippocampus, and motor neurons of the brainstem and

spinal cord [4,5]. Amounts of infectious virus in brain and

spinal cord peak 2–3 days after infection. Clearance of

infectious virus is initiated 4–5 days after infection and is

complete by 7–8 days (Figure 1). Other encephalitic

viruses that primarily infect neurons include the flavivirus

West Nile virus [6] and rabies virus [7].

The coronavirus mouse hepatitis virus (MHV) and the

picornavirus Theiler’s murine encephalomyelitis virus

(TMEV) provide other important mouse models for un-

derstanding the role of the immune response in viral

encephalomyelitis. MHV and TMEV initially infect

neurons to cause encephalomyelitis, but these viruses

subsequently spread to glial cells and cause late demye-

linating disease due to persistent virus infection [8,9].

After clearance of infectious virus, virus-infected cells

must be eliminated to completely clear infection. Mature

neurons are relatively resistant to both virus-induced and

immune-mediated cytolysis. This is beneficial to the host,

because if the immune clearance mechanism is damaging

to the infected neuron, then the function of that neuron

will be lost and the outcome will be the same as if the

virus infection had caused neuronal death. If infected

cells are allowed to survive, there must be mechanisms for

inhibiting intracellular synthesis of virus nucleic acid and

protein, for eliminating virus genomes from cells and

preventing their replacement after degradation. After
www.sciencedirect.com
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Schematic quantitative diagram of the phases of alphavirus clearance

from the brain and spinal cord of mice. The period of detection of

infectious virus by plaque assay is shaded red. The appearance,

clearance and persistence of viral RNA as detected by quantitative RT-

PCR is indicated by the dashed black line (Metcalf and Griffin,

unpublished).
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Quantitation of CD4+ T cells, CD8+ T cells and CD19+ B cells present at

different times in the brain in response to alphavirus infection (Metcalf

et al., unpublished).
SINV infection, neurons survive the clearance of infec-

tious virus and mice recover from infection uneventfully.

However, it takes many weeks for the levels of viral RNA

in the CNS to decrease (Figure 1).

Because the clearance process is not complete, mechan-

isms for preventing resumption of virus replication need

to be in place to avoid chronic, progressive or relapsing

disease [10,11]. Thus, mouse models of CNS infection

offer the opportunity to identify the multiple mechanisms

required for recovery from viral encephalomyelitis and

prevention of chronic disease.

Innate immune responses: Locally produced type I inter-

feron (IFN) is important for initial control of virus repli-

cation [12–14]. IFN-b is a particularly important type I

IFN in the CNS and can be produced by virus-infected

neurons [15]. IFN-b-deficient mice have 10-fold higher

virus titers during the first 3 days after infection than

nondeficient mice (Figure 3) despite the presence of high

levels of IFN-a [13]. Other factors produced in the CNS

during the innate response include TNF, IL-1, IL6,

CCL2, CCL3, CCL5, CXCL9 and CXCL10 that induce

glial cell activation, expression of adhesion molecules on

endothelial cells and cell migration [13,16,17].

Adaptive immune responses: The adaptive immune

response is initiated in the draining cervical lymph

nodes. Virus-specific CD4+ and CD8+ T cells rapidly

expand, acquire effector functions and begin entering

the circulation. The B cell response occurs in two phases:

a rapid extrafollicular T cell-zone response and a slower

follicular/germinal center B cell-zone response [18,19].
www.sciencedirect.com
Extrafollicular plasmablasts generated in the first phase

proliferate extensively and rapidly produce low affinity

antiviral antibody that is predominantly IgM [20,21].

Germinal center B cells undergo class switch recombina-

tion, somatic hypermutation and selection resulting in

plasmablasts and plasma cells that produce primarily high

affinity IgG antibody. Both types of antibody-secreting

cells enter the circulation and can home to sites of in-

fection, including the CNS [22,23].

Virus-specific T-lymphocytes and B-lymphocytes begin

infiltrating the brain from the blood 3–4 days after in-

fection. The earliest cells are CD8+ T cells followed by

CD4+ T cells and then CD19+ B cells (Figure 2) and

clearance of infectious virus begins (Figure 1). T cells are

virus-specific and have effector phenotypes [8]. CD8+ T

cells enter the parenchyma, have cytotoxic activity and

produce IFN-g while CD4+ T cells accumulate around

vessels and produce several cytokines, including IFN-g.

The initial antibody-secreting B cells enter the CNS,

produce IgM and are followed several days later by cells

producing IgG and IgA [22,24]. In the absence of an

adaptive immune response (e.g. severe combined immu-

nodeficiency [SCID] or Rag�/� mice), there is no clear-

ance (Figure 3) and local production of IFN-a and IFN-b

is sustained [4,13,25,26]. Entry of mononuclear cells into

the CNS is required for virus clearance and inhibition of

CNS inflammation delays this process [27,28].

Current understanding of virus clearance from
neurons
In studies to determine the components of the adaptive

immune response that effect infectious virus clearance

from the CNS, antiviral antibody, CD8+ T cells and
Current Opinion in Virology 2011, 1:216–221
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IFN-g have been identified as important contributors to

clearance from neurons [4,8,25].

Antibody: Studies using passive transfer of antibody to

persistently infected SCID mice have shown that IgG

antibody to the SINV E2 glycoprotein is effective in

clearing infectious virus by a noncytolytic process from

all types of neurons in the brain and spinal cord [25].

Antibody is also critical for clearance of rabies virus from

neurons [29]. In vitro studies of the mechanism(s) of IgG-

mediated clearance have shown that antibody binds to the

surface of infected cells and blocks virus budding. Anti-

body interaction with infected cells produces a dose-

dependent restoration of host protein synthesis,

Na+K+ATPase pump function, membrane potential

and response to IFN-a/b [26,30,31]. During the first

hours after antibody treatment of infected cells, synthesis

of the nonstructural proteins is prolonged and synthesis of

viral RNA is increased before a subsequent decrease in

viral RNA synthesis [30]. There is a requirement for

bivalent antibody, but neither complement nor leuko-

cytes are necessary for antibody-mediated clearance [25].

CD8+ T cells: CD8+ T cells that infiltrate the parenchyma

are important for perforin-dependent clearance of WNV

from neurons [32] and clearance of MHV from microglial

cells, astrocytes and macrophages [8]. Although neurons

express very little surface MHC class I protein, in vivo
imaging has shown that CD8+ T cells can interact directly

with TMEV-infected neurons, a process that may med-

iate clearance or damage [33�].

IFN-g: IFN-g is implicated in the clearance of measles

virus, lymphocytic choriomeningitis virus and vesicular

stomatitis virus from neurons [34,35�]. Studies of B cell-

deficient (mMT) mice infected with SINV showed that

antibody is required for clearance of infectious virus from

the brain, but not spinal cord neurons. Therefore, a

mechanism for antibody-independent clearance exists

for motor neurons, but not for hippocampal or cortical

neurons [4,13]. Depletion of either CD4+ or CD8+ T cells

from mMT mice impairs virus clearance to a similar

extent, suggesting overlapping functions, most likely

through cytokine secretion. Using cytokine-expressing

recombinant viruses, we showed that infectious SINV

could be cleared by local production of IFN-g, but not

TNF-a [4].

In vitro studies showed that IFN-g treatment of persist-

ently infected differentiated neuronal cells has rapid and

profound effects on infected cells [36]. Neuronal survival

is improved and host protein synthesis is restored. Viral

RNA synthesis shows an initial increase (3–6 h after

treatment) and a decrease in the ratio of genomic to

subgenomic RNA followed a few hours later by the

termination of viral RNA synthesis. The suppression

of virus replication is mediated by signaling through
Current Opinion in Virology 2011, 1:216–221
the Jak/STAT pathway [35�,37�]. The specific intracellu-

lar effectors are not known, but generation of nitric oxide

has been suggested [34].

Outstanding research questions
How is infectious virus cleared during primary infection

in vivo?

Clearance of infectious virus from the CNS begins within

5 days after infection and is complete by day 7–8

(Figure 1). The first cells of the adaptive immune

response to appear in the CNS are IFN-g-producing

CD8+ T cells followed by IFN-g-producing CD4+ T

cells and IgM-producing B cells (Figure 2). These three

types of effector cells are present in the CNS during the

clearance process, but the relative roles of these cells and

subsets of these cells in in vivo clearance of infectious

virus have not been defined.

Although IgG antibody to the E2 glycoprotein is effective

in clearing infectious SINV from the CNS, production of

virus-specific IgG does not begin until approximately 10

days after infection. The initiation of clearance 4–5 days

after infection suggests an important in vivo role for

SINV-specific IgM, rather than IgG. Studies of anti-

body-mediated protection from fatal encephalitis suggest

that IgM MAbs are less protective than IgG MAbs with

the same or similar specificity, but IgM from plasma

crosses poorly into the brain due to blood–brain barrier

size restrictions on protein entry. Therefore, lack of IgM

efficacy compared to IgG when passively transferred

could be due to the inefficiency of IgM entry into the

CNS, rather than a lack of biologic activity. Studies with

rabies virus infection have shown that infiltrating anti-

body-secreting cells are much more effective for virus

clearance that serum antibody, so local antibody pro-

duction by infiltrating IgM-producing extrafollicular B

cell plasmablasts may be very efficacious [29].

Furthermore, several lines of evidence suggest that

locally produced IgM may be sufficient for clearance of

infectious SINV from the CNS. T cell-deficient athymic

nu/nu mice produce virus-specific IgM, but not T cells,

and little IgG, but are able to clear CNS virus with normal

kinetics [24,38]. Because bivalent antibody is required for

suppression of SINV replication [26], it is possible that

multivalent IgM antibody may be even more effective

than IgG.

After infectious virus is cleared how is viral RNA

decreased?

In immunologically normal mice, viral RNA levels gradu-

ally decrease over several weeks after infectious virus has

been cleared (Figure 1). In SCID mice that have cleared

virus in response to passively transferred antibody, virus

replication is renewed in the brains of most mice once

antibody levels have decayed [39]. Thus, viral RNA per-

sists and the RNA that remains is capable of renewing virus
www.sciencedirect.com
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Figure 3
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Effect of various immunodeficiencies on clearance of infectious virus

from the brain after alphavirus infection of mice. SCID, severe combined

immunodeficiency; BKO, IFN-b-deficient; mMT, antibody-deficient;

GKO, interferon-g-deficient; WT B6, wild type C57BL/6 [13].
production if there is a secondary failure of immune con-

trol. Therefore, immune-mediated decrease of viral RNA

during the second phase of clearance is likely to be particu-

larly important for prevention of renewed virus replication.

During this phase of infection there is a rapid contraction

in the numbers of CD8+ T cells in the CNS while CD4+ T

cell numbers are maintained and B cell numbers increase

(Figure 2). Mice deficient in IFN-g or in the response to

IFN-g often display transient reactivation of virus pro-

duction 12–22 days after infection [13] (Figure 3),

suggesting that IFN-g is needed to continue to decrease

levels of viral RNA. It is possible that CD8+ T cells

provide early local IFN-g production and that CD4+ T

cells are essential for continued local production of IFN-g

and potentially for providing local help to maintain both

CD8+ T cell function [40,41] and antibody production by

B cells [42]. Antibody produced in the CNS during this

phase of clearance is high avidity IgG and IgA which may

also regulate intracellular production of viral RNA.

After recovery, why are immune cells still maintained in

the CNS?

Approximately 2 months after infection, viral RNA in the

CNS has been decreased to a stable low level (Figure 1).

CD8+ T cells expressing the integrin CD103 are main-

tained with IL-15 independent homeostatic proliferation

in the CNS for prolonged periods of time after CNS

infection [43,44�]. B cells secreting virus-specific anti-

body are also present at stable low levels and local

antibody synthesis continues within the infected CNS

for many months [8,26]. Evidence suggests that this

antibody is essential for preventing recrudescence of virus

replication [45,46].
www.sciencedirect.com
Long-term intrathecal production of virus-specific anti-

body characterizes the recovery phase of viral encepha-

litis in humans, as well as mice [47–49]. Further evidence

of the importance of sustained suppression of virus repli-

cation in the CNS comes from clinical experience with

the use of rituximab (anti-CD20) for elimination of B cells

as a treatment for B cell lymphoma and autoimmune

disease and of natalizumab (anti-VLA-4) for prevention of

entry of inflammatory cells into the CNS. A major com-

plication of these treatments has been reactivation of

virus infection in the CNS [9,50�,51].

Conclusions
B cell production of antiviral antibody and T cell-pro-

duction of IFN-g within the infected nervous system are

important for noncytolytic clearance of infectious virus

and viral RNA and also for prevention of virus reactiva-

tion. However, many aspects of in vivo clearance are not

understood. These include the role of IgM in early

clearance of infectious virus, the mechanism by which

production of viral RNA is suppressed in neurons no

longer producing infectious virus and the environment

in the brain that supports long-term residence of immune

cells in regions of infection.
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