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Koschei the immortal and anti-aging drugs

MV Blagosklonny*,1

In Slavic folklore, Koschei the Immortal was bony, thin and lean. Was his condition caused by severe calorie restriction (CR)? CR
deactivates the target of rapamycin pathway and slows down aging. But the life-extending effect of severe CR is limited by
starvation. What if Koschei’s anti-aging formula included rapamycin? And was rapamycin (or another rapalog) combined with
commonly available drugs such as metformin, aspirin, propranolol, angiotensin II receptor blockers and angiotensin-converting
enzyme inhibitors.
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Facts

� Calorie restriction deactivates mTOR and increases
life span

� Rapamycin prevents obesity and extends life span
� In fairy tales, long-lived heroes were lean, slim and bony

Open Questions

� Were their leanness and longevity due to genetic inhibition
of mTOR?

� Can leanness plus longevity be achieved by rapamycin?
� How to combine five clinically available anti-aging drugs

with calorie restriction?

Koschei the deathless (a villain in Russian, Polish and Ukrainian
fairy tales) was immortal, strong, bony and lean (Figure 1). Was
it his passion for the young princess Vassilisa, the Beautiful, who
rendered him immortal? Did he lose his appetite because of his
tragic love? Or was he secretly taking a rapalog such as
rapamyin (Sirolimus), Temsirolimus, Everolimus andDeforolimus.
And did Koschei benefit from benevolent glucose intolerance?
Or, in contrast, was he insulin hypersensitive? Here are some
answers and subsequent questions.

Rapamycin Prevents Obesity

In mice on high-fat diet, rapamycin decreases obesity and
prevents weight gain.1–4 In rats, rapamycin (3 times per week)
decreased age-associated weight gain.5 Also, chronic (every-
day) treatment with rapamycin reduces adiposity and body
weight.6,7 (In some strains, chronic daily treatment was
associated with insulin resistance (IR), but more on that
latter). In humans, rapamycin decreases the size of fat cells
(adipocytes) and body weight.5 In humans, kidney transplan-
tation is associated with weight gain, which is preventable by
rapamycin.8 So, at least at high doses, rapamycin can

decrease weight gain in mice, rats and humans. Yet, Koschei
was unusually skinny and there is no data that rapamycin can
cause such a severe weight loss.

How Rapamycin Prevents Obesity

a. Rapamycin increases lypolysis, releasing fatty acids from
the fat tissue.9–12

b. Rapamycin prevents entry of lipoproteins into the tissues.6

c. Rapamycin decreases insulin secretion, therefore, pre-
venting insulin-induced obesity.13

d. Rapamycin prevents adipocyte differentiation.10,14–16

Rapamycin increases lipolysis and decreases, this
can lead to hyperlipidemia (see for explanation schema
2 in17). Hyperlipidemia (or dyslipidemia) is a biomarker
of the treatment with high doses of rapamycin and
evirolimus.9 Rapalog-induced dyslipidemia is a benevolent
sign of therapeutic effects. In fact, rapamycin prevents
atherosclerosis.18–20

Hyperlipidemia is rapidly reversible.21 Eventually, hyperlipi-
demia disappears despite chronic use of rapamycin.22

Noteworthy, hyperlipidemia can be diminished by lipid-
lowering drugs, as shown in renal transplant patients who
were receiving rapamycin.23

Fatty acids are burned by the muscles (especially during
physical exercise) and also incorporated into lipoproteins by
the liver.
We can hypothesize that benevolent dyslipidemia can be

diminished by the following:

a. Physical exercise (the muscle burns lipids).
b. Calorie restriction.

These two predictions need to be tested.
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mTOR Causes Obesity and IR. Mammalian target of
rapamycin (mTOR) is a nutrient-sensing pathway.24–31

Nutrients such as glucose, amino and fatty acids activate
mTOR and also increase insulin, which also activates mTOR.
In the fat tissue, mTOR promotes adipocyte differentiation
and hypertrophy, increases lipogenesis (synthesis of trigly-
cerids) and decreases lipolysis (hydrolysis of triglycerides),
leading to fat accumulation or obesity. In a vicious cycle,
obesity activates mTOR.32,33

To limit its overactivation, mTOR blocks insulin signaling,
causing IR.34–39 Rapamycin and calorie restriction (CR)
can reverse IR.32,34,40–49 For example, in healthy men,
infusion of amino acids activates mTOR causing IR.44,46

Administration of 6mg rapamycin before amino acids
prevents IR.46 Noteworthy, IR and metabolic syndrome are
multifactorial.50–61

The Misunderstood Effect: Benevolent IR

The most common argument against rapamycin is that it
causes IR. Somehow, this is the only rumor that many
scientists heard about rapamycin. In fact, glucose intolerance
and IR was observed in a few strains of rodents treated daily
with high doses of rapamycin.2,62–64 Yet, this was not
detrimental for animal health. In contrast, IR was associated
with weight loss and/or extended life span. Furthermore,
unlikeC57BL/6mice,64 genetically heterogeneousHET3mice
on a rapamycin diet were glucose intolerant but insulin
sensitive.65 Ironically, although believing that rapamycin is
dangerous, most scientists do not know the difference between
glucose intolerance and IR. They know even less about classic
conditions of spectacular glucose intolerance and IR. Claude
Bernard (19th century) described that during starvation humans
and dogs develop reversible starvation-diabetes.66 If a starved
animal (or human) consumes sugar, this sugar will appear in the
urine, forcing water to follow (polyuria). The word ‘diabetes’
means an increased amount of urine (polyuria). And ‘mellitus’
means sweet. This sweet taste had been noticed in the urine by
the ancient Greeks. So starvation is accompanied by the most
definitive symptom of ‘diabetes mellitus’. This is a reversible
condition to cope with starvation.

Why Starvation Is Manifested by Benevolent
Pseudodiabetes?

During fasting, lipolysis is increased providing the ‘fuel’ (free
fatty acids and glycerol) for the peripheral tissues. The brain
depends on glucose (and ketones). In the liver, amino acids
are converted into glucose (gluconeogenesis) and fatty acid
into ketones. To spare glucose for the brain, insulin secretion is
inhibited and peripheral tissues become insulin resistant. Low
insulin levels and IR aremanifested as glucose intolerance: if a
starved person consumes glucose, it is not metabolized by the
tissues, its blood levels rose and glucose appears in the urine.
Also, the liver produces ketones from lipids (to feed the brain).
Production of ketones is a hallmark of type I diabetes.
Starvation-induced pseudodiabetes is benevolent because
they are associated with inhibited mTOR.67 In contrast, in the
modern time, IR (as we know it) is associated with obesity and
leads to diabetes type II.40,13 This harmful IR is associated
with over-activation of mTOR and aging (Figure 2).

Calorie Restriction

CR extends life span in numerous species from worm to
mammals.11,28,68–81 CR prevents age-related diseases includ-
ing cancer and sarcopenia.82–84 Whereas moderate CR
increases insulin sensitivity, severe CR causes signs of IR.85

Among individuals who had been practicing severe CR, 40%
of CR individuals showed ‘diabetic-like’ glucose intolerance.85

In theory, starvation would be beneficial for health, but cannot
last long enough for obvious reason – death from starvation.
But high doses of rapamycin can mimic severe CR without
actual nutrient deficiency, thus lacking harmful effects of
starvation.

Koschei Was not Starved

Definitely, Koschei was not starved. He was bonny and strong
and this is not compatible with starvation. Fasting that is
manifested by ‘diabetes’ (sugar in the urine) cannot last too
long to extend life span but rapamycin can. And since
rapamycin does not decrease food consumption, it may

Figure 1 Koshchey the Deathless by Ivan Bilibin, 1901
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Figure 2 Insulin-resistance: two opposite conditions. Insulin resistance (IR) can
be caused by the activation of mTOR and, paradoxically, by mTOR inhibition. In the
first case, IR is detrimental for health, whereas in the second case it is
benevolent13,66,67
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extend life span dramatically, while moderately preventing
obesity. Importantly, rapamycin increases skeletal muscle and
bone mass.86 Given that Koschei was deathless, healthy,
strong (muscular) and bony, he perhaps used CR-mimetic
such as rapamycin, rather than severe CR.

Rapamycin Plus Moderate CR

Because rapamycin inhibits mTOR but not food consumption,
rapamycin is expected to disproportionally increase life span
compared with its moderate effects on body weight. For
example, at low doses and frequencies, which do not cause IR
and other metabolic alterations, rapamycin still extends life
span in mice.87 As we discussed, acute treatment by
rapamycin increases insulin sensitivity. Pulse (intermittent)
treatment with rapamycin (either once a week or every other
week or intermittent short courses) extends life span,88–93

while maintaining insulin sensitivity.87 In high-fat diet-fed
C57BL/6 mice, weekly rapamycin for 22 weeks improved
metabolic and immune status. Rapamycin-treated mice were
leaner and were protected against IR and mTORC2 activity
was intact.4 So, life extension by rapamycin can be associated
with either IR or insulin sensitization depending on the dose
and the frequency of administration. The life extension and
anticancer effects were detectable at low-frequency adminis-
tration, when little effect on weight was observed. Yet Koschei
was extraordinary lean. We can consider two scenarios. First,
he might use very high doses of rapamycin to develop
‘starvation-like diabetes’, which can be followed by weight
loss. (Note: weight loss is a symptom of type I diabetes).
Although high chronic doses of rapamycin in some strains of
mice cause IR, this IR did not reach the magnitude of full-
blown ‘pseudodiabetes mellitus’. According to second sce-
nario, Koschei combined rapamycin with standard CR (not
starvation). We can expect that this will both extend life span
and eliminate fat tissue. In agreement with second scenario,
Koschei was known to be greedy, so CR was naturally added
to rapamycin. And he should not experience diabetic-like
polyurea because he did not eat sweets or sugar, but instead
his diet consisted from small amount of meat (human), fish
(mermaid) and fresh vegetables (nettle).

Once Again on Benevolent IR

In contrast, starvation/rapamycin-induced IR is associated
with inhibited mTOR (Figure 1). In all animal models, IR
coupled with lowmTOR is associated with health and life span
extension.67 Is benevolent IR and pseudodiabetes a goal of
rapamycin treatment for maximal life span extension? Or, in
contrast, this should be avoided? In other words, should we
use high doses of rapamycin daily or pulse (intermittent)
treatment.
Apart from the question whether rapamycin-induced IR is

benevolent or not, it is unclear what is its exact mechanism. In
different studies, IR was accompanied either by low or high
insulin levels. In some studies, IR was associated with low
activation of Akt by insulin,64,94 whereas in other studies
rapamycin promoted IR despite normal activation of the Akt
axis.6 In cell culture, rapamycin reverses IR caused by glucose
and does not cause IR even at chronic (2 weeks) use.95

Thus, details of rapamycin-induced IR are still unclear.What
is clear is that at both high and low doses, at chronic and
intermittent administrations, rapamycin extends life- and
health-span in mice. Also, it was taken by millions of humans
in high doses daily, even though transplant and cancer
patients were in bad health to start with. The most noticeable
side effects of rapalogs (rapamycin, tecrlolimus, everolimus)
are prevention of cancer96–98 and regression of heart
hypertrophy in kidney transplant recipients.99 Rapalogs are
anticancer drugs.100–109

Rapalogs as Anti-aging Drugs

Nutrients activatemTORpathway, which drives cellular growth
and functions, and then geroconversion and hyper-
functions.110 On organismal level, mTOR drives growth early
in life and aging later in life.111,112 Rapamycin slows aging and
extends life span in mice.113–121 What is the cellular
mechanism that allows rapamycin to slow organismal aging?
Rapamycin slows down geroconversion: conversion from
quiescence to irreversible senescence.122–130 Senescence
is characterized by cellular hyperfunction (hyper secretion,
hypertrophy, pro-inflammation and so on.131–136 This cellular
hyperfunction also cause a feedback signal resistance
(such as IR) to limit hyperfunctions. A combination of
hyperfunctions and signal resistance leads to alterations in
homeostasis and initiates age-related diseases such as
obesity, atherosclerosis, hypertension, neurodegeneration,
osteoporosis, sarcopenia.30,119,137,138 Cancer is preventable
by rapamycin.88,90,91,96–98,136,139–146 Rapamycin prevents
age-related diseases in rodents from macular degeneration
and obesity to cancer and heart dysfunction.142,146,147–152

Rapamycin also extends life span in normal and cancer-prone
mice as well as in mice with premature aging syndromes.93,153

In the latter case, rapamycin at an average extended life span
more 100% and maximal survival 4300%.153

The Anti-aging Formula

Koschei was constantly fighting with enemies. So physical
exercise was a part of his daily life. Mobilized by rapamycin,
lipids can be burned by the muscle during physical exercise.
By itself, chronic physical exercise inhibits mTOR and
increases insulin sensitivity.154 Thus, rapamycin was com-
bined with moderate CR (based on vegetables and fish) and
physical exercise.
There are several clinically approved, widely used drugs

that could be added to the rapamycin CR/exercise combina-
tion. They include metformin, aspirin, inhibitors of angiotensin
II and propranolol.
It was shown almost 50 years ago that phenformin and

metformin, anti-diabetic drugs that improve IR, also slow down
aging and prevent cancer in rodents.100,106,155–163 These
effects were explained from the mTOR perspective, revealing
a rationale to combine rapamycin and metformin.164 Two
agents may even cancel each other side effects. For example,
whereas metformin can increase lactate production, rapamy-
cin decreases it.165 Metformin also prevents cancer and other
age-related diseases in humans.166–174
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Aspirin, an anti-inflammatory agent, decreases pro-inflam-
mation, a marker of senescence, as well as inhibits hyperfunc-
tions of blood platelets and endothelial cells.133,175,176 There is
increasing evidence that aspirin is beneficial in the prevention
of multiple age-related diseases and their complications.177–184

Aspirin increases life span of genetically heterogeneous male
mice179 and even in the worm Caenorhabditis elegans.185

Angiotensin II activatesmTOR pathway186 and is involved in
aging and age-related diseases in mammals.187,188 Disruption
of the Ang II type 1 receptor promotes longevity in mice. At
29 months, when all wild-type animals died, 85% mice lacking
the receptor were still alive. These remaining AT1− /− mice
lived for an additional 7 months, with life span 26% longer than
controls.189 Angiotensin II receptor blockers (ARB) (Valsartan,
Telmisartan, Losartan) as well as angiotensin-converting
enzyme inhibitors (Captopril, Lisinopril, Enalapril, Ramipril)
are widely used as therapy for hypertension. Long-term
angiotensin-converting enzyme inhibition or ARB doubles life
span of hypertensive rats.190,191 In healthy (normal blood
pressure) rats, long-term enalapril treatment decreases body
weight gain and prolonged life span.192 Long-term use of
ARBs is associated with a lower incidence of cancer
occurrence, thereby suggesting that ARBs may prevent
cancer development.193

Propranolol, a non-selective beta-adrenergic blocker, is
widely used to treat hypertension and ischemic heart disease.
In addition, propranolol prevents cancer194–197 and hepatic
steatosis.198 Also, berberine and statins199 can be included
into the anti-aging formula, especially given that statins
prevent rapamycin-induced dyslipidemia.23

Conclusion: Lessons Learned from Koschei

The creators of fairy tales noticed that the extraordinary
longevity is associated with thinness, whereas obese people
do not live long. It is not a coincidence that another character of
Slavic tales, Baba Yaga the bony leg (kostianaia noga), was
extremely old and thin. She cooked potion (зелье), an anti-
aging mixture, for Koschei and herself. Now we can compose
this mixture by using available drugs. The cornerstone of the
formula is a rapalog such as rapamycin. Yet, gerontologists
claim that rapamycin cannot be used in humans because of its
terrible side effects. This modern tale about side effects of
rapamycin might surprise physicians, who have prescribed
rapamycin, everalimus to millions of patients worldwide. But
practicing doctors do not read basic science papers. Why this
misinformation circulates among gerontologists and other
basic scientists. May be because Koschei and Baba Yaga
were evil and had long curly hair (side effects). Or there are
other reasons. I will discuss this in forthcoming article ‘Does
mankind deserve rapamycin’.
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