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PLK1 facilitates chromosome biorientation by
suppressing centromere disintegration driven by
BLM-mediated unwinding and spindle pulling
Owen Addis Jones1, Ankana Tiwari1,2, Tomisin Olukoga1,2, Alex Herbert 1 & Kok-Lung Chan 1

Centromeres provide a pivotal function for faithful chromosome segregation. They serve as a

foundation for the assembly of the kinetochore complex and spindle connection, which is

essential for chromosome biorientation. Cells lacking Polo-like kinase 1 (PLK1) activity suffer

severe chromosome alignment defects, which is believed primarily due to unstable

kinetochore-microtubule attachment. Here, we reveal a previously undescribed mechanism

named ‘centromere disintegration’ that drives chromosome misalignment in PLK1-inactivated

cells. We find that PLK1 inhibition does not necessarily compromise metaphase establish-

ment, but instead its maintenance. We demonstrate that this is caused by unlawful

unwinding of DNA by BLM helicase at a specific centromere domain underneath kine-

tochores. Under bipolar spindle pulling, the distorted centromeres are promptly decompacted

into DNA threadlike molecules, leading to centromere rupture and whole-chromosome arm

splitting. Consequently, chromosome alignment collapses. Our study unveils an unexpected

role of PLK1 as a chromosome guardian to maintain centromere integrity for chromosome

biorientation.
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Chromosome mis-segregation has wide implications in
cancer and rare congenital disorders1. To achieve faithful
chromosome segregation, condensed chromosomes need

to be properly aligned prior to disjunction through a mitotic
process called chromosome biorientation. This requires a stable
connection of spindle microtubules (MTs) emanating from
opposite centrosomes to centromeres via the macromolecular
complex of kinetochores (KTs)2. A single unattached chromo-
some can activate the spindle assembly checkpoint, inhibiting the
anaphase promoting complex/cyclosome (APC/C)3, and hence
blocks anaphase onset4,5. This elegant system allows cells to
correct possible KT-MT attachment errors and prevent chro-
mosome mis-segregation. During chromosome biorientation,
centromeres and KTs are inevitably under constant spindle
pulling tension, due to the persistence of sister chromatid cohe-
sion. The centromere architecture is presumably maintained
through chromosome condensation, whilst the KT-MT stable
attachment requires activity of a key mitotic kinase, Polo-like
kinase 1 (PLK1)6–8. In early mitosis, PLK1 localises pre-
dominantly at KTs and centrosomes. Inactivation of PLK1 has
been shown to induce severe chromosome misalignment, which is
generally attributed to a failure in building stable KT-MT
attachment. However, how PLK1 promotes chromosome bior-
ientation still requires investigation

Once biorientation is achieved on every chromosome, the
spindle checkpoint is satisfied. This leads to the activation of
APC/C and cleavage of cohesin, allowing the poleward movement
of sister chromatids9. Interestingly, studies show that despite their
separation, sister chromatids can remain intertwined by DNA
linkage molecules that manifest as so-called ultrafine DNA
bridges (UFBs)10,11. Generally, UFBs are thought to be unre-
solved double-stranded DNA catenanes, especially those that
arise at centromeres12. However, studies have also shown that
incomplete replication intermediates and homologous recombi-
nation (HR) structures can give rise to UFB structures13–16.
Regardless of their origins, UFBs are recognised by a UFB-
binding complex comprising of PICH (Plk1-interacting check-
point helicase) translocase, BLM (Bloom’s syndrome) helicase
and its interacting factors, including TOP3A and TOP210,11,17–19.
However, the precise molecular mechanism of UFB resolution is
not yet fully understood

Chromosome biorientation not only plays a critical role to
ensure equal chromosome segregation, but also facilitates the
regulation of the spindle checkpoint and mitotic progression.
Many studies have shown that PLK1 is essential for chromosome
biorientation; however, the underlying mechanism(s) is still not
fully clear. In the current study, unexpectedly, we find that PLK1
in fact can protect centromere integrity for chromosome bior-
ientation maintenance. We demonstrate that in the absence of
PLK1, the UFB-binding complex aberrantly targets and unwinds
centromeres, leading to their rupture in concerted action with
bipolar spindle pulling. As a consequence, cells lose centromere
integrity and fail to maintain metaphase alignment. Therefore,
our study provides an alternative mechanism of chromosome
misalignment in PLK1-defective cells. Importantly, it also reveals
a previously undescribed pathway of centromere protection
during mitosis

Results
PLK1 inactivation leads to collapse of metaphase alignment. It
is well-documented that cells cannot achieve proper chromosome
alignment without PLK1 activity6. Consistent with this, inhibition
of PLK1 using a well-characterised small molecule inhibitor,
BI2536 (IC50= 0.83 nM)20, induced severe chromosome mis-
alignment in hTERT-immortalised human RPE1 cells. The

BI2536-induced mitotic arrest manifested in a way similar to
treatments of the spindle poison (nocodazole) and kinesin inhi-
bitor (Monastrol) (Supplementary Fig. 1a). However, live-cell
time-lapse microscopy on pre-synchronised RPE1 cells revealed
that, unlike nocodazole and monastrol treatments, BI2536 did not
fully prevent chromosome congression (Fig. 1a and Supplemen-
tary Fig. 1b). Nearly 80% of BI2536-treated RPE1 cells managed
to align their chromosomes in the metaphase plane, but shortly
after, succumbed to a loss of maintenance; namely chromosomes
drifting away from the equator and scattering into a ‘Fig-8’ or
‘polo’21-like pattern (Fig. 1a–c, Supplementary Fig. 1c and Sup-
plementary Movie 1). We referred to this phenomenon as
‘metaphase collapse’. In contrast, cells treated with the APC/C
inhibitor, ProTAME, remained arrested at metaphase for exten-
ded periods (Fig. 1c)

Formation of centromeric DNA linkages between chromo-
somes. Strikingly, in the metaphase-collapse cell population, we
observed a threadlike structure that was decorated by the PLK1
protein (Fig. 2a; arrows). It was not present in DMSO-treated
pre-anaphase cells (i.e., prometaphase and metaphase) (Fig. 2a).
As the threadlike structure was reminiscent of anaphase
UFBs10,11, we investigated whether they were DNA molecules; or
a mis-localisation of PLK1 to cytoskeleton structures. Immuno-
fluorescence co-staining showed that PICH translocase, a well-
known UFB marker, was present along the PLK1-coated threads
induced by BI2536 (Fig. 2b and Supplementary Fig. 1d). Fur-
thermore, other known UFB-associated factors including BLM
helicase and replication protein A (RPA) were also present
(Fig. 2c). It is worth noting that RPA decorates the threads
without necessarily following the PICH/BLM signals, and it can
also be found on regions where no or weak PICH/BLM signals
were detected (Fig. 2c; arrows). Similar results were obtained by
using different antibodies against BLM and different subunits of
RPA (Fig. 2d). This localisation pattern is similar to recent reports
showing the binding of RPA to stretched DNA molecules, or
DNA bridges, is not always coupled with the PICH/BLM
complex12,22. Therefore, the RPA association likely represents the
presence of single-stranded DNA. To validate the immuno-
fluorescence staining results, we examined Bloom’s syndrome
fibroblast cells stably expressing a GFP-tagged BLM, and
RPE1 cells expressing a GFP-tagged PLK1. We found both GFP-
tagged proteins were also present along the thread molecules
induced by BI2536 (Supplementary Fig. 1e, f; arrows). In addition
to this, we also found that PLK1 indeed associated with UFBs in
anaphase cells (Supplementary Fig. 1g; arrows). Together, these
data suggest that the BI2536-induced thread molecules are highly
likely a form of DNA structure; and possibly composed of both
single-stranded and double-stranded DNA. As predicted, the
threadlike structures did not co-localise with mitotic MTs (Sup-
plementary Fig. 1h)

Next, we investigated the origin of the DNA threads. We found
that all of the DNA threads analysed linked to centromeric
regions, either through one or both of their termini (Fig. 2e). In
some optical sections, it was apparent that two separating
centromeres were inter-connected by a DNA thread (Fig. 2e;
arrows). Since PLK1 inhibition prevents anaphase onset, these
DNA threads cannot be explained as the centromeric UFBs
coming from disjoined sister chromatids. However, another
possibility is that PLK1 inhibition might induce precocious sister
chromatids separation; an effect similar to Shugosin 1 (SGO1)
depletion23,24 (Supplementary Fig. 2a), which exposes UFBs
before anaphase11 (Supplementary Fig. 2b; arrows). This
proposal, however, is very unlikely because PLK1 has been
shown to be required for the release of arm cohesin; its
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inactivation in fact blocks premature loss of cohesion25–27.
Consistent with these studies, we confirmed that BI2536 did not
induce premature separation of sister chromatids in RPE1 cells
(Supplementary Fig. 2c). More importantly, by co-staining with
topoisomerase 2alpha (TOP2A), a chromatid-axis marker, we
visualised that cohesed chromosomes were linked by the DNA
threads, induced by PLK1 inhibition (Fig. 2f; arrows). Therefore,
the absence of PLK1 activity leads to the formation of a DNA
linkage structure that strikingly connects centromeres between
cohesed chromosomes. Because of the concomitant occurrence of
metaphase collapse and centromere DNA linkages, we speculate
that the failure of chromosome alignment in PLK1-inactivated
cells may not be merely attributed to unstable KT-MT
attachments as previously thought.

Mitotic loss of PLK1 causes centromeric DNA linkages. The
DNA linkages induced by BI2536 arise predominantly at cen-
tromeres—a genomic region composed of highly repetitive
sequences. We sought to test if they might be caused by potential
disturbance of DNA replication (or HR) during the course of
BI2536 treatment. We used EdU labelling to distinguish between
cells that were in an ongoing, or post DNA replication stage, whilst
under BI2536 treatment (Supplementary Fig. 3a). If centromere
DNA threads are a by-product of abnormal DNA replication, we
expected to observe their formation only in the EdU-positive, but
not negative, mitotic population. Contrary to this hypothesis, we
found that the majority of EdU-negative mitotic cells (69 ± 4%),
which were presumably in G2/M while BI2536 was applied,
remained positive for DNA thread formation (Supplementary
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Fig. 3b). Moreover, inhibition of PLK1 in early mitotic RPE1 cells
obtained through a release from RO3306-induced G2 arrest also
induced centromere DNA threads (Supplementary Fig. 3c). In
addition, treating asynchronous RPE1 cells with BI2536 for 1 h
also caused centromere DNA thread formation, albeit with a lower

frequency (Supplementary Fig. 3d). These data indicate that the
formation of centromere DNA linkages likely results from a loss of
M-phase specific function of PLK1. However, thymidine pre-
treatment and/or synchronistic mitotic entry may enhance the
phenotype appearance
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Using the same treatment protocol, we also found that
BI2536 induced centromere DNA threads in all other examined
cell types, though with different frequencies (Supplementary
Fig. 4a). They included 1BR3 primary fibroblasts (31%), 82-6
hTERT-immortal fibroblasts (24%), HCT116 colon (69%) and
HeLa cervical cancer cells (21%). Since the DNA thread
formation occurs following metaphase collapse, the different
frequencies between cell lines, (e.g., RPE1 vs. HeLa), may relate to
their ability to establish metaphase. In agreement with this, time-
lapse microscopy revealed that, as compared to RPE1, HeLa cells
poorly progressed into a metaphase(-like) stage under BI2536
treatment (Supplementary Fig. 4b). These data are consistent with
other studies27,28, and may indicate that the formation of bipolar
spindle attachment in HeLa cells is more sensitive to the loss of
PLK1 activity

PLK1 inactivation induces whole-chromosome arm splitting.
As shown above, centromere DNA threads cannot be described as
originating from the DNA entanglements between sister chro-
matids/centromeres. We thus investigated other possible cause(s).
PICH translocase binds with a high affinity to DNA molecules
under tension29. This could indicate that the DNA threads may
be a form of abnormally stretched centromeric chromatin.
Interestingly, we detected activation of DNA damage responses at
(peri)centromeric regions, as labelled by γH2AX staining, fol-
lowing BI2536 treatment (Supplementary Fig. 5a). The damage
response was mainly observed in metaphase collapse populations
rather than in early mitotic cells (e.g., prophase/early prometa-
phase) (Supplementary Fig. 5a). As expected, γH2AX was mostly
not detected at (peri)centromeric regions in DMSO-treated
mitotic cells (Supplementary Fig. 5b).

To determine if this was caused by chromatin damage, we
examined mitotic chromosome spreads (Supplementary Fig. 6a).
In control RPE1 cells (DMSO- and nocodazole-treated), their
chromosomes displayed normal configurations and their average
numbers were very close to 46 (diploid) (Supplementary Fig. 6b,
c). In contrast, chromosomes of BI2536-treated cells exhibited a
shorter and more compact structure, but strikingly, their
chromosome numbers increased to an average of 59 (Supple-
mentary Fig. 6b, c). This increment cannot be explained by
chromosome mis-segregation, because PLK1 inactivation blocks
anaphase onset. Thus, a plausible explanation is chromosome
fragmentation. Moreover, we found that the increase in
chromosome numbers in BI2536-treated cells was suppressed
by co-treatment with nocodazole (Supplementary Fig. 6b, c),
implying a spindle (or tension)-dependent process. Furthermore,
centromere-telomere fluorescence in situ hybridisation (ctFISH)
analysis confirmed that the mitotic chromosomes in BI2536-

treated cells were indeed broken (Fig. 3a and Supplementary
Fig. 7). Notably, the broken chromatin largely resembled
telocentric chromosomes; namely the centromere residing at
one end of the chromatin, but lacking the telomere signals
(Fig. 3a, middle panels—asterisks and Supplementary Fig. 7a,
middle panels). This pattern suggests that the breakage occurs
either at, or very close to the centromere. Supporting this, we also
observed partial centromere splitting (Fig. 3a, middle panels—
arrowheads and Supplementary Fig. 7a), and occasionally, saw a
CEN DNA thread linking two separating broken chromosome
arms (Fig. 3a, middle panels—connecting arrow and Supplemen-
tary Fig. 7a). Nocodazole treatment again suppressed chromo-
some arm breakages, but seemed to have a lesser effect on the
partial splitting of centromeres (Fig. 3b). Together, these results
demonstrate that the loss of PLK1 activity induces centromere
rupture in a spindle-dependent manner. In agreement to this, we
found that nearly all the broken chromatin (99.6%) retained
centromere sequences (Fig. 3c and Supplementary Fig. 7b),
indicating that most, if not all of the breakages, occur within the
core centromere.

Our results from both cytological and cytogenetic analyses
suggest that the centromere DNA threads induced by PLK1
inhibition are highly likely caused by abnormal stretching of the
core centromere chromatin by the spindle pulling forces. As
predicted, nocodazole suppressed both centromere splitting and
DNA thread formation (Fig. 3b and Supplementary Fig. 8). Given
that centromeric DNA threads arise mostly after metaphase
establishment, we postulated that rather than by spindle-
dependent chromosome movement, they are likely mediated by
the tension exerting across the centromeres due to ‘bipolar’
spindle attachment. We thus used Monastrol, the Eg5 inhibitor,
to prevent bipolar spindle establishment while keeping MT
attachment30. As predicted, ‘monopolar’ spindle attachment is
not sufficient to induce centromere DNA threads (Supplementary
Fig. 8). Therefore, centromere splitting requires bipolar spindle
pulling forces.

To our knowledge, this striking phenomenon of spindle-
mediated centromere rupture has never been described; we thus
termed this ‘centromere dislocation’. Using multi-colour FISH
(mFISH) analysis, we further validated that PLK1 inactivation can
cause whole-chromosome arm separation (Fig. 3d). In some
cases, the separated whole-arms were located in close vicinity
(Fig. 3d; e.g., chromosomes 7p–7q, 12p–12q and 17p–17q), which
may imply a residual physical connection, presumably through
the ultrafine centromeric DNA threads. In addition, centromere
dislocation tended to occur more frequently on longer chromo-
somes (Fig. 3d, inset). Collectively, our data show that, in the
absence of PLK1 activity, centromere chromatin fails to withstand

Fig. 2 Formation of centromere DNA linkages after PLK1 inactivation. a Experimental outline (top) and representative images showing the
immunofluorescent staining of PLK1 in DMSO- and BI2536-treated RPE1 pre-anaphase cells (prometaphase and metaphase). BI2536 induced the formation
of a PLK1-decorated threadlike structure (arrows) in the ‘metaphase collapse’ cell. Enlarged region is shown at right. Quantification (bottom) showing the
percentage of cells positive for PLK1-coated threads (mean ± S.D. is shown; n= 3 independent experiments analysing 75 and 224 pre-anaphase cells in
DMSO- and BI2536-treated conditions, respectively). b The experimental setup is same as in (a). PICH co-localises with PLK1 on the threadlike structures
induced by BI2536. Quantification (below) showing the percentage of cells positive for PICH-coated threads (mean ± S.D. is shown; n= 3 independent
experiments analysing 120 and 308 pre-anaphase cells in DMSO and BI2356 treated conditions, respectively). c Representative images showing the
association of the UFB-binding complex (PICH, BLM and RPA70) along the threadlike molecules induced by BI2536. Enlarged regions of both z-projected
(below) and single z-planes (right) are shown. Eighty-eight thread structures were examined and all were positive for PICH, BLM and RPA70 staining.
Arrows showing regions where the RPA70 staining is strong but with no or weak PICH/BLM signals. Note: BLM was stained by a goat antibody (C-18).
d RPA32 localises on the thread regions where BLM signal is weak (arrows). Note: BLM was stained by a rabbit antibody (ab2179). e DNA threads link
between centromeres (arrows). Enlarged regions of z-projection and single z-planes are shown below. Note: all DNA threads examined (171/171 in 10 cells;
100%) are positive for centromere linkages at either one or both of their termini. f Representative images showing cohesed sister chromatids as labelled
by TOP2A (arrows) are linked by DNA threads at their centromeres (arrowhead). The enlarged region is shown below. DNA was stained by DAPI. Scale
bars= 5 μm
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bipolar spindle tensions and the core axis is transformed into an
ultrafine DNA threadlike structure. Indeed, we were able to detect
condensin, a chromosome axial element, associating along the
stretched DNA threads (Fig. 3e; arrows). The disintegration of
centromeres therefore causes whole-chromosome arm splitting
and explains why cells simultaneously lose their metaphase
alignment (Fig. 3f).

PLK1 kinase activity suppresses centromere disintegration.
Thus far, most of the experiments were carried out using the
PLK1 inhibitor, BI2536. To rule out potential off-target effects,
such as inhibition to other PLK members20, we employed an
engineered RPE1 cell line in which the endogenous wild-type
(WT) PLK1 has been replaced with an analogue-sensitive allele,
PLK1as. The catalytic cavity of the PLK1as protein has been
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modified such that it no longer binds to BI2536; instead only to
the unrelated ATP-analogue, 3-MB-PP131 (Supplementary
Fig. 9a). As predicted, BI2536 failed to induce metaphase collapse
and centromere DNA thread formation in the engineered PLK1as
cells. Importantly, these mitotic defects were recapitulated by
using 3-MB-PP1 analogue (Supplementary Fig. 9a–d). In addi-
tion, depletion of the PLK1 protein in RPE1 cells by RNA
interference (RNAi) also induced centromere DNA threads and
dislocations (Supplementary Fig. 9e, f), which further rules out
the potential dominant effect as a result of trapping an inactive
form of PLK1 onto chromatin by the small molecule inhibitors.
Therefore, PLK1 kinase activity per se is essential to suppress
centromere disintegration.

Aberrant association of UFB-binding factors to KTs. The fail-
ure of centromeres to withstand bipolar spindle pulling in the
absence of PLK1 function might indicate that centromere chro-
matin structure is impaired. We thus analysed the centromeres in
the BI2536-treated RPE1 cells before metaphase collapse occurs.
We found that there was a progressive formation of RPA foci at
or near KTs; from early prometaphase to metaphase(-like) stages
(Fig. 4a). This was also sensitive to nocodazole treatment
(Fig. 4a). In control, we rarely detected RPA foci at centromeres
in normal metaphase cells (Fig. 4b). More interestingly, we also
found increased accumulations of BLM and PICH foci at or near
the KTs in the metaphase(-like) cells, again only after BI2536
treatments (Fig. 4c and Supplementary Fig. 10a). Occasionally,
PICH was found at the inner centromeres of untreated cells
(Supplementary Fig. 10a; yellow arrows), perhaps reflecting the
unresolved DNA entanglements between sister centromeres as
proposed previously10,11,13,18,32. Earlier studies have reported that
(phospho)-RPA and BLM foci are observed at centromeres of
cytospun chromosomes33,34. However, under our experimental
conditions, both RPA and BLM foci were rarely detected at
centromeres in normal intact mitotic cells (Fig. 4b, c). In contrast,
PICH foci were consistently visualised at KTs in normal mitotic
cells10 (Supplementary Fig. 10a). To confirm that PLK1 inacti-
vation also enhances PICH loading, we performed quantitative
imaging analysis on co-cultured RPE1 cells, using a mixture of
cells expressing either a WT PLK1 or GFP-tagged PLK1as pro-
tein. This allowed us to directly compare the relative amount of
PICH at KTs. Under BI2536 treatment, there was a marked
increase in both intensity and number of PICH foci at KTs in WT
PLK1, but not in the GFP-PLK1as cells (Supplementary
Fig. 10b–d). Conversely, 3-MB-PP1 induced PICH accumulation

at KTs in the GFP-PLK1as cells (Supplementary Fig. 10b–d). As
expected, PICH, BLM and RPA foci were mostly co-localised at
KTs (Supplementary Fig. 10e; arrows). Therefore, the UFB-
binding complex is aberrantly recruited to KT regions when
PLK1 function is compromised. Since BLM and PICH possess
activities of DNA unwinding and of DNA displacement,
respectively29,35, this led us to speculate that the increase in
centromeric RPA foci formation may be due to illegitimate DNA
unwinding.

Centromere distortion underneath KTs. The localisation of
PICH to KTs is independent of PLK118,28 (Supplementary
Fig. 9e). Our data show that inactivating PLK1 even increases the
binding of PICH, BLM and RPA to KTs. Whether the complex
actually targets the centromere chromatin, or is aberrantly enri-
ched at KTs is unclear. To address this, we employed high-
resolution microscopy to precisely locate the complex within the
territory of centromeres (Supplementary Fig. 11a). We found that
PICH localised in centromeres at a position ~160 nm away from
the outer KT component, as marked by NUF2 (Supplementary
Fig. 11b, d). In a control measurement, the inner KT component,
CENPA, was mapped ~100 nm inwards from NUF2 in metaphase
cells (Supplementary Fig. 11c, d). The CENPA-NUF2 distance
was reduced (~80 nm) in anaphase cells (Supplementary Fig. 11c,
d), probably due to a reduction of intra-KT tension following
sister chromatids cohesion loss36,37. This inward position of
PICH suggests that it likely locates at centromere chromatin.
Further co-staining of PICH and CENPA confirmed that PICH
resides at a centromeric domain ~100 nm beneath CENPA
(Fig. 4d and Supplementary Fig. 11d). Likewise, both BLM and
RPA foci, were mapped underneath CENPA, with distances of
~120 and ~150 nm, respectively (Fig. 4d and Supplementary
Fig. 11d). All of these proteins displayed mirror localisation
patterns, reflecting a typical symmetry of sister centromere-KT
organisation. We referred to this specific centromere site as
‘kinetochore-chromatin’ or ‘K-chromatin’ (Fig. 4e).

The K-chromatin localisation finding is consistent with our
notion that centromeric chromatin is probably targeted by the
UFB-binding complex after PLK1 inhibition. If the increased
formation of RPA foci at K-chromatin reflects aberrant DNA
unwinding, this may weaken centromere rigidity to counteract
spindle pulling forces. Notably, we observed detachments of KT
complex in a small population of centromeres (<4%) in
metaphase(-like) cells prior to collapse. Intriguingly, some of
the KTs remained connected by a short thread, as labelled by

Fig. 3 PLK1 inactivation induces spindle-dependent centromere dislocation. a Experimental outline (top) and representative deconvolved images showing
chromosomes isolated from RPE1 cells under the indicated treatment. Chromosomes were hybridised with FISH DNA probes against centromeres (green)
and telomeres (red). Left panels: examples of normal chromosome configuration (+nocodazole). Middle panels: examples of BI2536-induced ‘centromere
dislocations’ (asterisks; 1–5), ‘partial centromere splitting’ (arrowhead; 3), and a centromere DNA thread linking two separate chromosome arms
(connecting arrow; 5). Right panels: chromosomes with ‘partial centromere splitting’ (arrowhead) after BI2536 and nocodazole co-treatment. Note: also
see Supplementary Fig. 7 for the whole-chromosome spread images. b Quantification of ‘chromosome arm dislocations’ (left) and ‘partially centromere
splitting’ (right) under the indicated inhibitor treatment (n= 3 independent experiments analysing 75 spreads in each condition; the means of each
experiment are shown). c A diagram depicting the outcomes of chromosome breakage within or outside centromeres. (i) Breakage at centromeres
generates both broken arms (100%) positive for CEN FISH signal; (ii) breakage at pericentric or arm regions generates one of the broken arms (50%)
positive for a CEN FISH signal. Quantification (right) of the examined broken chromosome arms with or without centromere FISH signal at their termini
(524 broken chromosome arms were scored from 11 separate chromosome spreads showing the highest centromere dislocation frequency). d
Experimental outline (top) and mFISH karyotyping of RPE1 cells. BI2536 induced chromosome ‘p’- and ‘q’-arm separation. Note: there is a marker ‘M’

chromosome with a translocation of chromosome X and 10 in RPE1 cells. Bar graph (bottom) showing the frequency of ‘centromere dislocations’ among
individual chromosomes. Inset graph showing the positive correlation between chromosome length and ‘centromere dislocation’ frequency (23 spreads
were analysed). Note: acrocentric chromosomes were not determined and the length of the ‘marker’ chromosome is unknown. e Condensin (SMC2) is
detected on some PLK1-associated DNA threads (arrows). Scale bars= 5 μm. f A model of centromere dislocation induced by PLK1 inactivation in a
spindle-dependent manner. Spindle-mediated tension causes decompaction of centromere axis, the formation of centromere DNA threads and whole-
chromosome arm separation
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PICH or RPA staining (Fig. 5a, b; arrows). Centromere staining
was sometimes evident along the short thread (Fig. 5a; arrows),
implying a protrusion of centromeric DNA. We postulated that
this might be the early sign of centromere disintegration.
Further analysis of the centromere-KT integrity revealed that
there was a large percentage of centromeres losing one of the

two sister KTs after metaphase collapse (Fig. 5b–d). The side of
the centromere where a KT was missing was concomitant with
the formation of DNA thread linkages (Fig. 5c; connecting
arrows). Therefore, there are apparent alterations on the
centromere-KT configuration prior to and during centromere
disintegration.
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Fig. 4 PLK1 inactivation increases PICH, BLM and RPA foci at K-chromatin. a Increased RPA foci formation at centromeres during mitotic progression after
PLK1 inhibition (from prophase to metaphase-like stage). Right: Quantification of the numbers of RPA foci at centromeres in the indicated mitotic stages
and treatments (n= 3 independent experiments analysing a total of 30 cells in each stage of early, mid prometaphase and metaphase; and of 29 cells in the
nocodazole-treated condition; average mean is shown). b BI2536 increased the formation of centromeric RPA foci in precollapsed metaphase-like cells.
Representative images comparing RPA foci at centromeres in DMSO- (left) and BI2536-treated (right) metaphase-like cells. Enlarged images of the
selected regions are shown at right. Arrows indicate centromeric RPA foci. Quantification of RPA foci number at centromeres of metaphase (DMSO), and
metaphase(-like) (BI2536) cells (n= 3 independent experiments analysing 47 cells per condition). c Same as (b), but stained with BLM (n= 3 independent
experiments analysing 59 and 60 cells in DMSO- and BI2536-treated conditions; means of each experiment are shown). dMapping the locations of PICH/
BLM/RPA complex at centromeres. Representative images showing the relative locations of PICH (top), BLM (middle) and RPA (bottom) at the
centromeres, comparing to the inner kinetochore marker, CENPA. Profile plots of signal intensity accompanies each example. Right: graphs showing the
relative position of each protein at both sides of the centromere. e A model depicts the localisation of the PICH/BLM/RPA complex at a specific domain of
centromeres, named kinetochore-chromatin/K-chromatin. Note: all RPE1 cells analysed were pre-synchronised at G1/S by a single thymidine block. Drugs
were added at 6 h post-release. After 2 h treatment, cells were subject to immunofluorescence staining. Scale bars= 5 μm
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Fig. 5 Loss of kinetochore attachment at centromeres after dislocation. a Representative images showing the kinetochore complex detaches from the core
centromere, whilst remaining connected by PICH- or RPA-coated DNA threads (arrows) in BI2536-treated metaphase-like RPE1 cells. Inner and outer
kinetochores were labelled by CENPA and NUF2, respectively. b Examples showing the majority of centromeres retain two kinetochores in pre-collapsed
mitotic populations (prometaphase and metaphase-like cells) after BI2536 treatment. c Representative image showing the metaphase-collapse cells losing
kinetochore complex at one side of the centromere. Note: the side without the kinetochore is concomitant with the formation of PICH-associated DNA
linkages (arrows). Enlarged images (1 and 2) highlight the loss of CENPA signal at regions of where PICH-decorated DNA linkages form (arrows).
d Quantification of the numbers of CENPA- and NUF2-labelled kinetochores at centromeres in prometaphase, metaphase-like and collapse stages after
BI2536 treatment (n= 3 independent experiments analysing a total of 3020 CENPA-labelled centromeres and 3625 NUF2-labelled centromeres; mean ± S.
D. is shown). Note: all RPE1 cells analysed were pre-synchronised at G1/S by single thymidine block. Drugs were added at 6 h post-release. After 2 h
treatment, cells were subject to immunofluorescence staining. Scale bars= 5 μm
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BLM helicase activity mediates centromere disintegration.
Next, we examined whether centromere disintegration is medi-
ated by BLM and PICH. We knocked down BLM by RNAi before
BI2536 treatment (Fig. 6a). Silencing BLM for longer than 48 h in
RPE1 cells reduced the efficiency of thymidine release, therefore
we treated cells with siBLM oligos for only 24 h prior to G1/S
release (Supplementary Fig. 12a). Despite partial depletion
(Supplementary Fig. 12b–d), we found that first, BLM knock-
down significantly reduced the formation of RPA foci at K-
chromatin induced by BI2536 (Fig. 6b); second, it also diminished
both centromere DNA thread formation and centromere dis-
location (Supplementary Fig. 12e, f). BLM depletion did not
impair PICH centromeric localisation (Supplementary Fig. 12g),

suggesting that, without BLM, PICH alone is not sufficient to
drive centromere disintegration. To confirm the specificity of
BLM knockdown, we performed our analyses on HAP1 cells in
which the endogenous BLM was knocked out by CRISPR genome
editing38 (Supplementary Fig. 13a, b). Consistently, BLM
knockout abolished centromere DNA thread formation and
centromere dislocations (Fig. 6c, d). Though, occasionally, chro-
matid breaks were observed in ΔBLM HAP1 cells, the breakpoint
was not at the centromere (Fig. 6d, arrow). Therefore, in addition
to the bipolar spindle pulling forces, BLM is a key driver of
centromere disintegration after the loss of PLK1 activity.

Centromere disintegration might be initiated through unlawful
DNA unwinding by BLM. Thus, we determined if BLM’s helicase
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activity is required. We generated polyclonal cell lines from the
ΔBLM HAP1 cells, which stably express either a GFP-tagged WT
or a helicase-dead (Q672R) BLM protein. The expression of the
GFP-Q672R protein was similar to the endogenous BLM level in
HAP1 cells; whereas, the GFP-WT was over-expressed (Supple-
mentary Fig. 13b). In agreement with our notion, the helicase-
dead (Q672R) BLM failed to induce centromere DNA threads
and dislocations caused by BI2536 treatments (Fig. 6c, d).
However, as the expression level of the GFP-Q672R mutant was
lower than the WT control; to perform a better comparison, we
re-sorted the WT GFP-BLM cells to obtain a cell population with
a lower BLM expression (Supplementary Fig. 13c). Despite a
much lower abundance, the WT GFP-BLM protein was still
capable of driving centromere DNA thread formation (Supple-
mentary Fig. 13d). More importantly, the GFP-Q672R mutant
protein no longer induced RPA foci formation, despite its
aberrant enrichment at centromeres following PLK1 inhibition
(Fig. 6e). Therefore, we conclude that centromere disintegration is
mediated by BLM-dependent DNA unwinding at centromeres.

Next, we investigated the role of PICH. Knockdown of PICH,
like BLM, also suppressed BI2536-induced centromere DNA
thread formation and centromere dislocations (Fig. 7a–c).
However, it also abolished BLM localisation and RPA formation
at K-chromatin. (Fig. 7d). Therefore, PICH acts upstream to
facilitate the recruitment of BLM to centromeres after PLK1
inactivation. Taken together, our data suggest that PLK1 has an
important function to protect centromeres from unlawful DNA
unwinding, mediated by the PICH/BLM complex. The structural
change probably impairs centromere rigidity and causes the
failure to withstand bipolar spindle pulling forces. Consequently,
centromeres are torn apart, leading to whole-chromosome arm
splitting and chromosome biorientation failure.

Centromeric tethering of BLM does not induce metaphase
collapse. Both PICH and BLM interact with PLK1 and are
hyperphosphorylated during mitosis10,39–41. Hyperpho-
sphorylation of PICH and BLM is partially dependent on PLK142

(Supplementary Fig. 14). It has been proposed that hyperpho-
sphorylation of BLM can prevent its association with mitotic
chromosomes41,43. Thus, we sought to test whether the abnormal
loading of BLM to centromeres, presumably due to the loss of
PLK1-mediated phosphorylation, might cause centromeric DNA
unwinding and dislocation. We tethered BLM to centromeres in
HeLa cells by fusing a truncated CENPB (1–158) to a GFP-tagged
BLM. Transient expression of the WT GFP-BLM and the
CENPB-GFP-BLM fusion proteins showed that the WT GFP-
BLM exhibited diffused localisation pattern and was mostly
excluded from mitotic chromosomes after nuclear envelope

breakdown. In contrast, the CENPB-GFP-BLM fusion protein
was enriched at core centromeres throughout mitosis (Supple-
mentary Fig. 15a). However, we did not find that tethering BLM
to centromeres induced obvious mitotic defects such as mitotic
arrest, as observed by PLK1 inhibition. Time-lapse live-cell
imaging showed that the CENPB-GFP-BLM transfected cells, like
the WT GFP-BLM, progressed successfully into anaphase, with-
out metaphase collapse (Supplementary Fig. 15b). Moreover, RPA
(ssDNA) formation was not detected at centromeres where the
CENPB-GFP-BLM protein was enriched (Supplementary
Fig. 15c). Therefore, artificially over-loading BLM at centromeres
seems not sufficient to trigger DNA unwinding and centromere
disintegration when PLK1 remains active. Though speculative,
the triggering of centromere dislocation in PLK1-inactivated cells
might be caused by mis-regulation of BLM (and PICH) activity;
and/or because of improper formation of centromere structures
that mis-activates the PICH/BLM complex prior to chromosome
disjunction.

Constitutive PLK1 activity for centromere integrity main-
tenance. To test if centromere disintegration might be caused by
centromere malformation during early mitosis, we inhibited
PLK1 only after mitotic cells had fully formed their chromosomes
and progressed into metaphase, whilst in the presence of active
PLK1. RPE1 cells stably expressing a GFP-tagged PLK1 were first
blocked at metaphase using the APC/C inhibitor, ProTAME.
Time-lapse live-cell imaging recorded that upon the addition of
BI2536, the fully bioriented chromosomes started losing their
alignment. Most importantly, this was accompanied by the for-
mation of DNA threads (Fig. 8a and Supplementary Movies 2 and
3), indicating the occurrence of centromere dislocation. Fur-
thermore, we found that centromere dislocation can happen
rapidly, as within 30 min of BI2536 addition, more than 60% of
the metaphase-arrested cells generated centromere DNA threads
(Fig. 8b). As centromere dislocation depends on bipolar spindle
pulling, this would imply that the KT-MT attachment is not
instantly destroyed, at least in those centromeres with DNA
threads. Therefore, rather than due to an initial malformation,
centromere disintegration is likely triggered because of a defect in
centromere structure maintenance.

Depletion of PICH and BLM prolongs metaphase alignment.
Thus far, our data indicates that apart from the proposed model
of KT-MT destabilisation, a failure in centromere integrity
maintenance is another cause of chromosome misalignment. To
further test this, we examined if suppression of centromere dis-
location, by PICH and BLM depletion, might rescue the

Fig. 6 BLM helicase activity triggers centromere disintegration. a Western blot showing BLM depletion after RNAi treatment in RPE1 cells. Ku80 is used as
a loading control. b BLM depletion reduced centromeric RPA foci formation induced by BI2536 in pre-collapsed metaphase(-like) cells. Representative
images showing the loss of RPA, but not PICH foci, at centromeres in siBLM cells. Right: quantification of centromeric RPA foci in metaphase(-like) cells
(n= 3 independent experiments analysing 60 cells per condition; mean ± S.D. is shown). c Representative images and quantification of DNA thread
formation in wild-type (HAP1) cells, BLM knockout cells (ΔBLM), and ΔBLM HAP1 cells complemented with a wild-type GFP-BLM (WT) and a BLM-
helicase mutant (Q672R) protein under BI2536 treatment (n= 3 independent experiments analysing a total of 291, 218, 204 and 184 cells in HAP1, ΔBLM,
WT and Q672R cell lines; mean ± S.D. is shown). d Representative chromosome images of ‘centromere dislocations’ (yellow asterisks) in the indicated
HAP1 cells shown in (c). Note: occasional arm breaks (arrow) were observed in ΔBLM cells. Quantification of centromere dislocation is shown below
(n= 3 independent experiments analysing a total of 60, 60, 51 and 51 spreads in HAP1, ΔBLM, WT and Q672R cell lines; means of each experiment are
shown). e Centromeric RPA foci formation in ΔBLM HAP1 cells expressing wild-type GFP-BLM (WT) and a BLM helicase-dead mutant (GFP-Q672R)
following BI2536 treatment. Representative images showing the lack of RPA foci at centromeres in the GFP-Q672R cells. Right: bar graphs showing the
average fluorescence intensities of centromere GFP and RPA foci, respectively, in GFP-BLM and GFP-Q672R cells (mean+ S.E.M. is shown). A scatter plot
of RPA foci intensity by GFP foci intensity at centromeres (total numbers of centromere foci analysed: GFP-BLM, n= 582; and GFP-Q672, n= 481). All
RPE1 and HAP1 cells, including their derivatives, were pre-synchronised at G1/S by single thymidine block. Drugs were added at 6 h post-release. After 2 h
treatment, cells were subject to immunofluorescence staining. RNAi treatment of RPE1 cells was performed for 23 h before G1/S release. Scale bars= 5 μm
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metaphase alignment defect in PLK1-inhibited cells. Knocking
down PICH or BLM had no adverse effect on metaphase estab-
lishment in RPE1 cells under BI2536 treatments. However, it
significantly prolonged the metaphase(-like) stage as compared to
control cells (Fig. 8c and Supplementary Movies 4–6). Although
the metaphase chromosomes inevitably misaligned after long
delays in the PICH/BLM-depleted cells, they dispersed more like
a ‘polo’ pattern, rather than the ‘Fig-8’ collapsed shape. As we
showed that PICH/BLM depletion abolished centromere dis-
locations, we believe that the ultimate alignment failure is likely
caused by KT-MT destabilisation. Nevertheless, it seems that even
in the absence of PLK1 activity, the centromeres and KTs remain
competent to support chromosome biorientation, at least in
RPE1 cells, as long as the PICH/BLM complex is inactivated.
Moreover, our data also implies that KT-MT destabilisation, if it
occurs, seems to do so at a relatively slow rate as compared to
centromere disintegration.

In summary, we report an unexpected role of PLK1 during
chromosome biorientation, which prevents centromeres from
destruction, mediated by the co-action of DNA unwinding by
BLM helicase and bipolar spindle pulling (Fig. 9).

Discussion
One of the key mitotic functions of PLK1 is to promote stable
attachments between spindle MTs and KTs6. In the current study,

we reveal a hitherto undescribed role of PLK1 as a centromere
guardian for chromosome alignment. We show that the lack of
PLK1 activity leads to the failure of centromeres to withstand
bipolar spindle pulling tension. As a consequence, centromere
chromatin is stretched into a threadlike structure, resulting in
centromere splitting, whole-chromosome arm separation and loss
of metaphase alignment. Further experiments demonstrate that
the disintegration of centromeres is not a passive process, but is
actively driven through illegitimately unwinding of centromeric
DNA by the PICH/BLM complex. Our results highlight a PLK1-
dependent pathway for centromere maintenance during mitosis.

BLM is the key molecular driver of centromere disintegration,
but it remains unclear how PLK1 counteracts its mediated
destruction. Given that both BLM and PICH proteins are sub-
strates of PLK1, a reasonable speculation is that PLK1 can reg-
ulate the activity of PICH/BLM complexes during mitosis.
Previous studies have shown that before anaphase onset, BLM
poorly associates with mitotic chromosomes41,43 and on UFBs
generated from prematurely disjoined sister chromatids11. The
chromatin exclusion of BLM, presumably by hyperpho-
sphorylation, could limit its DNA transaction activity. However,
artificially tethering BLM to centromeres is not sufficient to
induce DNA unwinding and centromere dislocation, which may
suggest that either the BLM protein remains inactive, or addi-
tional factors such as PICH activation and/or chromatin
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remodelling are required. Alternatively, PLK1 may protect cen-
tromeres through facilitating normal condensation of cen-
tromeres, a process if compromised might create a DNA substrate
that mis-activates the PICH/BLM complex. However, impairing
chromosome condensation by condensin depletion, which leads
to abnormal stretching of sister centromeres44,45, does not trigger

similar phenotypes of centromere rupture and chromosome
misalignment as induced by PLK1 inhibition. In addition, the fact
that centromere disintegration can be induced in ‘mature’ mitotic
cells; namely those cells that have fully formed normal metaphase,
would suggest that rather than due to an initial chromatin mal-
formation, it is probably caused by centromere maintenance
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Fig. 8 Constitutive PLK1 activity suppresses centromere disintegration. a Experimental outline and time-lapse live-cell images of GFP-tagged PLK1
RPE1 cells treated with BI2536 after metaphase establishment. Cells were arrested at metaphase by ProTAME after G1/S release. High-resolution movies
were recorded immediately after the addition of BI2536. The formation of DNA threads is revealed by GFP-PLK1 protein (arrows). b Experimental outline
and quantification of DNA thread formation in metaphase-arrested RPE1 cells. BI2536 was added in ProTAME-arrested metaphase cells for 30min.
Centromeric DNA threads were labelled by PICH, BLM and RPA staining. BLM thread counting (n= 3 independent experiments analysing a total of 188 and
189 cells in ProTAME and ProTAME+ BI2536 conditions, respectively. RPA thread counting (n= 3 independent experiments of a total of 174 and 187 cells
in each condition; mean ± S.D. is shown). c Depletion of PICH or BLM, prolongs the metaphase-(like) stage of RPE1 cells under PLK1 inactivation. Time-
lapse microscopy images showing the mitotic progression of RPE1 cells treated with the indicated siRNA oligos, and BI2536. Red bars indicate the
metaphase(-like) stage; yellow bars indicate ‘metaphase collapse’. Quantification (right) of the overall duration of metaphase(-like) stage in control, PICH-
and BLM-depleted cells, following BI2536 treatment (n= 3 independent experiments analysing 50, 60 and 57 cells in siCTRL, siPICH and siBLM conditions;
means of each experiment are shown). Scale bars= 5 μm
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impairment. Nevertheless, no matter if there is a structural defect,
loss of PLK1 does not seem to greatly compromise chromosome
biorientation, at least in RPE1 cells, as long as the PICH/BLM
complex is inactivated. We postulate that PLK1 may protect
centromeres through both chromatin structure maintenance and
the regulation of the PICH/BLM complex activity. Further
experiments will need to dissect the underlying mechanism(s).

Another very intriguing finding is that when acting in concert
with bipolar spindle tension, the PICH/BLM complex can pro-
mote decompaction of the centromere axis. This converts the
centromeric chromatin into an ultrafine DNA structure, remi-
niscent of anaphase UFBs10,11, leading to whole-chromosome
arm separation. Conceivably, if such decompaction activity is
applied at a chromosomal region where sister DNA intertwine-
ments persist, it may be able to relieve the entangling constraints
and facilitate the poleward separation of sister chromatids during
anaphase. Though this is speculative, this finding could provide
an alternative clue to understand how the UFB-binding complex
may function during chromosome disjunction, and potentially
also explain why a long region of UFBs is always coated by the
PICH/BLM complex. In principle, such powerful action would
need to be under a tight control before anaphase onset, otherwise
it could lead to pathological damage at chromatin sites where
tension is exerted; namely the centromere. Finally, the identifi-
cation of a centromere-specific breakage pathway, independent of
chromosome mis-segregation46,47, also offers an alternative
direction in understanding the origin of complex chromosome
rearrangements, such as whole-chromosome arm rearrange-
ments, which are observed in many human tumours and rare
genetic disorders48–51.

In conclusion, our study unveils an unexpected participation of
PLK1 and the UFB-binding complex in the safeguard of cen-
tromere integrity during mitosis, which is critical for faithful
chromosome segregation and chromosome stability.

Methods
Cell culture. RPE1-hTERT, 82-6-hTERT normal diploid cell lines, 1BR3 primary
fibroblasts, HCT116 colon and HeLa cancer cells were obtained from the Genome
Damage and Stability Centre (GDSC) Cell Bank. All cell lines were authenticated
by STR genotyping from European Collection of Cell Cultures. RPE1-hTERT
derivative cells were generated and supplied by Mark Burkard (University of
Wisconsin). Bloom’s syndrome fibroblasts (GM08505) were obtained from Phillip
North (University of Oxford). HAP1 cells and HAP1 ΔBLM cells were obtained
from Marcel van Vugt (University of Groningen). All cell lines passed mycoplasma
tests (Lonza MycoAlert kit). RPE1-hTERT and its derivative cells were grown in
DMEM/F-12 medium (Sigma) containing 15% foetal calf serum (FCS) and Pen/
Strep antibiotics (P/S). 82-6 Fibroblast cells were grown in DMEM/F-12 medium
containing 15% FCS and P/S. HAP1 cells were grown in IMDM (Gibco) containing
10% FCS and P/S. 1BR3 primary cells were grown in MEM (Gibco) containing
2mM L-glutamine, 15% FCS and P/S. HCT116 cells were grown in McCoy’s 5A
(Gibco) containing 15% FCS and P/S. Bloom’s syndrome fibroblasts (GM08505)
were transfected with a pEGFP-hBLM construct and selected by 700μg/ml G418
for 14 days. A single clone was isolated and maintained in MEM (Gibco) con-
taining 2 mM L-glutamine, 10% FCS, P/S and G418. Cell cultures were maintained
at 37 °C in a humidified atmosphere containing 5% CO2. GFP-BLM(WT) and
GFP-BLM(Q672R) HAP1 cells were generated by stable transfection with the
corresponding constructs in HAP1 ΔBLM cells by using FuGene HD (Promega)
according to the manufacturer’s guidelines. The DNA constructs were created by
sub-cloning EGFP-hBLM (WT) or Q672R (helicase dead mutant) fragments into a
pSYC-181-(NEO) vector. Following a 1.2 mg/ml of G418 selection for 14 days,
GFP-positive populations were sorted and isolated using a FACS cell sorter (BD
FACSMelody).

Cell synchronisation and drug treatments for mitotic cell analysis. Cells were
treated with 2 mM of thymidine for 18 h to enrich cells at the G1/S boundary. Cells
were then released into S-phase by washing three times with pre-warmed culturing
medium, or pre-warmed 1× PBS and released into fresh medium. Totally, 5–6 h
post-G1/S release, indicated inhibitors were added. At approximately 8–9 h post
the G1/S release, mitotic cells were fixed or enriched for analyses.

RNA interference. Cells were transfected with siRNA oligonucleotides using
Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific) follow-
ing the manufacturer’s guidelines. Cells underwent 1 or 2 rounds of siRNA
transfection as necessary.

Non-targeting siRNA pool (Dharmacon ON-TARGET plus Non-targeting Pool
—D-001810-10-05. UGGUUUACAUGUCGACUAA; UGGUUUACAUGUUG
UGUGA; UGGUUUACAUGUUUUCUGA; UGGUUUACAUGUUUUCCUA)

PLK1 siRNA sequence (Dharmacon ON-TARGET plus SMARTpool—L-
003290-00-0005. GCACAUACCGCCUGAGUCU; CCACCAAGGUUUUC
GAUUG; GCUCUUCAAUGACUCAACA; UCUCAAGGCCUCCUAAUAG)

Sgo1 siRNA sequence (Dharmacon ON-TARGET plus SMARTpool—L-
015475-00-0005. CAGCCAGCGUGAACUAUAA; GUUACUAUCUCACAU
GUCA; AAACGCAGGUCUUUUAUAG; GUGAAGGAUUUACCGCAAA)

BLM siRNA sequence (Dharmacon ON-TARGET plus Individual—J-007287-
08-0005. GGAUGACUCAGAAUGGUUA)

PICH siRNA sequence (Invitrogen—AAUUCGGUAAACUCUAUCCAC
AGCU)

Fluorescence immunostaining. For immunostaining analyses, cells were seeded
onto No. 1.5 or No. 1.5H cover glass and fixed with Triton X-100-PFA buffer (250
mM HEPES, 1× PBS, pH7.4, 0.1% Triton X-100, 4% methanol-free paraf-
ormaldehyde) at 4 °C for 20 min, or with PBS–PFA buffer (1× PBS, 4% methanol-
free paraformaldehyde) at room temperature for 10 min. Pre-extraction was carried
out in indicated experiments before fixation by incubation of the cover glass in pre-
extraction buffer (20 mM HEPES pH7.4, 0.5% Triton X-100, 50 mM NaCl, 3 mM
MgCl2, 300 mM sucrose) for 10–15 s. Cells were incubated in permeabilisation
buffer (0.5% Triton X-100, 1XPBS) for 20 min on ice followed by blocking with
foetal calf serum for 15 mins at room temperature. Cells were incubated with
primary antibody at 37 °C for 90 min followed by secondary antibody incubation at
room temperature for 30 min. Slides were washed with 1× PBS for 5 times at room
temperature after antibody incubation. Cells were mounted using DAPI-containing
Vectashield mounting medium.

Primary antibodies used: anti-PICH (Abnova; H00054821-B01P, 1:100), anti-
PICH (Abnova; H00054821-D01P, 1:100), anti-BLM (Santa Cruz; sc-7790, 1:50),
anti-BLM (Abcam; ab2179, 1:200), anti-γH2AX (Upstate; JBW-301, 1:400), anti-
TOP2A (Santa Cruz; sc-5348, 1:100), anti-SMC2 (Bethyl Lab; A300-058A, 1:200),
anti-RPA70 (Abcam; ab79398, 1:200), anti-RPA32 (Abcam; ab2175, 1:200), anti-
CENPA (Abcam; ab13939, 1:100), anti-CENPB (Abcam; ab25734, 1:800), anti-
NUF2 (Abcam; ab122962, 1:200), anti-PLK1 (Santa Cruz; sc-55504, 1:100), anti-
pericentrin (Abcam; ab4448, 1:400), anti-centromere (ImmunoVision; HCT-0100,
1:400) and GFP booster (ChromoTek; gba-488, 1:200). Secondary antibodies used:
donkey anti-mouse Alexa Fluor 488, 555 and 647; donkey anti-rabbit Alexa Fluor
488, 555 and 647; donkey anti-goat Alexa Fluor 488 and 555; goat anti-human
DyLight 550 and 650 (All secondary antibodies are purchased from ThermoFisher
and used at 1:500 dilution).

High-resolution deconvolution microscopy. Images were acquired under a Zeiss
AxioObserver Z1 epifluorescence microscopy system with 40×/1.3 oil Plan-Apoc-
hromat, 63×/1.4 oil Plan-Aprochromat and 100×/1.4 oil Plan-Aprochromat
objectives and a Hamamatsu ORCA-Flash4.0 LT Plus camera. The system is
calibrated and aligned by using 200 nm-diameter TetraSpeck microspheres (T7280,
ThermoFisher). Ten to fifty z-stacking images were acquired at 200 nm intervals
covering a range from 2 to 10 μm by using ZEN Blue software.

Deconvolution was carried out using Huygens Professional deconvolution
software (SVI) with a measured point-spread-function generated by 200 nm
diameter TetraSpeck microspheres. Classical maximum likelihood estimation
method with iterations of 40–60 and signal-to-noise of 20–60 was applied.

Time-lapse Live-cell microscopy. Cells were seeded on 2-well or 4-well tissue
culture chambers coverglass II (Sarstedt). SiR-DNA (Spirochrome) was added for
at least 5 h prior to live-cell imaging. Images were acquired under a Zeiss
AxioObserver Z1 epifluorescence microscopy system equipped with a heating and
CO2 chamber (Digital Pixel) by using 40×/0.6 Plan-Neofluar or 40×/1.3 oil Plan-
Apochromat objectives and a Hamamatsu ORCA-Flash4.0 LT Plus camera. For
mitotic progression analysis, 5–10 z-stacking images with 2 μm intervals were taken
with the indicated time intervals by using ZEN Blue software. Images were pro-
cessed using ImageJ software and in-focus z-plane images were manually extracted
to make image montages. For imaging of DNA thread formation in live cells, 40×/
1.3 oil Plan-Apochromat objective was used to capture eight z-stack images with
800 nm intervals and in-focus z-plane images were extracted using ImageJ
software.

Chromosome spread preparation. Following synchronisation using thymidine,
cells were treated with pre-warmed hypertonic solution for 5–10 min at 37 °C
(0.075M KCL). The swollen cells were then fixed and washed twice with methanol:
acetic (3:1 ratio), before finally being re-suspended in fresh methanol:acetic solu-
tion. Chromosome spreads were dropped onto glass slides and either counter-
stained with Vectashield plus DAPI, or stored at room temperature for
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forthcoming FISH hybridisation. Colcemid was omitted in all mitotic spread
preparations.

Centromere and telomere peptide nucleic acid (PNA) FISH. Centromere
(CENPB-FAM; PNABio) & Telomere (Tel-Cy3 PNA FISH kit; DAKO, Agilent)
PNA probes were hybridised according to the manufacturer’s instructions. Briefly,
chromosome spreads were rehydrated in 1× TBS prior to fixation in 3.7% PFA
solution. Slides were then washed and pre-treated before dehydration using a
gradient ice-cold ethanol wash (70, 90 and 100%). Slides were air dried and PNA
probes were added. Slides were then co-denatured at 80 °C for 1 min and incubated
for 2 h at room temperature. Slides were then washed in FISH Wash solution (Tel-
Cy3 PNA FISH kit; DAKO, Agilent) for 5 min at 65 °C following by dehydration
using a series of ethanol wash before counterstaining using DAPI Vectashield.

Multi-colour FISH. mFISH was performed by using 24XCyte Human Multicolour
FISH probe (MetaSystems) according to the manufacturer’s instructions. Images
were acquired by MetaSystems using a Zeiss AxioObserver Z1 epifluorescence
microscopy system with a CoolCube CCD camera and 100×/1.4 oil Plan-
Aprochromat objective. Multi-colour FISH (mFISH) karyotyping was carried out
by using ISIS Imaging software.

Immunoblotting. Cells were trypsinized and lysed on ice for 15–20 min with lysis
buffer (50 mM Tris pH 7.5, 300 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1.25
mM DTT, 1 mM PMSF and cOmpleteTM protease inhibitor cocktail). Protein
concentration was quantified using a Bradford assay (Bio-Rad). Immunoblotting
(IB) was performed following standard procedures. Primary antibodies used for IB
in this study: anti-BLM (Abcam, ab2179, 1:2000), anti-PICH (Abnova; H00054821-
B01P, 1:300), anti-GFP (Abcam, ab290, 1:1000) and anti-Ku80 (Abcam, ab80592,
1:10000). All uncropped blot scans are available in the Supplementary excel
data file.

Flow cytometry. Cells were trypsinised, washed with PBS and fixed with 70% ice-
cold ethanol. For cell cycle analysis, cells were washed with PBS and re-suspended
in propidium iodide/RNaseA staining buffer. FACS profiles were then determined
and analysed using BD Accuri C6 sampler.

KT/centromere foci measurement. Samples were subjected to pre-extraction in
pre-extraction buffer (20 mM HEPES pH7.4, 0.5% Triton X-100, 50 mM NaCl, 3
mM MgCl2, 300 mM sucrose) for 10–15 s followed by fixation and immuno-
fluorescent staining as described above. Thirty to fifty z-stacking images with 200
nm intervals were acquired and deconvolved using Huygens Professional decon-
volution software (SVI). KT foci on each single z-plane were marked and measured
using the ImageJ Plugins detailed below.

ImageJ measurement of KT foci coordinates, distances and intensities. Spot
Pair Distance Tool: Measures the distance between spots in two channels of an
image. The tool searches within a focus/box radius, typically± 5px, for a local
maxima in the two pre-selected analysis channels. The centre-of-mass around each
maxima, typically± 2px, is computed as the centre of intensity for each channel.
Dragging from the clicked point creates a reference direction. The Euclidean dis-
tance between the centres is reported, optionally with the signed XY distance and
angle relative to the reference direction. Visual guides are overlaid on the image to
assist in spot selection and direction orientation. Available in the latest GDSC
ImageJ plugins.

Spot Fit Tool: Fits a 2D Gaussian to a spot in an image. The tool searches within
a box radius, typically± 3px, for a local maxima in the pre-selected analysis
channel. A 3 × 3 smoothing filter is applied before identification of the maxima. A
2D Gaussian function is then fitted to the data using non-linear least-squares fitting
and poor fits rejected using a signal-to-noise ratio. The parameters for the fit are
reported including the total intensity under the Gaussian function and the local
background value. Visual guides are overlaid on the image to show the fitted
location. Available in the pre-release GDSC SMLM ImageJ plugins.

Statistics. Statistical analysis was performed using GraphPad Prism 7 software by
two-tailed unpaired Student’s t test and two-way ANOVA as per the experimental
requirement.

Recombinant DNA and transfections. CENPB (1–158aa) cDNA fragment was
PCR amplified from a PLK1 plasmid in which the C-terminal PBD domain was
replaced with the first 158 amino acids of CENPB (pQCXIN-Flag-Plk1deltaC-
CENPB(1–158)) (a gift from Mark Burkard) and cloned into full length pEGFP-
hBLM and pEGFP-hBLM(Q672) plasmids at AgeI site to generate N-terminally
tagged CENPB (1–158aa) fusion proteins. Transfections of DNA plasmids were
performed using FuGene HD (Promega) according to the manufacturer’s guide-
lines. All plasmids and their sequences are available upon request. Forward primer:
(CENPB-For1) 5′-TAAGCAACCGGTATGGGCCCCAAGAGGCGACAG-3′;

Reverse primer: (CENPB-linker-Rev1)5′-TAAGCAACCGGTCTAGCACTT
GCGCCCCCAGCACTTGCTCCACCGGCCGGACTG GCAGGCGCCGC-3′

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary information files. Raw imaging data are available
from the corresponding author upon reasonable request.
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