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ABSTRACT
Depressive disorders are more prevalent and severe in women; however, our knowledge of the
underlying factors contributing to female vulnerability to depression remains limited. Additionally,
females are notably underrepresented in studies seeking to understand the mechanisms of
depression. Various animal models of depression have been devised, but only recently have
females been included in research. In this comprehensive review, we aim to describe the sex
differences in the prevalence, pathophysiology, and responses to drug treatment in patients with
depression. Subsequently, we highlight animal models of depression in which both sexes have
been studied, in the pursuit of identifying models that accurately reflect female vulnerability to
depression. We also introduce explanations for the neural basis of sex differences in depression.
Notably, the medial prefrontal cortex and the nucleus accumbens have exhibited sex differences in
previous studies. Furthermore, other brain circuits involving the dopaminergic center (ventral
tegmental area) and the serotonergic center (dorsal raphe nucleus), along with their respective
projections, have shown sex differences in relation to depression. In conclusion, our review covers
the critical aspects of sex differences in depression, with a specific focus on female vulnerability in
humans and its representation in animal models, including the potential underlying mechanisms.
Employing suitable animal models that effectively represent female vulnerability would benefit our
understanding of the sex-dependent pathophysiology of depression.
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Abbreviations

AAT: active avoidance test
aLH: acute learned helplessness
CUMS: chronic unpredictable mild stress
CVS: chronic variable stress
Dnmt: DNA (cytosine-5)-methyltransferase
DRN: dorsal raphe nucleus
EEG: electroencephalography
EPM: elevated plus maze
fMRI: functional magnetic resonance imaging
FST: forced swim test
GIRK: G protein-gated inwardly rectifying potassium channel
LHb: lateral habenula
MAOI: monoamine oxidase inhibitor
MDD: major depressive disorder
mPFC: medial prefrontal cortex
NAc: nucleus accumbens
NSF: novelty suppressed feeding
OFT: open field test
PET: positron emission tomography
SCVS: subchronic variable stress
SIS: social instability stress
SPT: sucrose preference test
SSRI: selective serotonin reuptake inhibitor
TCA: tricyclic antidepressant
TST: tail suspension test
VGLUT:vesicular glutamate transporter
vHPC: ventral hippocampus
VTA: ventral tegmental area

Introduction

Major depressive disorder (MDD) is a clinically diagnosed
mental disorder characterized by continuous pathologi-
cal depression that can significantly compromise an indi-
vidual’s capacity to handle daily life (WHO, 2017). Since
the first study to shed light on sex differences in
depression (Weissman and Klerman 1977), it has consist-
ently been reported that women suffer from depressive
disorders more than men (Angst et al. 2002; Romans
et al. 2007; Salk et al. 2017; Hasin et al. 2018; Hapke
et al. 2019). Moreover, studies have reported sex differ-
ences in comorbidity rates with other disorders and
symptoms, indicating that females and males respond
differently to stressors (Kim and Chung 2021). In other
words, some stress response factors are sensitive to
sex (Melartin et al. 2002; Oquendo et al. 2007; Marcus
et al. 2008; Altemus et al. 2014; Salk et al. 2017). In
addition to these asymptotic differences, the treatment
responses differ. Many studies have reported differences
in antidepressant efficacy (e.g. tricyclic antidepressants
[TCA], monoamine oxidase inhibitors [MAOI], and selec-
tive serotonin reuptake inhibitors [SSRI]) between men
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and women (Kornstein et al. 2000; Martenyi et al. 2001;
Young et al. 2009; Sramek et al. 2016). Although
females are at a higher risk of depressive disorders
with distinct responsiveness to antidepressants, many
previous studies utilizing animal models primarily used
male subjects to elucidate the biological mechanisms
of depression (Zucker and Beery 2010; LeGates et al.
2019; Bangasser and Cuarenta 2021; Sur and Lee 2022).
Recently, a growing body of research aims to elucidate
the neural mechanisms underlying sex differences in
depression. Animal models are used in various para-
digms of chronic stress (e.g. chronic unpredictable
mild stress [CUMS], chronic variable stress [CVS], and
social instability stress [SIS]), and acute stress (e.g.
acute learned helplessness [aLH], and subchronic vari-
able stress [SCVS]). In addition, some of these paradigms
have been applied early in life to mimic maternal separ-
ation, which can induce depression. With these stress
protocols, numerous behavioral tests are carried out to
measure anxiety (e.g. open field test [OFT], elevated
plus maze test [EPM], novelty suppressed feeding behav-
ior test [NSF]), anhedonic behavior (e.g. sucrose prefer-
ence test [SPT]), and despair behavior (e.g. forced swim
test [FST], tail suspension test [TST], and active avoid-
ance test [AAT]). However, the results are not always
consistent (Franceschelli et al. 2014; Ma et al. 2019)
and sometimes do not adequately explain the direc-
tional patterns or neural mechanisms of stress reactivity.
Variability in depression susceptibility also arises from
sex differences (Krishnan et al. 2007). Therefore, to
explain sex differences in depression and gain deeper
insights, we focused on different patterns of depressive
behaviors across both sexes and highlighted the poss-
ible mechanisms underlying these differences.

Sex differences in the pathophysiology of
depression-linked symptoms

With a higher prevalence of depression in females,
which has been continuously reported across different
nations and age groups (Weissman and Klerman 1977;
Romans et al. 2007; Salk et al. 2017; Hasin et al. 2018),
studies have reported higher comorbidity rates with
other disorders, such as anxiety, alcohol abuse, and per-
sonality disorder, as well as more frequent suicidal acts
in women (Melartin et al. 2002; Oquendo et al. 2007;
Marcus et al. 2008; Altemus et al. 2014; Salk et al.
2017). These findings demonstrate clear sex-related
differences in depressive disorders, indicating greater
female vulnerability.

Men andwomen exhibit distinct patterns of depressive
symptoms. While men with depression are more likely to
display aggression, risk-taking behaviors, and substance

use, women with depression tend to manifest appetite
disturbance, depressed mood, and sleep impairment
(Romans et al. 2007; Marcus et al. 2008; Ogrodniczuk
and Oliffe 2011; Cavanagh et al. 2016). In a study by
Ogrodniczuk and Oliffe (2011), male patients with
depression were reported to be more likely to engage
in escape behaviors such as over-involvement at work
and increased sexual activity. In contrast, depressed
females were more frequently observed to have depress-
ive symptoms, including excessive fatigue and oversleep-
ing, throughout their lives (Smith et al. 2008). However, in
contrast to previous reports, Herreen et al. observed that
depressed men tended to die from suicide more often
than women (Herreen et al. 2022), which contributes to
stigmatization and misperception of male depression
(Oliffe, Hannan-Leith, et al. 2016; Oliffe, Ogrodniczuk,
et al. 2016). These reports suggest that men remain rela-
tively resilient and steadfast to factors that trigger
depression, yet they may break rather than bend under
severe conditions, as in the case of suicide. However,
women appear to bend more easily because of factors
that trigger depression.

Human studies have proposed neural mechanisms
that mediate depressive symptoms specifically in each
sex. Anatomically, women with early stage depression
have a larger volume of habenula white matter (Carcel-
ler-Sindreu et al. 2015) and a larger anterior cingulate
cortex (Ancelin et al. 2019). Functionally increased ampli-
tudes of low-frequency fluctuations were observed in
the bilateral caudate nucleus and posterior cingulate
gyrus (Mei et al. 2022), left middle frontal gyrus, and
left precuneus of female but not male patients with
MDD (Sun et al. 2022).

Furthermore, transcriptional networks in the brains of
patients with MDD show sex differences (Labonte et al.
2017). Interestingly, transcriptional differences have
been observed across corticolimbic regions in males
and females (Seney et al. 2018). The medial prefrontal
cortex (mPFC) has distinct functional and transcriptional
features in females that align with increased spon-
taneous neuronal activity in the left mPFC (Zhang X
et al. 2016). In addition, glutamatergic genes were
found to be expressed in a sex-specific manner in the
dorsolateral PFC in post-mortem patients with MDD
(Gray et al. 2015).

Clinical interventions considering sex
differences in depression treatment

Adding to the research showing different pathophysiol-
ogy of depression between men and women, men and
women are reported to respond differently to
depression treatments (Kokras et al. 2011; Sramek et al.
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2016). Some studies suggest that women tend to
respond more favorably to SSRIs, such as sertraline and
fluvoxamine, whereas men may exhibit better responses
to TCAs, such as imipramine (Kornstein et al. 2000; Mar-
tenyi et al. 2001; Hildebrandt et al. 2003; Young et al.
2009). Recent developments in depression therapy
have introduced ketamine as a potential novel treat-
ment (Zanos and Gould 2018; Corriger and Pickering
2019; Jelen and Stone 2021). Intriguingly, repeated keta-
mine treatment over 21 days induced antidepressant-
like effects in male mice, while eliciting anxiety and
depressive behaviors in their female counterparts
(Thelen et al. 2016).

Sex-specific distinctions extend to combinatorial drug
therapies as well. In patients with treatment-resistant
depression, the addition of antipsychotics ormood stabil-
izers along with antidepressants has shown greater
improvement in women than men (Moderie et al. 2022).
Amidst these differences in depression prevalence rate,
pathophysiology, and treatment responses between
the sexes, we suspect that there may be fundamental
differences in the pathogenic mechanisms underlying
depression in males and females.

Animal models and behavioral tests used to
study the sex-specificity of depression

Owing to the limitations inherent in human studies,
animal models, especially rodents, have played a
pivotal role in research seeking the underlying mechan-
isms of depression. They are a valuable means to com-
prehend the molecular and neural underpinnings and
identify potential therapeutic targets. However, despite
the significant prevalence and severity of depression in
women, preclinical research has predominantly
employed male animals (Zucker and Beery 2010).

Although various approaches have been used to estab-
lish animal models of depression, a notable gap exists in
employing these paradigms in both sexes. Among the
limited number of studies that have examined depression
inboth sexes, only a handful have shown sex differences in
depressivebehavior. Paradigms such as the SIS, CUMS, and
SCVS have been proposed as models that may reflect
female vulnerability to depression (Figure 1), although
not all studies have yielded consistent results (Table 1).
In this review, we aim to shed light on the phenomenon
of female vulnerability to depression and discuss its repro-
ducibility and validity.

Social instability stress

SIS induces depressive phenotypes in female rodents
(Herzog et al. 2009; Dadomo et al. 2018). Dadomo et al.

reported that SIS induces anhedonia-like behaviors in
female mice (Dadomo et al. 2018). However, recent
research has shown that SIS can also occur in male
mice and elicits depression-like behaviors and increased
corticosterone levels in both male and female mice
(Yohn et al. 2019). Male rats exposed to the SIS paradigm
exhibit reduced social interaction (Asgari et al. 2021).
Although there have been suggestions in the past that
SIS may be more stressful for females (Haller et al.
1999), a major limitation of research employing SIS is
the scarcity of reports involving both sexes. Studies typi-
cally focus on single-sex groups and do not include both
sexes under the same experimental conditions. This limit-
ation poses challenges when considering SIS as a robust
model to study sex differences in rodents. A complete
study involving bothmen andwomen is essential to com-
prehensively investigate the mechanisms underlying sex
differences in response to socially stressful situations.

Chronic unpredictable mild stress

The CUMS paradigm is one of the most extensively used
stress models for inducing depression in rodents (Figure
1). Compared to other stress models, CUMS possesses a
distinct advantage in its ability to replicate chronic
stressful life events in humans. Notably, CUMS is well-
known for its ability to induce anhedonia (Willner
2017; Antoniuk et al. 2019). Although the CUMS para-
digm has predominantly been applied to male subjects,
studies have reported sexually dimorphic behavioral and
physiological changes. For instance, Dalla et al. reported
that, following CUMS, males appeared to be more
affected in sucrose consumption, whereas females
exhibited decreased dopaminergic activity in the PFC
and reduced serotonergic activity in the hippocampus
and hypothalamus (Dalla et al. 2005; Dalla et al. 2008).
Another study reported increased serum corticosterone
levels in women with CUMS (Xing et al. 2013). Intrigu-
ingly, one report that considered the social hierarchy
within animal groups revealed that dominant females
displayed reduced anxiety-like behavior compared
with subordinate males (Karamihalev et al. 2020). Fur-
thermore, while CUMS induced anhedonic behavior in
both male and female mice, the antidepressant effect
of ketamine persisted for a longer duration only in
CUMS-exposed males (Franceschelli et al. 2015), reflect-
ing the sex difference in the efficacy of antidepressants.

The endocannabinoid system has been implicated in
addiction and depression (Patel and Hillard 2009; Huang
et al. 2016), and related molecules may serve as molecular
substrates that mediate sex differences. The expression of
hippocampal CB1 receptors was also observed to differ
between baseline and after CUMS in rats. Males exhibited
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higher baseline expression of CB1 receptors, which
decreased after CUMS, whereas females showed lower
baseline expression of CB1 receptors, which increased fol-
lowing CUMS. This is a prominent example of the diver-
gence of working principles for the same molecule in
males and females, and further investigation is required
to fully understand its role in the sex differences in
depression. The dysfunction of CB1 receptors is believed
to play a role in mood disorders, and the upregulation
observed in females suggests a female-specific mechan-
ism to protect against depression following CUMS
(Reich et al. 2009).

Notably, some of these inconsistencies may arise from
variability in the stress protocol itself, differences in the
animals used, or a combination of both (Figure 1B).
Many studies have employed CUMS as a
stress paradigm, inclduing food and/or water depri-
vation, and sleep deprivation (Jung and Noh 2021),
and female rodents are known to be more vulnerable
to them. CUMS-exposed females often exhibit a more
pronounced decrease in sucrose preference, slower
weight gain, and greater despair-like behavior in the
FST than CUMS-exposed males (Kamper et al. 2009).
Conversely, other researchers have reported that only
CUMS-exposed males show a consistent and significant
reduction in sucrose preference. The validity of the
CUMS paradigm is questionable because of its poor
reproducibility and excessive variability (Markov and
Novosadova 2022). In a meta-analysis of CUMS studies,
the authors acknowledged the heterogeneity of animal
responses but argued that the CUMS protocol is a
robust animal model for depression (Antoniuk et al.
2019). Based on previous studies employing CUMS, it is

necessary to establish a standardized CUMS protocol
to systematically uncover the potential sex differences
resulting from sustained exposure to mild stressors.

Subchronic variable stress

SCVS induces female-specific depression-like behaviors
(Figure 1). This protocol entails daily exposure to foot
shocks, tail suspension, or restraint stress, which is
repeated twice daily for 6 days. In comparison with
CUMS, the duration of stress is shorter with less variabil-
ity, and generally, the intensity of each stressor is higher
(Lopez and Bagot 2021).

One significant advantage of utilizing SCVS is the
ability to modify stress intensity. Typically, only females
are vulnerable to SCVS, demonstrating higher levels of
anhedonia-like, despair, and anxiety-like behaviors
than males. Researchers have introduced variations to
the SCVS protocol, allowing the examination of the
specific effects of various factors on stress responses.
For instance, one sequence of 3-day stress can be uti-
lized to assess the impact of target factors on the
stress response (Labonte et al. 2017), whereas seven
sequences, for a total of 21 days of stress, were used
to induce depressive behavior in both male and
female mice (Bittar et al. 2021). This modifiability of
the stress intensity provides control over the unintended
effects of the application of other stressors, offering con-
venience to experimenters through a well-considered
strategy. SCVS effectively reflects the higher vulnerability
of females to depression, rendering it a valuable model
for investigating the biological mechanisms underlying
sex differences (Figure 1C).

Figure 1. Animal models of depression exhibiting female vulnerability A. Social instability stress (SIS) is based on experiencing an
unstable social hierarchy. The animal is exposed to novel cagemates or sometimes isolated. B. Chronic unpredictable mild stress
(CUMS) is composed of numerous types of stressors. The stressor types and durations vary. The stressors include food or water restric-
tion, temperature stress (e.g. heat, cold), disturbance of housing (e.g. cage shaking or tilting, lighting), and direct physical stress (e.g.
tail suspension or restraint). C. Subchronic variable stress (SCVS) shows prominent female specificity in depression. This paradigm
consists of footshock, tail suspension, and restraint, and is repeated twice.
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The validity of these animal models is often evaluated
using behavioral tests that measure despair, helpless-

ness, anhedonia, and anxiety (Table 1). In addition to

behavioral tests, physiological changes and alterations

in neural circuits have been analyzed in rodent models.

Preclinical clues of neural substrates to
explain the sex difference in depressive
disorders

With the advancement of neuroimaging techniques
such as functional magnetic resonance imaging (fMRI),

Table 1. Results of behavioral tests to measure different aspects of depression conducted in females.
Test Reference Animal Depression Model Results of female models Sex

Despair Behavior
FST (Dion-Albert et al., 2022) C57BL/6 CLDN5 KD Higher immobility M

(Jones & Lucki, 2005) 129sv
Background

5-HT1b KO Female 5-HT1b KO showed a
decrease of immobility M/F

M/
F

(Leussis & Andersen, 2008) Sprague
Dawley

Social Isolation Higher immobility M/
F

(Marco et al., 2017) Wistar Han CMS Higher immobility M/
F

(Zhu et al., 2014) C57BL/6 CMS Higher immobility F
(Johnson, Rainville, Rivero-Ballon, Dhimitri, &
Hodes, 2021)

C57BL/6 SCVS Female stress showed decreased
latency to immobility

F

TST (Jones & Lucki, 2005) 129sv
Background

5-HT1b KO Female 5-HT1b KO showed a
decrease of immobility

M/
F

(Leussis & Andersen, 2008) Sprague
Dawley

Social Isolation Increased immobility bout number M/
F

(Iniguez et al., 2018) C57BL/6 Vicarious Defeat Stress Increased immobility F
Anhedonic Behavior
SIT (Sucrose
Intake Test)

(Dalla et al., 2005) Wistar rats CMS Females show less decrease of
sucrose intake

M/
F

SPT (Dion-Albert et al., 2022) C57BL/6 SCVS Decreased sucrose preference F
(Dion-Albert et al., 2022) C57BL/6 CLDN5 KD Decreased sucrose preference F
(Karisetty, Joshi, Kumar, & Chakravarty, 2017) C57BL/6 CVMS Decreased sucrose preference M/

F
(Zhu et al., 2014) C57BL/6 CMS Lower sucrose consumption F
(Hodes et al., 2015) C57BL/6 SCVS Decreased sucrose preference in

females only
M/
F

(Williams et al., 2020) C57BL/6 SCVS Decreased sucrose preference in
females only

M/
F

Anxiety-Like Behavior
OFT (Dalla et al., 2005) Wistar rats CMS M/

F
(Zhu et al., 2014) C57BL/6 CMS Less time in center F
(Nowacka-Chmielewska, Kasprowska-Liskiewicz,
Barski, Obuchowicz, & Malecki, 2017)

Sprague
Dawley

SIS Less rearing time F

(Dao et al., 2010) C57BL/6 CACNA1C
haploinsufficiency +/-

Less time in the center M/
F

EPM (Dion-Albert et al., 2022) C57BL/6 CLDN5 KD Less time in open arms F
(Dion-Albert et al., 2022) C57BL/6 SCVS More time in closed arms F
(Zhu et al., 2014) C57BL/6 CMS Less time in open arms F
(Grippo, Wu, Hassan, & Carter, 2008) Prairie vole Social Isolation Less time in open arms F
(Dao et al., 2010) C57BL/6 CACNA1C

haploinsufficiency +/-
Less time in open-arm M/

F
NSF (Zhu et al., 2014) C57BL/6 CMS Longer latency to eat F

(Johnson et al., 2021) C57BL/6 SCVS Longer latency to eat (males also) M/
F

(Hodes et al., 2015) C57BL/6 SCVS Longer latency to eat M/
F

(Goodwill et al., 2019) C57BL/6N Early Life Stress Longer latency to eat (adult) M/
F

Social Behavior
Social interaction (Haller, Baranyi, Bakos, & Halasz, 2004) Wistar rats SIS Less social investigation, more

agonistic behaviors
F

(Baranyi, Bakos, & Haller, 2005) Wistar Han SIS Higher agonistic interaction F

To test the validity of the depression model or the therapeutic effects of potential drugs, various behavioral tests are exploited in animal models. Based
on the innate, characteristic behaviors of rodents, several tests were designed. FST, and TST are used to measure the despair behavior of rodent
models. Upon forced swimming or tail suspension, the immobility of rodents is measured and considered as a level of helplessness. Depressed
animals show higher immobility. Another symptom of depression is anhedonia, which is defined as the inability to experience pleasure (Sternat &
Katzman, 2016). SPT is used to measure anhedonia exploiting the rodent’s innate preference to sweets (Der-Avakian & Markou, 2012; Liu et al.,
2018). OFT and EPM are for testing anxiety since rodents tend to avoid open spaces (Kraeuter, Guest, & Sarnyai, 2019; Knight et al., 2021). NSF
is another measurement of anxiety, based on the conflicting situation of rodents’ motivation for eating after food restriction versus fear of
novelty. Depressed animals often show higher anxiety. This table summarizes the results of these behavioral tests performed in female rodent
models of depression.
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electroencephalography (EEG), and positron emission
tomography (PET), it is now possible to explore
changes in brain activity among patients with
depression with higher temporal and spatial resolution.
However, there are technological constraints in control-
ling experimental conditions as well as ethical concerns
inherent to human-based studies. These limitations
persist despite the potential of these techniques to
provide insights into the neural underpinnings of
depression. To address these challenges, many studies
have focused on the preclinical phase, using animal
models that exhibit sex-specific differences in depressive
disorders.

Numerous studies have proposed various potential
circuit mechanisms of depression; however, not all pro-
posed circuits show sex specificity. By revealing sex
differences in brain areas and linking their circuitry
with other areas, we will take a step closer to identifying
the neural mechanisms of sex differences in depression.

Medial prefrontal cortex

The mPFC is a hub region involved in emotional proces-
sing and stress responses (Duman and Aghajanian 2012;
Hare and Duman 2020; Bittar and Labonte 2021). The
mPFC is highly affected in patients with MDD and in
animal models of chronic stress (Bittar and Labonte
2021). Previous reports have shown that patients with
MDD have reduced gray matter volume in the PFC
(Grieve et al. 2013). Similar results in animal models
showed that exposure to CUS decreased the spine
density of PFC layer V pyramidal cells (Li N et al. 2011).

In addition, dopamine receptors in the mPFC are
involved in depression. Inhibition of the mPFC-project-
ing ventral tegmental area (VTA) dopamine neurons pro-
motes susceptibility to social defeat stress (Chaudhury
et al. 2013). Some studies have reported sex-related
differences in various neurotransmitters in the mPFC.
Jankovic et al. reported that after CUS, only male rats,
but not females, showed decreased expression of β2-
adrenoceptors and D1 receptors in the mPFC (Jankovic
et al. 2022). A baseline difference in the expression of
synaptosomal GluA1 and GluA2 between sexes has
been reported, with females showing higher expression
levels (Knouse et al. 2022). Velasco et al. reported a sex
difference in GABAB receptor-GIRK (G protein-gated
inwardly rectifying potassium channel) signaling,
showing that GABABR-dependent GIRK currents were
larger in the prelimbic cortex in adolescent male mice
than in age-matched females (Marron Fernandez de
Velasco et al. 2015).

D1-D2 heteromer activation was previously reported
to induce depression-like and anxiety-like behaviors in

male rats (Shen et al. 2015). A follow-up study reported
higher expression of D1-D2 heteromers in female rats,
which may significantly increase their predisposition to
depressive and anxious behaviors (Hasbi et al. 2020).
The role of microglia has been highlighted in the
mPFC, as their density was reported to be increased in
females, and gonadal hormones were suggested to par-
ticipate (Bollinger et al. 2019).

Transcriptional features of the mPFC have also drawn
attention. For example, downregulation of lncRNA
LINC00473 in the mPFC mediates susceptibility to
depression in female but not male mice (Issler et al.
2020). Another study reported downregulation of the
tight junction protein Claudin-5 expression in the
mPFC, which is thought to promote anxiety and
depression-like behaviors in females (Dion-Albert et al.
2022). Overall, previous studies have pointed out sex
differences in the mPFC from multiple perspectives,
and these differences were observed in both baseline
and depressed states.

Nucleus accumbens

The nucleus accumbens (NAc) is known for its roles in
reward processing, addiction, motivation, mood, and
depression. There is a negative association between
anhedonia and NAc responses, and the size of the NAc
was negatively associated with anhedonia in humans
(Wacker et al. 2009). In a rodent study, activation of
NFκB, a stress-related transcription factor, in the NAc
blocked stress susceptibility in female mice (LaPlant
et al. 2009).

Transcriptional differences have also been observed
in the NAc. Increased Dnmt3a (DNA (cytosine-5)-methyl-
transferase 3a) in the NAc, which was previously
suggested to contribute to social stress susceptibility
and drug abuse, appears to be responsible for the sus-
ceptibility of female mice to SCVS. Overexpression of
Dnmt3a causes male mice to become more susceptible
to SCVS (Hodes et al. 2015). Another study reported
that the transcriptional profile of the NAc 21 days after
CVS differed between male and female mice (Labonte
et al. 2017). Vesicular glutamate transporters (VGLUTs)
are markers of neuroplasticity. Different isoforms of
VGLUTs segregate in different brain regions. VGLUT1
plays a role in loading glutamate vesicles and is mainly
expressed in the cerebral cortex, hippocampus, basolat-
eral amygdala, and cerebellar cortex, whereas VGLUT2 is
primarily expressed in the thalamus, brainstem, and
deep cerebellar nuclei. In the NAc of SCVS-susceptible
female mice, VGLUT1 levels were decreased whereas
VGLUT2 levels were increased (Brancato et al. 2017).
These observations indicate that neuroplastic changes
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due to glutamate input into the NAc may be input-
specific. Interestingly, despite the extensive role of dopa-
mine in the NAc, the number of VGLUT2 and tyrosine
hydroxlase (TH) co-expressing punctae was not quanti-
tatively different, suggesting that the alteration may
not have originated from the VTA (Brancato et al. 2017).

Transcriptional regulation of neuromodulators occurs
in the NAc. When neonatal mice were exposed to pred-
ator odor, mRNA levels of μ- and κ-opioid receptors were
decreased specifically in the NAc of females. Given that
the endogenous opioid system plays an important role
in mood regulation and is dysregulated in patients
with MDD (Pecina et al. 2019; Jelen et al. 2022), sex-
specific expression of opioid receptors may contribute
to sex differences in depression.

Brain circuits of interest

To investigate possible changes in the neural network
underlying sex differences in depression, it is essential to
examine the circuitry between brain regions that show
sex differences. Fine-tuning the interaction between
brain regions via a wide spectrum of electrochemical sig-
naling enables the brain to flexibly manage the various
unpredictable situations that are encountered every day.
Circuit-level studies in rodents offer advantages in
mechanistic approaches because it is feasible to manip-
ulate the activity of given circuits in various transgenic
rodents using optogenetics and chemogenetics.

The dopaminergic system of the VTA has been well
studied and is critical for the brain’s reward and motiv-
ation processing circuitry (Nestler and Carlezon 2006;

Lammel et al. 2014; Grace 2016). The projections from
the VTA to the BLA are sexually dimorphic. The bouton
densities of the VTA dopaminergic projections to the
BLA are lower in females than in males, whereas axon
densities are comparable (Manion et al. 2022). One of
the highlighted areas to which the VTA is connected is
the lateral habenula (LHb). It is reported to be activated
in ‘disappointing’ situations, encodes negative values,
and is thought to be potentiated in depression (Li B
et al. 2011; Yang et al. 2018; Hu et al. 2020). The LHb-
VTA circuit is reported to show a sex difference after
SCVS exposure; only female mice exposed to SCVS
showed enhanced LHb-VTA circuitry (Zhang S et al.
2018).

Williams et al. reported that female mice show
increased vHPC-NAc circuit excitability after SCVS. Ovari-
ectomized female mice experiencing SCVS showed a
similar trend of reduction; however, when they were
treated with testosterone, the trend disappeared, and
the excitability of vHPC-NAc neurons decreased. More-
over, when the vHPC-NAc pathway was stimulated,
males became more susceptible to SCVS. In contrast,
when this pathway was inhibited, females are no
longer susceptible to SCVS (Williams et al. 2020). These
studies suggest that males and females utilize distinct
actions or modulatory mechanisms in defined neural cir-
cuitries (Figure 2).

Future perspectives

Although recent efforts to include female subjects in
depression research in animal models have shown

Figure 2. Brain circuits mediating female vulnerability of depression Fewer dopaminergic synaptic boutons from the VTA to the
BLA were observed in females. In addition, the LHb→ VTA and vHPC→ NAc projections have been reported to increase selectively in
females after SCVS. All indicated areas are of potential interest for investigating sex differences in depression. BLA, basolateral amyg-
dala; LHb, lateral habenula; NAc, nucleus accumbens; SCVS, subchronic variable stress; vHPC, ventral hippocampus; VTA, ventral teg-
mental area.
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promising results, inconsistencies and conflicting out-
comes have emerged, challenging the reproducibility
of the findings (Table 1). The variability observed in
depression phenotypes among female subjects may be
influenced by differences in stress protocols or inherent
individual susceptibilities that cannot be disregarded.
Therefore, the standardization and reproducibility of
female-specific (or vulnerable) depression models are
essential for advancing our understanding of depression
in females. Additionally, considering the dynamic nature
of female hormonal fluctuations and their potential
impact on depression, incorporating these factors into
preclinical research is crucial to generate more relevant
and applicable results. Human studies have provided
preliminary evidence for distinct brain activation pat-
terns in men and women with depression. This high-
lights the importance of investigating sex-specific
neural circuitry to unravel the neurobiological underpin-
nings of depression in a sex-specific context. In con-
clusion, this review underscores the need to
incorporate females more comprehensively in preclinical
depression research. By developing standardized and
reproducible animal models of sex-specific depression
and exploring the distinct neural circuitry in both
sexes, we can advance our understanding of the patho-
physiology of depression and contribute to the develop-
ment of personalized and effective treatment strategies
for individuals of all sexes affected by this debilitating
disorder.
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