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Abstract
Coronary magnetic resonance angiography (coronary MRA) is advantageous in its ability to assess coronary artery mor-
phology and function without ionizing radiation or contrast media. However, technical limitations including reduced spatial 
resolution, long acquisition times, and low signal-to-noise ratios prevent it from clinical routine utilization. Nonetheless, 
each of these limitations can be specifically addressed by a combination of novel technologies including super-resolution 
imaging, compressed sensing, and deep-learning reconstruction. In this paper, we first review the current clinical use and 
motivations for non-contrast coronary MRA, discuss currently available coronary MRA techniques, and highlight current 
technical developments that hold unique potential to optimize coronary MRA image acquisition and post-processing. In the 
final section, we examine the various research-based coronary MRA methods and metrics that can be leveraged to assess 
coronary stenosis severity, physiological function, and atherosclerotic plaque characterization. We specifically discuss how 
such technologies may contribute to the clinical translation of coronary MRA into a robust modality for routine clinical use.
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Abbreviations
MRA  Magnetic resonance angiography
CAD  Coronary artery disease
CTA   Computed tomography angiography
CAG   Coronary angiography
LGE  Late gadolinium enhancement
ECG  Electrocardiography
SSFP  Steady-state free precession
RCA   Right coronary artery
SNR  Signal-to-noise ratio
CNR  Contrast-to-noise ratio
bSSFP  Balanced steady-state free precession 

imaging

FLASH  Fast low angle shots
MRI  Magnetic resonance imaging
SR  Super-resolution
BM3D  Block matching and 3-D filtering
TNRD  Trainable nonlinear reaction diffusion
DnCNNs  Denoising convolutional neural networks
PI  Parallel imaging
CS  Compressed sensing
SENSE  Sensitivity encoding
iGRASP  Iterative golden-angle radial sparse parallel 

MRI
SPIRiT  Self-consistent parallel imaging 

reconstruction
ESPIRiT  Eigenvector maps self-consistent parallel 

imaging reconstruction
tGA  Tiny golden radial
DLR  Deep learning reconstruction
XD-GRASP  Extra-dimensional GRASP
PC  Phase contrast
CBF  Coronary blood flow
LAD  Left anterior descending
LCX  Left circumflex
CFR  Coronary flow reserve
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MPRAGE  Magnetization-prepared rapid acquisition 
with gradient echo

HIP  High-intensity plaque
UTE  Ultrashort echo time

Background

The diagnosis and management of coronary artery disease 
(CAD) and consequent myocardial ischemia are central to 
the prevention of future cardiac events. In this regard, the 
main advantage of non-contrast coronary magnetic reso-
nance angiography (coronary MRA) is its ability to assess 
coronary artery morphology and function without ionizing 
radiation or contrast media. Despite the early recognition of 
such extraordinary potential [1], significant technical limita-
tions including reduced spatial resolution, long acquisition 
time, and low signal-to-noise ratio impairing image quality 
have caused coronary MRA to be less preferred than com-
peting non-invasive techniques such as coronary computed 
tomography angiography (CTA), and prevented it from rou-
tine clinical utilization [2, 3]. However, despite these techni-
cal limitations, coronary MRA has contributed significantly 
to our current understanding of CAD pathophysiology [4, 5] 
by providing insights into coronary artery distensibility in 
response to stress [6], plaque characteristics [7], and plaque 
inflammation [8]. Its usefulness as a non-invasive research 
method to assess CAD in different groups of patients has 
been demonstrated not only in single center clinical inves-
tigations [9, 10], but also in multi-center studies [11, 12]. 
Moreover, coronary MRA has proven to be important in the 
delineation of congenital coronary abnormalities, for which 
it is recommended as the clinical modality of choice, par-
ticularly when there is concern about the use of radiation and 
contrast [13, 14]. Recent developments in magnetic reso-
nance imaging are poised to specifically impact coronary 
MRA in its ability to assess coronary anatomy and function 
in patients with chest pain or other clinical manifestations 
that suggest the presence of CAD [15–18]. More recently, 
the possibility of using deep learning techniques to enhance 
image quality in applications characterized by low signal-
to-noise ratios has opened additional avenues of potential 
development in coronary MRA imaging [19, 20]. In this 
paper, we will first review the current clinical status of non-
contrast coronary MRA, and then discuss current technical 
efforts to optimize coronary MRA image acquisition and 
post-processing. In the last section of this paper, we will 
discuss the various techniques of coronary anatomical and 
functional assessment on MRI that when combined together 
promise diagnostic and prognostic performance boost. 
Through these discussions, we hope to guide the readers to 
realize the promise of coronary MRA as a diagnostic tool 
for clinical use.

Current status of non‑contrast coronary 
MRA

Motivations for the clinical use of non‑contrast 
coronary MRA

CAD remains the leading cause of death in the world 
[21]. Catheter-based X-ray coronary angiography (CAG) 
is the current gold standard for the diagnosis of significant 
(> 50% diameter stenosis) CAD. However, around half 
of the patients referred for diagnostic CAG do not have 
significant stenosis [22–24], yet are exposed to ionizing 
radiation and contrast media as well as the potential risks 
associated with this invasive procedure [25]. The discom-
fort of patients during the invasive procedure is also not 
negligible. Non-contrast coronary MRA is an attractive 
option for anatomical coronary artery assessment in this 
regard, albeit relatively underdeveloped compared to cor-
onary CTA. However, there are advantages non-contrast 
coronary MRA holds over CTA that may be leveraged as 
the technique matures including: (1) “one-stop-shop-test” 
by combining it with additional anatomical and functional 
MRI methods, (2) robustness to the calcium “blooming” 
that hampers CTA assessment, and (3) absence of ionizing 
radiation or contrast media exposure [9].

There are several well-defined patient populations that 
benefit from these advantages. Pediatric congenital heart 
disease patients frequently present for evaluation of coro-
nary anatomy post-surgery or suspected coronary anomaly. 
These pediatric patients require multiple follow-up exami-
nations and thus are good candidates for non-contrast cor-
onary MRA [26]. Albrecht et al. have reported that in a 
pediatric population with suspected anomalous coronary 
arteries, coronary MRA provided comparable diagnostic 
accuracy with coronary CTA in the detection of findings 
that occurs in proximal to mid main coronary arteries like 
anomalies, high origin, and inter-arterial course of the 
coronary arteries, admitting superior visualization with 
CTA in distal coronary arteries [27]. Meanwhile, draw-
backs for coronary MRA in pediatric patients include 
smaller coronary diameter, high resting heart rate, and 
difficulty of keeping the same position for a long time as 
compared to adults. Cardiac MRI with sedation or coro-
nary CTA with its inherently higher spatial resolution may 
be considered appropriate in some cases [28, 29]. Evalu-
ation of Kawasaki disease is another accepted indication 
for which coronary MRA is reported to be equivalent to 
CAG (Fig. 1) [30, 31]. Indeed, coronary MRA is recom-
mended as the clinical modality of choice for these popu-
lations in which repeated radiation and contrast exposure 
are major concerns [13, 14]. The Japanese Circulation 
Society guidelines for Kawasaki disease in 2013 stipulate 
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that coronary MRA is preferred over coronary CTA, as 
it allows repeated imaging while heart rate control is not 
required, which enables infants and young children to 
undergo the examination during sleep [32]. On the other 
hand, while the European Society of Cardiology guidelines 
for adult congenital disease published in 2010 recommend 
regular usage of cardiovascular magnetic resonance when 
considered superior to echocardiography, these guidelines 
do admit that CT is superior for non-invasive coronary 
angiography [33].

In chronic kidney disease (CKD) patients, contrast 
administration is a major concern due to the risk of post-
contrast acute kidney injury after iodine-based contrast 

media injection [34, 35] or nephrogenic systemic fibrosis 
after gadolinium-based contrast media [36]. Moreover, 
these patients often require multiple follow-ups since they 
frequently present with severely calcified plaques in the 
coronary arteries. Not only does non-contrast MRCA take 
away the risk of further kidney injury by contrast injection, 
but it also allows for coronary lumen visualization without 
blooming artifacts from calcium as seen in coronary CTA. 
In MRI, calcifications present very low signal both on T1 
and T2 images due to their low proton density. As a result, 
coronary calcifications do not obscure the coronary lumen 
in MRI. Indeed, coronary MRA has been shown to have a 
better performance in the detection of significant stenosis 
in patients with moderate to severe calcifications than CTA 
(Fig. 2) [37].

The principal idea for the treatment strategy of stable 
CAD is 1) invasive revascularization for the left main steno-
sis and 2) invasive revascularization when symptoms such as 
chest pain remain despite optimal medical therapy. Coronary 
MRA provides information on the distribution and sever-
ity of stenotic lesions, which is helpful to assess left main 
lesions, or when deciding the treatment strategy between 
percutaneous catheter intervention (PCI) and coronary artery 
bypass graft (CABG) surgery.

Another recent concern is the possibility of gadolinium 
depositions in the brain. This phenomenon has been cor-
related with the number of previous examinations involving 
gadolinium-based contrast administration [38] and has also 
been reported in subjects without severe renal dysfunction 
[39]. Although the long-term effects are not clear, the gen-
eral consensus is that when possible, reduced exposure to 
gadolinium is preferable. Non-contrast coronary MRA is in 
line with this principle.

Meanwhile, coronary MRA has a few major limitations 
including (1) time-consuming image acquisition which 
takes around 10–20 min, (2) low spatial resolution (around 
1-2 mm) compared to coronary CTA (around 0.5 mm) or 
CAG(< 0.3 mm), (3) poor visualization of coronary stents or 
calcified plaque due to the low proton density of these ele-
ments and limited visibility of the stent lumen due to radiof-
requency (RF) shielding effects [40], susceptibility artifacts 
by diamagnetic (calcium) or ferromagnetic (stent) effect 
(though manageable with short echo time setting [41]), and 
(4) no consensus on coronary MRA post-processing and 
analysis methodology.

As these challenges are tackled and the technique matures, 
integrated protocols in which coronary MRA is added to other 
cardiac MRI examinations as a “one-stop-shop-test” are likely 
to improve the diagnostic and prognostic performance of the 
MRI examination. For example, the addition of free-breath-
ing whole heart contrast-enhanced coronary MRA at 3 T to 
the combination of stress/rest myocardial perfusion imaging 
and late gadolinium enhancement (LGE) image significantly 

Fig. 1  Coronary MRA (a) and CAG (b) image of a left anterior 
descending coronary artery aneurysm (LAD an) in a patient with 
Kawasaki disease. MRA magnetic resonance angiography, CAG  coro-
nary angiography, LAD left anterior descending, LV  left ventricle, R. 
Atrium right atrium, RCA  right coronary artery. (Reprinted with per-
mission from Mavrogeni et al. [30], Copyright © 2004 by the Ameri-
can College of Cardiology Foundation)
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improved the sensitivity and diagnostic accuracy of detection 
of ≥ 50% stenosis as diagnosed by CAG (per-patient bases, 
sensitivity 100% vs. 76.5%, p < 0.01, accuracy 89.1% vs. 
73.9%, p < 0.01) [42]. Although not specifically shown, a simi-
lar benefit of non-contrast coronary MRA is highly expected. 
Interestingly, the additive value of coronary MRA was not sig-
nificant in another study that evaluated the integration of non-
contrast coronary MRA with myocardial perfusion imaging 
(MPI) and LGE at 1.5 T for the detection of hemodynamically 
significant stenosis, defined as either a severe lesion of ≥ 90% 
luminal narrowing/occlusion or flow reserve ≤ 0.80 [43]. This 
result suggests that the diagnostic performance of MPI and 
LGE for the detection of physiological ischemia is already 
saturated and therefore there is less room for the contribu-
tion of the morphological assessment to significantly improve 
the diagnostic performance. The potential additive value of 
MRCA remains in excluding three-vessel disease in the dif-
ferential diagnosis with microvascular disease, which was not 
assessed in this study.

Prognostication of cardiac events is a primary contribu-
tion of non-contrast coronary MRA by itself or in combina-
tion with other cardiac MRI phenotypes as a “one-stop-shop-
test”. Yoon et al. have reported during a median follow-up 
of 25 months of 207 patients that the presence of signifi-
cant stenosis detected on 1.5 T non-contrast coronary MRA 
was significantly associated with all cardiac events (hazard 
ratio = 20.78, p = 0.001) [44].

Preparation for the clinical coronary MRA 
acquisition

The current acquisition standard for coronary MRA—
three-dimensional (3D) free-breathing whole-heart 

coverage coronary MRA, requires several preparatory 
techniques such as electrocardiography (ECG) and respira-
tory gating [45]. A patient-specific acquisition window is 
set based on ECG gating during either the diastolic or sys-
tolic phase, corresponding to the phase with the least coro-
nary artery motion. For the static phase selection, transax-
ial cine MR images with a steady-state free precession 
(SSFP) sequence are acquired prior to the coronary MRA 
acquisition to evaluate the motion pattern of the right coro-
nary artery (RCA). The dome of the right hemidiaphragm 
is the preferred location of the respiratory navigator, while 
the details of navigator implementation tend to be ven-
dor specific [45]. Although the image gets sharper when 
the ECG and respiratory gating width are narrowed, the 
inherent disadvantages of narrow windows are a reduction 
in the data acquisition success rate and a corresponding 
increase in the image acquisition time, potentially leading 
to more disturbance from patient motion. In the respira-
tory navigator, the current general setting of a small gat-
ing window of 5–6 mm leads to a low imaging efficiency 
(30–50%) [46]. In the absence of overt contraindications, 
the administration of sublingual nitroglycerin (NTG) is 
recommended to improve luminal visualization in terms 
of signal-to-noise ratio (SNR), vessel diameter, and ves-
sel sharpness of the coronary MRA [47]. Heer et al. have 
reported that the significant increase in coronary diameter 
and visible vessel length observed with sublingual NTG 
administration result in improved sensitivity, specificity, 
and diagnostic accuracy for the detection of > 50% coro-
nary stenosis on 1.5 T non-contrast coronary MRA [48].

Fig. 2  Representative images of the RCA in three different modali-
ties of a coronary CTA, b coronary MRA, and c CAG. a Diffuse 
calcification (arrow and arrowheads) was detected in RCA on coro-
nary CTA MIP image. Coronary MRA MIP image b shows moderate 
stenosis (arrow, b) and CAG (c) confirms moderate stenosis (arrow, 
c) in corresponding segment where heavy diffuse calcification can 
be seen in a (arrow in a). b, c No significant stenosis (arrowheads) 

in corresponding segments where nodal calcifications are located in 
(a). AO aorta, RCA  right coronary artery, CTA  computer tomography 
angiography, MRA magnetic resonance angiography, CAG  coronary 
angiography, MIP maximum intensity projection. (Reprinted with 
permission from Liu et al. [37], Copyright © 2007 by the American 
Roentgen Ray Society, ARRS)
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1.5 T vs. 3 T coronary MRA

Coronary MRA at higher magnetic field strengths has been 
an area of active research given the potential benefits in SNR 
and contrast-to-noise ratio (CNR) as well as higher spatial 
and temporal resolutions. The optimal non-contrast coronary 
MRA imaging technique differs between 1.5 T MRI and 
3 T MRI. In 1.5 T-MRI, balanced steady-state free preces-
sion imaging (bSSFP) is the most commonly used sequence 
[12, 45, 49]. However, the applicability of bSSFP to 3 T 
MRI is limited for a variety of reasons including (1) more 
pronounced B0 and B1 field inhomogeneities than 1.5 T, 
(2) degraded image quality and increased magnetic field 
heterogeneity from RF pulse-induced dielectric effects, and 
(3) increased power deposition in the human body at 3 T 
limits the use of large flip angles for SSFP imaging [50]. To 
address the above-mentioned challenges, spoiled gradient 
echo sequences are used [51, 52]. Despite somewhat limited 
by lower SNR and CNR than SSFP, spoiled gradient echo 
sequencing, ECG- and diaphragm navigator gating, and fat 
suppression have become the standard acquisition protocol 

for non-contrast coronary MRA at 3 T [15]. In a study that 
investigated the image quality between SSFP and gradient 
echo sequence for coronary MRA at 3 T, the image quality 
was higher and the measured vessel length was longer in 
gradient echo sequence [53]. When performed with the same 
sequence, 3 T coronary MRA is not inferior to 1.5 T coro-
nary MRA both in image quality and diagnostic accuracy for 
the detection of coronary stenosis [54].

Figure 3 shows a representative non-contrast coronary 
MRA case acquired in 3 T MRI with the conventional image 
acquisition acceleration method of parallel imaging (PI).

Non‑contrast vs. contrast‑enhanced coronary MRA

Non-contrast coronary MRA leverages the natural T2 differ-
ences between the blood and the surrounding architectures. 
Techniques such as fat saturation pre-pulses, magnetization 
pre-pulses, and T2 preparatory pulses augment the relative 
signal of the coronary arteries. These pre-pulses differen-
tiate oxygenated blood in coronary arteries from the sur-
rounding short T2 relaxation tissues such as cardiac muscle, 

Fig. 3  A representative case of a non-contrast coronary MRA with 
a conventional technique. A non-contrast coronary MRA acquired 
in 3  T scanner with the conventional image acquisition accelera-
tion method of parallel imaging (PI) is presented. A spoiled gra-
dient echo sequence with ECG gating, diaphragm navigator gat-
ing, and fat suppression with spectral attenuated inversion recovery 
was used for the image acquisition. The MRI acquisition param-
eters were FOV = 350 × 350  mm, matrix = 224 × 232, slice thick-

ness = 1.5  mm, slice number = 80, acceleration factor = 2.0 × 2.0, 
TR = 4.9  ms, TE = 1.9  ms, flip angle = 12°, bandwidth = 326  Hz/
pix, acquisition voxel size = 1.6 × 1.5 × 1.5  mm, reconstructed voxel 
size = 0.80 × 0.80 × 0.75, navigator gating window = 5 mm. a, b Vol-
ume rendering images. Arrowheads: LAD, dashed arrows: LCX, and 
solid line arrows: RCA. c–e Curved MPR images of c LAD, d LCX, 
and e RCA. MRA magnetic resonance angiography, LAD left anterior 
descending, LCX left circumflex, RCA  right coronary artery
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deoxygenated blood in cardiac veins, and epicardial fat [55, 
56]. Dixon water–fat separation [57] and lipid insensitive 
binomial off-resonant excitation (LIBRE) [58, 59] (Fig. 4) 
are also available options for fat suppression on coronary 
MRA. Another approach to fat suppression, the fast inter-
rupted steady-state (FISS) sequence, uses an RF excitation 
pulse to natively suppress the fat signal without the need 
for periodical application of fat suppression and ramp-up 
pulses, and is reported to present a strong suppression of 
pericardial fat signal [60, 61]. The fat suppression technique 
is more challenging in radial imaging with higher magnetic 
field strengths, since the field inhomogeneities are typically 
accentuated. At the current stage, there is no conclusion on 
which fat suppression technique is the best for the current 
coronary MRA imaging technique. In comparison to the 
SSFP sequence acquisition in 1.5 T MRI, the T1 differences 
between blood and myocardium are smaller in 3 T MRI with 
gradient echo sequence acquisition. Therefore, contrast-
enhanced coronary MRA was preferred during the period 
that 3 T coronary MRA acquisition was under development. 
With the maturation of the technique, the non-contrast coro-
nary MRA image is more feasible and preferred in 3 T MRI.

The diagnostic performance of coronary MRA varies 
between studies, likely a result of the presence or absence 
of contrast administration, heterogeneity of the acquisition 
sequences, and the analytic methods used. A meta-analysis 
of 1638 patients in 24 studies including 1.5 T and 3 T coro-
nary MRA studies reported the estimated sensitivity and 
specificity for detecting > 50% stenosis is 95% and 77% for 
contrast coronary MRA, while those values were 87% and 
69%, respectively, for non-contrast coronary MRA [3]. The 
diagnostic performance of 1.5 T non-contrast coronary MRA 
to detect > 50% stenosis, with CAG serving as the reference 
standard, was reported by Kato et al. in a multicenter trial of 
137 patients across seven hospitals in Japan. On a per-patient 
level, the observed sensitivity and specificity were 88% and 
72%, respectively [12]. Hamdan et al. compared the perfor-
mance of 3 T non-contrast coronary MRA against 64-slice 
coronary CTA to detect significant CAD, using quantitative 
coronary angiography as the gold standard. On a per-patient 
basis, the observed sensitivities and specificities were 87% 
and 77% for non-contrast coronary MRA versus 90% and 
83% for CTA, respectively [10]. Despite the trend toward 
higher diagnostic accuracy values for CTA, both techniques 

Fig. 4  Comparison of the dif-
ferent fat saturation methods 
on radial trajectories coronary 
MRA at 3 T in healthy subjects. 
Coronary MRA images show 
the left and right coronary 
artery system depicting the 
RCA and the LAD in several 
subjects. Using the LIBRE 
pulse the visualization of the 
RCA and LAD was improved 
(yellow arrow), as well as fat 
suppression (orange arrows) 
compared with FS and WE. 
Vessel sharpness as well as 
imaged vessel length was 
significantly increased using 
LIBRE. Window and level are 
identical in images acquired in 
each volunteer. MRA magnetic 
resonance artery, RCA  right 
coronary artery, LAD left ante-
rior descending artery, LIBRE 
lipid insensitive binomial 
off-resonant excitation, FS fat 
saturation, WE water excita-
tion.  (Reprinted with permis-
sion from Batiaansen et al. 
[59] Copyright © 2019 by the 
Authors)
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were equal in their ability to identify patients who subse-
quently underwent revascularization. Current diagnostic per-
formance of non-contrast coronary MRA is encouraging, but 
not as high as contrast coronary MRA and coronary CTA. 
However, as discussed earlier, the various advantages of 
non-contrast coronary MRA make it exceedingly attractive 
in many clinical situations. Technical developments provide 
further promise to improve the diagnostic performance of 
non-contrast coronary MRA.

Current in‑progress topics in coronary MRA

The major challenges of current coronary MRA sequences 
remain in: (1) unpredictable and long scan times mainly 
due to low gating efficiency which need image acquisition 
acceleration techniques including trajectory design, sparse 
sampling, and reconstruction; (2) residual respiratory motion 
artifacts due to simplified motion models and translational 

motion correction only. Advanced non-rigid motion correc-
tion techniques can address not only the motion artifacts but 
the low gating efficiency problem by allowing for 100% scan 
efficiency; and (3) overall image quality problems including 
those that may be solved by resolution improvement and 
denoising. Table 1 is a summary of the current technical 
challenges facing wider adoption of coronary MRA and 
corresponding solutions offered by current techniques and 
promising techniques under development which are dis-
cussed in the following paragraphs.

Image acquisition acceleration technique (1): 
trajectory design and sparse sampling

Trajectory design of k-space sampling method is the first 
step of the image acquisition acceleration strategy and it is 
closely related with the subsequent reconstruction strategy. 
Cartesian k-space sampling is the most widely used trajec-
tory design in current MRI image and in coronary MRA 

Table 1  Summary of technical challenges on coronary MRA and corresponding solutions with current and promising techniques

MRA magnetic resonance angiography, SNR signal-to-noise ratio, DL deep learning, PI parallel imaging, CS compressed sensing, ECG electro-
cardiography

Problems Current techniques Promising techniques

Methods Characteristics Methods Characteristics

1. Time-consuming image 
acquisition

Parallel imaging (PI) 
[80–84]

Well-established method
Limitation of the accelera-

tion factor
Characteristic artifacts

Compressed Sensing (CS) 
[15, 16, 85, 86]

Potentially more effective in 
higher-dimensional image 
(3D > 2D) which is ideal 
for 3D coronary MRA 
acquisition

Further techniques that 
combine PI and CS [65, 
78, 88–91] or sparse 
k-space acquisition and 
DL [92, 93] are potentially 
available

2. Low scan efficiency 
from respiratory and 
ECG gating

Respiratory and ECG 
gating are the current 
standard technique

Strict gating gives better 
image quality but trade-
off with long acquisition 
time

Self-gating with motion 
correction [17, 46, 75, 
94–98]

Golden-angle image acqui-
sition and reconstruction 
[18, 71, 72, 91]

No need for respiratory gat-
ing or ECG gating

Simultaneously acquired 
CINE images

Time consuming for the 
reconstruction

3. Low resolution Sub-millimeter spatial 
resolution acquisition 
[84]

Trade-off with SNR Super-resolution with 
inter-slice reconstruction 
[99]

Super-resolution based on 
overcomplete dictionar-
ies [100, 104]

Super-resolution based on 
deep learning [101, 102]

Inter-slice reconstruction 
method works well with 
2D images

4. Noise Mathematical denoising 
[108, 109]

No generally accepted 
standard for clinical use 
for any commercial filter

DL denoising [19, 20, 
113–116, 140]

Better preservation of the 
edge

Potentially works well with 
specific situation such as 
coronary MRA-dedicated 
denoising
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as well. The conversion from k-space domain to the image 
domain is simple with the inverse fast Fourier transform 
(FFT). Meanwhile, other types of non-Cartesian trajectory 
designs like radial and spiral trajectories have several advan-
tages in the aspect of accelerated image acquisition and are 
of great interest. Reconstruction from non-Cartesian trajec-
tories generally use filtered back-projection [62] or interpo-
lation to the Cartesian grid k-space [17, 18, 63–65] so that 
the conversion to the image domain is more complicated.

Radial and spiral-like Cartesian trajectories have under-
sampling properties to create incoherent noise-like arti-
facts, which are a requirement for compressed sensing (CS) 
or low-rank reconstructions while still allowing for much 
shorter reconstruction times compared to non-Cartesian tra-
jectories [65–69]. These techniques have been extensively 
used in recent coronary MRA studies.

Non-Cartesian trajectories can sample denser in the 
center of the k-space referring their design. This is prefer-
able to image coronary MRA (1) to achieve faster acquisi-
tion with sparse k-space sampling and (2) to address motion 
artifact by average effect [70–72] or (3) to extract motion 
signals for self-navigation or motion compensation [46, 
73–75]. “Golden-angle” radial sampling [76] is a good 
example of non-Cartesian trajectory. This design brings 
approximately uniform k-space coverage for many useful 
subsets of acquired data, which enables dynamic imaging 
studies with continuous data acquisition and retrospec-
tive reconstruction of image series with flexible temporal 
resolution by grouping a different number of consecutive 
measurements into each temporal frame [77, 78]. Further-
more, the “stack-of-stars” k-space sampling is the hybrid of 
golden-angle radial trajectories with Cartesian sampling. By 
combined application of parallel imaging to the Cartesian 
sampling direction and compressed sensing to the remaining 
directions for the reconstruction, streaking artifacts can be 
mostly removed with improved delineation of fine structures 
using the proposed strategy [71, 78, 79]. In the following 
discussion on reconstruction and motion correction tech-
niques, the relevant trajectory designs are discussed together.

Image acquisition acceleration technique (2): 
reconstruction (parallel imaging and compressed 
sensing)

Sparse k-space sampling which violates the Nyquist sam-
pling theorem is central to accelerated image acquisition. 
Two major reconstruction methods are parallel imaging (PI) 
and CS, which are in practice combined to achieve highly 
accelerated acquisition.

Parallel imaging (PI) is currently the most widely used 
method for image acquisition acceleration. PI approaches 
share the following characteristics: (1) undersampled k-space 
data in the phase-encoding direction (and partition-encoding 

direction in 3D imaging), (2) data acquisition with an array 
of independent receiver channels instead of using a large 
homogenous volume receive coil, and (3) usage of a dedi-
cated algorithm, which requires some knowledge of the indi-
vidual coil sensitivities, to combine the undersampled data 
[80–83]. Gharib et al. have reported that PI combined with 
high-resolution coronary MRA results in shortened image 
acquisition times with preserved image quality [84]. Draw-
backs of PI include the limitation of the maximum accelera-
tion factor caused by the number of receiver channels and 
specific artifacts, such as residual aliasing and g-factor noise 
enhancement [83].

CS is a promising image acquisition acceleration method 
that works more efficiently in higher dimensional images 
such as 3D images or images with a temporal dimension. 
The key components of CS are: (1) image sparsity or trans-
form sparsity, (2) pseudo-random undersampling, and (3) 
iterative nonlinear reconstruction [85]. CS reconstructions 
require prior optimization of a regularization parameter, or 
data consistency tuning constant, to find the best trade-off 
between the data consistency and sparsity terms [85]. Sparse 
and random sampling in multi-dimensional data sets result 
in ‘noise-like’ incoherence artifacts unlike coherence arti-
facts seen in PI without random sampling [86]. These inco-
herence artifacts can be reduced within the CS reconstruc-
tion, providing an ideal condition for 3D coronary MRA 
image acquisition. Coronary MRA acquired with CS has 
shown comparable image quality with PI-coronary MRA, 
yet with shortened image acquisition time [15]. Akçakaya 
et al. have compared conventional PI and CS combined with 
LOST de-aliasing strategy [87] for sub-millimeter whole-
heart coronary MRA. Overall image quality and perceived 
(semi-quantitative) SNR of the CS images were significantly 
higher than those of conventional PI [16].

Further image acceleration methods which combine CS 
with PI such as the k-t sparse technique with sensitivity 
encoding (SENSE) reconstruction [88], iterative Golden-
angle RAdial Sparse Parallel MRI (iGRASP) [78], self-
consistent parallel imaging reconstruction (SPIRiT) [65] 
and parallel imaging using eigenvector maps (ESPIRiT) [89] 
are areas of active research. SPIRiT and ESPIRiT are able 
to incorporate an L1-norm minimization term to addition-
ally enforce sparsity in a transform domain, which has the 
same underlying theory as CS [90]. Haris et al. have reported 
high quality of images with iGRASP in comparison to the 
PI-based real-time imaging in the cardiac and extra-cardiac 
structure visibility in fetal cardiac examinations [91].

Image acquisition acceleration technique (3): 
reconstruction (deep learning (DL))

Another approach is deep learning reconstruction from the 
subsampled k-space data. In a recent CS combined with DL 
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approach, successful reconstruction was achieved from 29% 
of the k-space data with comparable image quality to fully 
sampled MRI reconstructions [92]. Combining tiny golden-
angle radial sampling (tGA) with DL resulted in more than 
five times faster overall reconstruction time, superior image 
quality, and better accuracy of biventricular volumes than 
iGRASP when compared in short axis cine image. The total 
reconstruction time for all the short axis cine slices was 
22.0 s with this method, which allowed for the real-time 
image reconstruction [93]. These advanced techniques all 
hold great potential for use in coronary MRA image acqui-
sition acceleration and reconstruction, although there is no 
current consensus on which technique is most favorable. 
The central thesis is that the combination of PI and CS is 
expected to afford high spatial resolution while reducing the 
total time of acquisition. Additionally, deep learning recon-
struction (DLR) promises effective denoising to improve 
SNR and CNR. Figure 5 shows a comparison between PI, 
CS, and CS processed with DLR.

Motion correction

ECG gating and respiratory gating is the most widely used 
motion correction method. Its drawbacks are the low effi-
ciency of data acquisition resulting in unpredictable and 
long scan times despite the need for expert planning. This 
respiratory gating method prospectively corrects for transla-
tional motion of the heart in the superior–inferior direction, 
while it does not account for remaining directions, or rota-
tions or nonrigid deformations.

Several promising techniques are being investigated 
that aim to improve the motion artifact as well as the scan 

efficiency. One promising approach is a self-navigator 
derived from the imaging data itself [73]. Such self-gating 
methods including 2D and 3D image navigators have been 
first introduced for 3D single heart phase coronary MRA 
[94, 95].

When combined with 3D affine or 3D non-rigid recon-
struction, this approach can achieve 100% scan efficiency 
[17, 46, 96–98] (Fig. 6). Bhat et al. have investigated a 
whole-heart coronary MRA acquisition method with 100% 
scan efficiency reconstructed with respiratory motion cor-
rection. They used the navigator signal as a reference res-
piratory signal to segment the data into six respiratory bins. 
The reconstruction of low-resolution undersampled images 
for each respiratory bin was enabled from the 3D projec-
tion reconstruction k-space acquisition, which samples data 
on a spiral path running on the surface of a sphere. The 
data from different respiratory bins were retrospectively 
combined after motion correction based on the affine trans-
form. When compared with a traditional navigator gating 
approach, their method reduced scan time by a factor of 2.5 
while image quality was preserved [46]. Piccini et al. have 
reported that respiratory self-navigation with 100% accept-
ance rate significantly reduced the acquisition time from 
16.23 ± 6.28 to 6.07 ± 0.57 min (p < 0.01) when compared 
with the navigator-gated coronary MRA acquisition [96]. In 
addition, the authors reported that the end-expiratory refer-
ence position significantly improved the image quality as 
compared to using end inspiration as a reference [97].

Another promising approach toward motion correction 
is the continuous 3D golden-angle radial sampling and 
reconstruction of separated cardiac and respiratory dimen-
sions [18, 71, 72]. These methods have the advantage 

Fig. 5  Coronary MRA images of PI, CS, and CS with deep learning 
reconstruction. Three MPR images with identical resolution yet dif-
ferent image acceleration methods and post-processing are shown. 
a PI. b CS. c CS with deep learning reconstruction postprocess-
ing. c The best image quality among the three images. The PI and 
CS images were acquired with a spoiled gradient echo sequence 
with ECG-gating, diaphragm navigator gating, and fat suppres-
sion with spectral attenuated inversion recovery. The MRI acquisi-

tion parameters were FOV = 380 × 380  mm, Matrix = 392 × 384, 
slice thickness = 1.0  mm, slice number = 152, acceleration fac-
tor = 2.0 × 2.0, TR = 5.3  ms, TE = 2.0  ms, flip angle = 12 degree, 
bandwidth = 279  Hz/pix, acquisition voxel size = 1.0 × 1.0 × 1.0  mm, 
reconstructed voxel size = 0.5 × 0.5 × 0.5  mm, navigator gating win-
dow = 4  mm. For the DLR technique, see Refs. [116, 140]. MRA 
magnetic resonance angiography, PI parallel imaging, CS compressed 
sensing, MPR multiplanar reconstruction
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that coronary MRA images can be reconstructed with 
different temporal resolutions, or, since the images are 
acquired over the entire cardiac cycle, cine images of 
other structures can be derived from the same image data 
[17]. Another advantage is time reduction through elimi-
nation of the respiratory gating preparation. Feng et al. 
used a framework called eXtra-Dimensional GRASP (XD-
GRASP) [71] which combines a continuous 3D golden-
angle radial sampling scheme with a multidimensional 
compressed sensing technique to reconstruct separated 
cardiac and respiratory dimensions. The proposed method 
resulted in higher image quality in the myocardium and 
coronary arteries, better coronary sharpness, and longer 

coronary length visualized than respiratory motion-cor-
rected 3D and 4D whole-heart imaging [18]. Haji-Vali-
zadeh et al. have scanned the aorta with an accelerated 
coronary MRA sequence with stack-of-stars k-space sam-
pling and GRASP reconstruction, achieving comparable 
image quality as contrast-enhanced conventional imaging 
with significant scan time reduction (5:55 ± 0:48 min vs. 
6:56 ± 2:10 min). The mean off-line image reconstruction 
time was 4 h 41 min and 13 s [72].

While these methods look promising, their robustness in 
daily practice with respect to reconstruction with clinically 
acceptable reconstruction time and motion correction is an 
ongoing area of research [17].

Fig. 6  Schematics of the proposed self-gating, data binning, and res-
piratory motion correction framework. a First, the cardiac and res-
piratory motion components are identified from the PCA of the mul-
tichannel self-gating profile time series. Then, the imaging data are 
mapped to different cardiac and respiratory bins based on its cardiac 
and respiratory phase derived from the motion signals. Next, with one 
common respiratory phase selected as reference (in this example, res-
piratory phase 1 for cardiac phases 1–9), all other bins (respiratory 
phases 2–6, cardiac phases 1–9) are registered to the corresponding 
reference bin of the same cardiac phase using an affine transform 

model. The k-space trajectory and data are then modified accordingly 
for respiratory motion correction. The six images on the left show 
the six respiratory phases in cardiac phase 1. The horizontal dashed 
lines help visualize the SI motion of the heart due to respiration. The 
nine images on the bottom show the nine cardiac phases in respira-
tory phase 6. The contraction of the left ventricle can be clearly seen. 
b A representative case with excellent depiction of the right coronary 
artery. PCA principal component analysis. Reprinted with permission 
from Pang et al. [17] Copyright © 2014 by the Wiley Periodicals, Inc.
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Image quality improvement (1): high‑resolution 
coronary MRA acquisition/super‑resolution 
coronary MRA post‑processing

Coronary MRA image acquisition under free breathing 
offers the opportunity for improved spatial resolution includ-
ing sub-millimeter coronary MRA, while there are draw-
backs such as increased acquisition times and lower SNR. 
Gharib et al. acquired high-resolution coronary MRA using 
3 T magnetic resonance imaging (MRI) with a voxel size 
as small as 0.35 × 0.35 × 1.5  mm3 and compared the images 
with coronary MRA images having 0.7 × 1 × 3mm3 voxel 
size. The higher resolution images showed a 47% improve-
ment in vessel sharpness, although image acquisition times 
were longer and SNR and CNR reduced as compared to the 
lower-resolution coronary MRA [84]. Super-resolution (SR) 
is a different approach than voxel size adjustment and has 
been already utilized in brain imaging. There are several 
methods reported such as inter-slice reconstruction applied 
to 2D multislice MRI [99], image domain SR via patch-
based sparse representation using overcomplete dictionaries 
[100], and deep learning-based SR [101–103]. In coronary 
MRA images, dictionary-based super-resolution applied to 
1.5 T non-contrast coronary MRA was reported by Ishida 
et al. [104]. Their SR technique showed significant improve-
ment in the detection of coronary artery stenosis as com-
pared to conventional resolution coronary MRA. Further 
improvements in acquisition and reconstruction methods 
are likely to lead to routine high-resolution coronary MRA 
images.

Image quality improvement (2): denoising/
smoothing

Coronary MRA image quality is not merely assessed using 
SNR or image resolution measures. Other metrics are also 
considered, such as overall visual image quality allowing 
meaningful clinical diagnosis, the visually recognizable cor-
onary length, and the crispness/sharpness (conspicuity) of 
the coronary wall edges [15]. Such a comprehensive image 
quality assessment has traditionally relied on experienced 
observers, but initial results from deep learning architec-
ture for automated image quality assessment are promising. 
Efforts are already ongoing in other domains such as liver 
MRI [105] and in other modalities such as coronary CTA 
[106], and these developments may be applicable to coro-
nary MRA as well.

Image denoising is an indispensable first step in many 
practical applications including coronary MRA. It aims 
to preserve edges while smoothing out the noise. Overs-
moothing renders the image blurry, which is problematic 
in coronary MRA for the interpretation of clinically mean-
ingful findings such as intensity change in the coronary 

lumen or fine anatomies like distal coronary arteries or 
branches. Noise may be roughly categorized into additive 
white Gaussian noise, multiplicable noise (speckle noise), 
impulse noise (salt and pepper noise), and shot noise (Pois-
son noise). In MR images, the predominant noise is actually 
non-Gaussian such as a Rician distribution [107], yet it is a 
common practice to assume noise as Gaussian since Rician 
noise asymptotically becomes Gaussian for high SNR [107]. 
Some denoising techniques aim to cover a wide range of 
noise models such as Gaussian and non-Gaussian noise [108, 
109]. In the paragraphs below we discuss two denoising 
approaches, namely (1) conventional methods and (2) deep 
learning approaches applicable for coronary MRA imaging.

Conventional methods

There is no generally accepted standard for clinical/com-
mercial application of any denoising filter. Denoising fil-
ters applied to coronary MRA images need to be carefully 
considered, with regard to the balance between preserving 
the detailed coronary information and strength of denoising. 
Most traditional spatial filtering techniques directly operate 
on pixels in the image (or spatial) domain and have a ten-
dency to blur the edges, which is not preferred in coronary 
imaging. In contrast, transform domain filtering operates on 
the wavelet transformed data and then transforms it back to 
the spatial domain, leading to faster computation and pre-
served edge-detail fidelity based on at least one prior report 
[110]. Most filtering techniques assume an equal noise dis-
tribution across the image, although spatially varying noise 
levels occur such as those obtained by parallel imaging. In 
such cases, spatially adaptive non-local denoising may pro-
vide better results [108]. One example of such denoising 
methods and the current state of the-art is block matching 
and 3-D filtering (BM3D) [109]. That method groups simi-
lar patches into blocks, transforms them to wavelet coeffi-
cients, then thresholds to obtain an optimal representation, 
and transforms back. BM3D can be adapted to various noise 
models such as additive noise and non-Gaussian noise.

Deep learning approaches

Deep learning reconstruction does not require modeling 
of noise. It has the ability to perform improved denois-
ing through efficient optimization of the denoising level 
and good edge preservation based on the characteristics 
of “learning noise” strategy, which works well on coro-
nary MRA images (Fig. 7). Consequently, denoising with 
deep learning may achieve higher SNR values than conven-
tional filters (Fig. 7). Another characteristic is its flexibil-
ity with various frameworks, including application to the 
image domain as well as the k-space domain to create either 
denoised spatial images or denoised k-space data [111, 112]. 
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Learning a specific type of noise in advance such as in a 
trainable nonlinear reaction diffusion (TNRD) model [113] 
would restrict its performance to the specified forms of prior 
learning and accordingly limited in blind image denoising. 
To overcome this problem, feedforward denoising convolu-
tional neural networks (DnCNNs) were proposed by Zhang 
et al., which are capable of handling Gaussian denoising 
with unknown noise levels [114]. Isogawa et al. proposed 
an adaptive approach by using soft shrinkage for the acti-
vation function of deep CNN resulting in a noise adaptive 
algorithm [115]. Furthermore, in one implementation [116], 
the application of 7 × 7 discrete cosine transform (DCT) con-
volution to extract higher frequency components followed 
by deep learning-based CNN using soft shrinkage for adap-
tive denoising successfully removed noise regardless of SNR 

parameters such as contrast settings, matrix size, 2D and 3D, 
among other variables.

While still in its infancy, the use of deep learning strate-
gies shows promise in denoising coronary MRA images, 
where fine anatomical images require good edge preserva-
tion and high SNR [19, 20]. Its flexibility with various noise 
levels and noise types is a great advantage when scanning 
patients with different body sizes. Its potential application to 
different frameworks may be valuable when combined with 
image acquisition acceleration techniques. However, care 
must be taken with regard to the application of deep learning 
reconstruction methods, since inappropriate denoising may 
cause artificial image manipulation leading to a loss of accu-
racy in image interpretation and reported clinical findings. 
Further validation is therefore necessary before adoption.

Fig. 7  Comparison of subtracted noises by conventional denoising 
and DLR on the same coronary MRA data set. a, d Same original 
coronary MRA images acquired with parallel imaging acceleration 
technique. b Coronary MRA image after conventional denoising. e 
Coronary MRA image after DLR. c The subtracted noise between a 
and b. f The subtracted noise between d and e. All the panels a–f are 
in the same WL and WW. Subtraction images show that conventional 
denoising removes the edges from the original coronary MRA image 
(c), while DLR works on noise and retains the edge information (f). 
Consequently, the signal-to-noise ratio is higher in DLR processed 
image (e) than the conventional denoised image (b). The original 
image was acquired with a spoiled gradient echo sequence with ECG-

gating, diaphragm navigator gating, and fat suppression with spectral 
attenuated inversion recovery. The MRI acquisition parameters were 
FOV = 380 × 380  mm, matrix = 392 × 384, slice thickness = 1.0  mm, 
slice number = 152, acceleration factor = 2.0 × 2.0, TR = 5.3  ms, 
TE = 2.0  ms, flip angle = 12 degree, bandwidth = 279  Hz/pix, 
acquisition voxel size = 1.0 × 1.0 × 1.0  mm, reconstructed voxel 
size = 0.5 × 0.5 × 0.5  mm, navigator gating window = 4  mm. For the 
conventional filtering, GA01 filter was used. For the DLR technique, 
see references [116, 140]. DLR deep learning reconstruction, MRA 
magnetic resonance angiography, WL window level, WW window 
width, GA gain algorithm



603Magnetic Resonance Materials in Physics, Biology and Medicine (2020) 33:591–612 

1 3

Opportunities for utilization 
from research‑based modality to clinically 
utilized modality

At present, there is no standardization of coronary MRA 
assessment methods. Currently available research-based 
methods are summarized in Table 2, and will be discussed 
in the following.

Software development for the assessment 
of coronary MRA images

While there are many multipurpose cardiovascular 
analysis packages, there are few dedicated non-contrast 
coronary MRA assessment tools commercially avail-
able or widely used. Coronary tree tracking and stenosis 
assessment remain a labor-intensive and time-consum-
ing process. There are several specific reasons for this: 
(1) low SNR of the coronary lumen, (2) vulnerability of 
the coronary MRA images to artifacts that hamper auto-
tracking of the vessels, and (3) rather low resolution 
of the image that prevents tracking of the smaller side 
branches. Attempts such as the “soap-bubble method” 
which assumed the coronary tree distribution on a rela-
tively smooth 3D surface of a soap bubble to derive the 
final 2D maximum intensity projection image [117] or 
coronary MRA vessel centerline tracking and boundary 
segmentation based on geometric deformable models 
and optimized energy forces [118] have been previously 
reported. However, the application of these techniques 
in different clinical settings as well as their robustness 
remains untested.

Coronary MRA stenosis assessment by signal 
intensity (SI) drop quantification

Coronary MRA interpretation is usually performed visually, 
but its quantification is important for the generalization of 

the method. A previous study investigated the signal inten-
sity (SI) profile across the coronary artery and reported an 
SI drop of 35% corresponding to significant stenosis by CAG 
(Fig. 8) [119]. Notably, this SI drop was not observed in 
chronic total obstruction cases [120]. One possible explana-
tion is that the SI is affected not only by the stenosis severity, 
but also by the plaque characteristics.

Plaque assessment

Various sequences have been investigated for plaque assess-
ment, though none of these techniques are currently viable 
clinically. T1-weighted magnetization-prepared rapid acqui-
sition with gradient echo (MPRAGE) (Fig. 9) [121–123] and 
T2* [124, 125] images describe iron accumulation in the 
vulnerable plaque. Noguchi et al. have reported that the pres-
ence of high-intensity plaque (HIP) on MPRAGE image was 
significantly associated with coronary events (p < 0.0001, 
HR = 3.15) [122]. HIP detection prior to PCI was reported to 
be clinically relevant to avoid no-reflow phenomenon [123]. 
Ultrashort echo time (UTE) [126, 127] and susceptibility 
weighted imaging [128] are used to improve the visualiza-
tion of calcified plaque. The distribution of iron and cal-
cium is under research interest, since iron is suspected to 
accelerate the progression of atherosclerotic lesions while 
suppressing its calcification, and alternatively calcification 
could defend against atherosclerotic progression by exclud-
ing iron [129].

Physiological assessment of the coronary arteries

Physiological coronary function assessment by MRI uses 
phase-contrast (PC) imaging to quantify the blood flow 
through the coronary arteries. Sakuma et al. have reported in 
their canine study that the coronary blood flow (CBF) meas-
ured with the PC technique correlated well with flowmeter 
measurements [130]. Flow in the coronary sinus, which 
represents 96% of the total myocardial blood flow [131], 
has also been assessed [132, 133]. Lund et al. have reported 

Table 2  Summary of research-based coronary MRA assessment methods

MRA magnetic resonance angiography, MPRAGE magnetization-prepared rapid acquisition with gradient echo, UTE ultrashort echo time

Target of the assessment Methods

1. Stenosis severity Signal intensity drop quantification [119, 120]
2. Plaque characteristics MPRAGE [122, 123, 141] and T2* [124, 125] images for the iron accumulation detection in 

vulnerable plaques
Ultrashort TE (UTE) for fibrosis and calcification detection [126, 127]
Susceptibility weighted imaging for calcification detection [128]

3. Physiological function Phase contrast-based coronary blood flow, coronary sinus flow, and coronary flow reserve 
measurement [130, 132–137]

Pressure gradient along the stenotic lesion [138]
4D flow [139]
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in a canine model that CBF measured in the left anterior 
descending (LAD) and left circumflex (LCX) showed excel-
lent correlation with the flow of coronary sinus (r = 0.98, 
p < 0.001) [132]. Coronary flow reserve (CFR) which is the 
fractional CBF increase induced by stress agent is another 
target. Sakuma et al. have reported that the CFR measured 
in LAD in healthy subjects was significantly higher than 
that in patients with significant LAD stenosis [134]. Kato 
et al. have reported that in patients with suspected coronary 
artery disease, CFR assessed on the coronary sinus flow 
showed higher hazard ratio (HR) for the prediction of major 
adverse cardiac events than the presence of > 10% ischemia 
on stress perfusion cardiac magnetic resonance (HR: 14.16 
vs 6.50, respectively) [133]. These physiological measure-
ments estimate the severity and extent of atherosclerotic 
burden, including the presence of multi-vessel disease or 

microvascular dysfunction [135, 136]. The prognostic value 
of CFR [133, 135–137] is noted and it can be a good candi-
date for a “non-contrast one-stop-shop-test” to be combined 
with coronary MRA.

Meanwhile, another measurement of coronary flow, the 
functional flow ratio (FFR), is still under development. 
Direct assessment of the pressure gradient (ΔP) along the 
stenotic coronary artery with PC imaging was reported 
by Deng et al., who observed a significant increase in ΔP 
in suspected coronary stenosis lesions than in controls 
(6.40 ± 4.43 mmHg vs. 0.70 ± 0.57 mmHg, p = 0.025) [138]. 
Current technical problems related to this PC application are 
the partial volume effects at stenotic regions, possible impact 
from turbulence on the accuracy of PC-MRI velocity meas-
urements, and the need to cope with cardiac and respiratory 
motion [138]. 4D flow is an advanced promising technique 

Fig. 8  QA of narrowing in the coronary artery on the basis of the 
signal intensity profile along the vessel. a MIP image of the major 
coronary vessel was generated from a three-dimensional coronary 
MRA. b Background signal intensity was measured by placing three 
ROIs (yellow circles) in pericardial fat on the image and averaging 
signal intensity values in three ROIs. c A stretched multiplanar recon-
struction image was reconstructed along the artery, and signal inten-
sity was determined by placing an elongated rectangular ROI with a 
width of 3 pixels along the vessel lumen (yellow elongated rectangu-
lar ROI). A luminal signal-intensity profile was generated after sub-

tracting the background signal intensity. d The percentage stenosis of 
the coronary artery was determined by measuring the minimal signal 
intensity at the stenotic lesion and the signal intensity at a reference 
location without stenosis. In this case, background signal intensity 
was 25, reference signal intensity was 196 (221–25), minimal signal 
intensity was 39 (64–25), and percentage stenosis with QA of coro-
nary MRA was 80.1% [1 − (39/196) × 100]. QA quantitative analysis, 
MIP maximum intensity projection, MRA magnetic resonance angi-
ography, ROI region of interest.  (Reprinted with permission from 
Yonezawa et al. [119] Copyright © 2013 by RSNA)
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of PC with flow encoding in all three dimensions of space, 
plus time along the cardiac cycle. The current typical spa-
tial resolution of 4D flow is 1.5 × 1.5 × 1.5 to 3 × 3 × 3  mm3 
[139], which is not enough for coronary artery imaging. 
Further developments with higher resolution are expected.

Conclusions

Non-contrast coronary MRA is a non-invasive, non-ionizing 
radiation modality that is particularly unique, as it does not 
require contrast use to enhance intra-luminal blood flow. 
These characteristics have great potential for routine clinical 
applications. We reviewed the current clinical use and the 
in-progress technical developments that could significantly 
impact coronary MRA prospectively. The central thesis is 
that the combination of PI and CS is expected to maintain 
high spatial resolution while reducing the total time of 
acquisition, and application of DLR is promising for effec-
tive denoizing to improve SNR and CNR. Research-based 

coronary MRA assessment methods of stenosis severity, 
physiological function, and plaque characteristics are being 
developed to transform coronary MRA into a robust non-
invasive imaging modality to be used routinely for clinical 
decision making in cardiovascular medicine.
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