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Abstract: Purpose: Combined radiotherapy (RT) and immune checkpoint-inhibitor (ICI) therapy
can act synergistically to enhance tumor response beyond what either treatment can achieve alone.
Alongside the revolutionary impact of ICIs on cancer therapy, life-threatening potential side effects,
such as checkpoint-inhibitor-induced (CIP) pneumonitis, remain underreported and unpredictable.
In this preclinical study, we hypothesized that routinely collected data such as imaging, blood counts,
and blood cytokine levels can be utilized to build a model that predicts lung inflammation associated
with combined RT/ICI therapy. Materials and Methods: This proof-of-concept investigational
work was performed on Lewis lung carcinoma in a syngeneic murine model. Nineteen mice were
used, four as untreated controls and the rest subjected to RT/ICI therapy. Tumors were implanted
subcutaneously in both flanks and upon reaching volumes of ~200 mm3 the animals were imaged
with both CT and MRI and blood was collected. Quantitative radiomics features were extracted from
imaging of both lungs. The animals then received RT to the right flank tumor only with a regimen of
three 8 Gy fractions (one fraction per day over 3 days) with PD-1 inhibitor administration delivered
intraperitoneally after each daily RT fraction. Tumor volume evolution was followed until tumors
reached the maximum size allowed by the Institutional Animal Care and Use Committee (IACUC).
The animals were sacrificed, and lung tissues harvested for immunohistochemistry evaluation. Tissue
biomarkers of lung inflammation (CD45) were tallied, and binary logistic regression analyses were
performed to create models predictive of lung inflammation, incorporating pretreatment CT/MRI
radiomics, blood counts, and blood cytokines. Results: The treated animal cohort was dichotomized
by the median value of CD45 infiltration in the lungs. Four pretreatment radiomics features (3 CT
features and 1 MRI feature) together with pre-treatment neutrophil-to-lymphocyte (NLR) ratio and
pre-treatment granulocyte-macrophage colony-stimulating factor (GM-CSF) level correlated with
dichotomized CD45 infiltration. Predictive models were created by combining radiomics with NLR
and GM-CSF. Receiver operating characteristic (ROC) analyses of two-fold internal cross-validation
indicated that the predictive model incorporating MR radiomics had an average area under the curve
(AUC) of 0.834, while the model incorporating CT radiomics had an AUC of 0.787. Conclusions:
Model building using quantitative imaging data, blood counts, and blood cytokines resulted in lung
inflammation prediction models justifying the study hypothesis. The models yielded very-good-to-
excellent AUCs of more than 0.78 on internal cross-validation analyses.

Keywords: lung; inflammation; pneumonitis; immunotherapy; radiotherapy; prediction; model;
imaging; blood; bllod counts; cytokines; murine

1. Introduction

Immune checkpoint inhibitors (ICIs), targeting programmed cell death protein-1 (PD-1)
or programmed cell death protein ligand-1 (PD-L1), can provide lasting response and im-
prove long-term survival in advanced non-small cell lung cancer (NSCLC) patients [1–13].
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However, overall response rates to ICI monotherapy remain less than 50% and patients
who do not respond can experience accelerated disease progression [14,15]. In comparison
with cytotoxic chemotherapy, ICIs broadly offer an attractive side effect profile and are
becoming a treatment of choice in various immunogenic cancers [16,17]. However, ICI-
mediated immunomodulation can trigger adverse events in almost any organ system, with
rash, vitiligo, gastrointestinal toxicities, pruritis, hyphophysitis, and pneumonitis most
commonly observed [18].

Checkpoint-inhibitor-induced pneumonitis (CIP) is a potentially life-threatening ad-
verse event seen most often among patients treated for NSCLC [19,20]. While life-threatening
CIP is rare, in NSCLC patients, CIP can mimic conditions such as tumor progression or
infection, complicating patient care. Most cases of CIP are mild and managed successfully
in the outpatient environment, but inpatient management, long-term respiratory compli-
cations, or treatment-related deaths occur in ~20% of affected patients. Identification of
patients at risk for CIP prior to immunotherapy could prevent significant morbidity, and
discovery of signatures or methods for early CIP prediction represents an unmet clinical
need in ICI cancer treatment [21].

Recently published studies suggest that systemic ICI therapy combined with local
radiotherapy (RT) can result in enhanced systemic control of metastatic disease, surpassing
the efficacy of ICI alone [16,22–24]. In the metastatic setting, ablative dose levels of focal
RT have been theorized to potentiate ICI systemic effects through induction of an in situ
vaccine, made possible by augmented antigen presentation and increased lymphoid cell
trafficking due to radiation effects on the tumor microenvironment [23]. A logical but
unintended consequence of an enhanced inflammatory state is an increase in number and
severity of immune-related adverse events (irAEs) [25]. With the increasing use of ICI
and RT, predictive models able to identify patients with elevated risk of irAEs, especially
individuals without obvious predisposing factors, could offer clinical value.

In this study, it was hypothesized that lung inflammation after combined RT and ICI
therapy is an observable phenomenon that can be predicted using pretreatment complete
blood counts (CBCs), computed tomography (CT) or magnetic resonance imaging (MRI)
radiomics [26–29], and liquid biopsy cytokines. The hypothesis was tested on a preclinical
subcutaneous syngeneic murine lung tumor model, where CD45 (lymphocyte common
antigen)-positive cells were used as a surrogate for lung inflammation [30–33]. CD45 is
a pan lymphocyte stain. Therefore, it will indicate if there is an excess of lymphocytes
accumulating in the lungs, i.e., inflammation. Based on that rationale, we decided to use
CD45 as a biomarker for pneumonitis, following already published methodology.

2. Materials and Methods

In this proof-of-principle investigation, there was no a priori basis for sample size
estimation. Details on the rationale for the number of animals used are presented else-
where [34]. In brief, the principle of reduction in animal usage dictated an experimental
design with 4 control and 15 treated (combined RT and ICI) mice. The study design and
approach were approved by the Institutional Animal Care and Use Committee (IACUC,
protocol: 17-214-ad02 EDR).

Lewis lung carcinoma (LLC) cells (Thermo Fisher Scientific, Inc., Waltham, MA, USA)
were implanted subcutaneously on both flanks [35] in nineteen C57BL/6 mice. The cell
line was cultured in medium Dulbecco’s Modified Eagle’s Medium (Gibco®; Thermo
Fisher Scientific, Inc., Waltham, MA, USA), supplemented with 10% fetal bovine serum
(Gibco®; Thermo Fisher Scientific Inc., Waltham, MA, USA) and 1% penicillin-streptomycin
(HyClone; GE Healthcare Life Sciences, Logan, UT, USA). For subcutaneous implantation,
a cell suspension of a density of 1 × 105 cells/mL was prepared for each animal.

The mice (6–8 weeks old; 18–20 g) were purchased from Jackson Laboratory (Bar
Harbor, ME, USA) and were housed at 22 ± 5 ◦C in a 12 h light/dark cycle and fed rodent
chow and water ad libitum. Mice were subcutaneously inoculated with 100 µL LLC cell
suspension (1 × 105 cells/mL) under 2% isoflurane anesthesia. The skin was tented up,
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and the tumor cells were implanted under the skin in the dorsal regions of both left and
right flanks. The tumor volume was measured several times per week by calipers, and
calculated using the formula, [width2 (mm2) × length (mm)]/2 (volume of an ellipsoid).

The treated animals received a combined RT and ICI regimen according to a published
and widely adopted schema [35]. Approximately ten days after tumor implantation, when
the tumors reached ~214 mm3 on average (range from 99.8 mm3 to 437 mm3), noncontrast
MRI and CT imaging were performed. Figure 1 outlines the experimental design and
approximate timeline according to which the tumors were inoculated, imaged, and treated.
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Figure 1. Study design: From left to right—bilateral tumors are implanted and 1–2 weeks later (tumor
volumes ~200 mm3), blood is acquired, animals are CT- and MR-imaged, image segmentation is
performed, and RT + ICI is started on the day after imaging. RT is delivered for three consecutive
days. On each treatment day, tumors are irradiated with 8 Gy followed by PD-1 is administered
through intraperitoneal injection. After tumor volumes reach the maximum allowed size, the animals
are sacrificed, and lung tissue is acquired for immunohistochemistry.

For CT scans, a resolution of 0.4 × 0.4 × 0.6 mm3 was used, while for the MR imaging, a
T1 sequence with image resolution of 0.5 × 0.5 × 0.5 mm3 was employed. The CT hardware
was 64-slice Siemens (Erlangen, Germany) Somatom Definition AS scanner, while the MRI
hardware was 3T Siemens (Erlangen, Germany) TrioTim scanner. After imaging, the tumor
volumes on both flanks as well as the bilateral lung volumes were digitally segmented in
their entirety on both MRI (panel A) and CT (panel B), as represented in Figure 2 screen
captures. For the CT images, semi-automatic lung segmentation was performed, using
threshold levels set between 800 and 1200 Hounsfield Units. All segmentation slices were
carefully reviewed for consistency of the contours. In all instances where the trachea
was inadvertently included in the contours due to semi-automatic segmentation, it was
manually removed since it is not part of the lung parenchyma. Lung segmentation in the
MRI images was performed manually. In order to facilitate MRI contouring, the already
segmented CT studies were co-registered with the MRI images, so that adequate lung
representation was achieved.

Quantitative imaging features (radiomics) were then extracted from the imaging
studies for tumors and lungs [34]. The average bilateral lung volume over the fifteen
animals in the treatment cohort was 823.5 mm3, with the range being from 615.6 mm3 to
1093.2 mm3. This average lung volume corresponds to more than 8500 CT voxels, and in
excess of 6500 MRI voxels, sufficient resolution for radiomics calculations to be performed
on both imaging modalities.

In addition to the CT and the MRI imaging features, blood was collected on the day of
imaging and CBCs and blood cytokine levels were acquired. Approximately 100–200 µL
of blood were collected from each mouse and suspended in an Eppendorf tube pre-loaded
with 10 µL of 0.5M EDTA. CBC flow analysis was processed using automated blood counter
Element H5 (HESKA, Loveland, CO, USA). The data were collected from the blood counter
and assessed for standard CBC components. Derived CBCs components included white
blood cells (WBCs), neutrophils (N), lymphocytes (L), monocytes, eosinophils, basophils, red
blood cells, etc. Ratios of those components were later used in downstream categorization.

After imaging, the animals were irradiated using a RadSource 2000 X-ray Irradiator
cabinet (Rad Source Technologies, Buford, GA, USA) and organ-specific irradiation jigs
(160 kVp, 25 mA, 0.5 mM Cu, 1.8 Gy min−1) under 2% isoflurane. The RT involved daily
treatment for three consecutive days to the right flank only with daily doses of 8 Gy [35]. On
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each of these 3 days, RT was followed by intraperitoneal injections of 200 µg of PD-1mAb
(BioXcell anti-mouse PD-1 (CD279)). When tumors reached the designated maximum
volume per IACUC the animals were euthanized, and lung tissues were harvested.
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In order to measure the number of infiltrating lymphocytes into the lungs, the lungs
were perfused with formaldehyde, processed and sectioned, and stained with an anti-CD45
antibody (Cat #14-0451-82, ThermoFisher Scientific, Waltham, MA, USA). The number
of CD45 positive cells from three representative sections of lungs from each individual
animal were quantified. The CD45 infiltration was used as a surrogate measure for lung
inflammation and potential pneumonitis. The significant distance between the flank tumors
and the lungs is evident in the coronal views in Figure 2. Furthermore, during flank irradi-
ation, the animals were placed in specially constructed lead jig, covering the entire animal
except the irradiated tumor. Therefore, the radiation dose to lungs due to internal scatter or
shielding penetration was minimal and lung inflammation present in the treatment cohort
was attributed to ICI.

Overall, 92 CT and 92 MRI radiomics features were extracted for the segmented
bilateral lungs. The MRI radiomics were extracted after intensity normalization [36–38],
which is a pre-processing step deemed appropriate for minimizing intersubject variance
due to MRI scanner parameters. For each imaging modality, the features were divided
into four groups—geometric features, first order histogram features, second-order joint
probability features (e.g., co-occurrence matrices), and third-order joint probability features,
originally described by our group [26]. The geometric, the first-, and the second-order
radiomics features [29] are among the most commonly used features in the radiomics
studies, while the third-order joint probability features were developed in-house [26].
Radiomics studies use a wide range of features which they report on—from couple dozens
to couple thousands. The studies with fewer radiomics usually use simpler features which
are easier to interpret, while the studies with a large number of features involve more
convoluted ones, thereby being more difficult to understand and interpret. The selection
of quantitative imaging features presented herein was based on their widespread use and
easer interpretation. All of the radiomics utilized in this study were extracted with in-house
developed software [26,39,40], interfaced with the Pinnacle (Philips Radiation Oncology
Systems, Madison, WI, USA) treatment planning system.
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The animals from the treatment cohort were divided into two groups (7 and 8 animals,
respectively) based on the median CD45 values obtained from immunohistochemistry.
After radiomics feature extraction, CBC counts, and cytokines acquisition, ANOVA (SPSS
Statistics V.25 software package, IBM Corp., Armonk, NY, USA) analyses were performed
on all variables and the dichotomized animal cohort based on CD45 infiltration. The
imaging features, CBCs, and liquid biopsy cytokines with the highest statistical significance
were selected. Furthermore, all selected variables were tested for correlation, where a
Pearson correlation coefficient of 0.5 was used for cut-off. If any two significant variables
were correlated with a coefficient larger than 0.5, one of the variables was removed from
the pool used for subsequent model building. The remaining uncorrelated variables were
subjected to binary logistic regression, aiming to model the prediction of lung inflammation.
Logistic regression analysis predicts the outcome odds of a categorical variable based on
one or more predictor variables. A categorical variable is one that can take on a limited
number of values, levels, or categories, such as “valid” or “invalid”. A major advantage of
logistic regression is that its predictions are always between 0 and 1. The most common
and widely used form of logistic regression is binomial logistic regression, which predicts
a single category or binary decision such as “pneumonitis” vs. “no pneumonitis.” The
simplicity of this model dictated the split of CD45 infiltration around its median value, and
its utilization for lung inflammation modeling.

Two-fold internal cross-validation was performed on the developed lung inflammation
prediction model. In the first fold, 7 of the animals were utilized in model building, while
the remaining 8 were used for model validation. In the second fold, the role of the two
groups was reversed. Binary logistic modeling was performed with an SPSS analysis
module. All binary logistic models included the independent imaging, CBC, and blood
biomarker significant variables, as well as a model constant for better model fitting.

3. Results

Since the tumors were implanted on the flanks of the animals, and only one of them
was irradiated, the lungs were not directly affected by radiation—the large distance between
the flank tumors and the lungs is evident on coronal views shown in Figure 2. Across the
treatment cohort, the distance from the irradiated right flank tumor to the nearest lung
tissue was ~2.5 cm, with the majority of the lung even further away from the irradiation
field. Only the right flank tumor was irradiated with the rest of body shielded by a jig
comprised by 2.0 mm of Pb. That amount of Pb shielding provides transmission of less
than ~1.5%, since the half-value layer for Pb at 160 kVp is approximately 0.3 mm. Therefore,
post-treatment lung inflammation was attributable to systemic effects rather than direct,
local irradiation.

Data from the immunohistochemistry analyses of paraffin-embedded mouse lung
tissue using anti-CD45 antibody are presented in Figure 3 and Table 1. The table outlines
the descriptive statistics of the observed CD45 infiltration. The second row in the table
presents the data for the control (untreated animals), the third row presents the data for
the entire treated cohort of 15 animals, while the fourth and fifth rows show the data for
the low inflammation (i.e., below median from all treated animals) and high inflammation
(i.e., above median from all treated animals) sub-groups. Based on the averages and the
standard deviations for the low and high inflammation groups, the difference estimated
with ANOVA analysis is significant at a p-value of 0.006. Figure 3 depicts that information
in a graphical format. The difference between CD45 cell infiltration in lung sections
from the control group (top right; magnification 20) and mice treated with RT and ICI
(bottom right; magnification 20) can be clearly identified. The quantification on the box
chart (left) demonstrates the statistical differences in CD45 among the control and the
treated animals. Independent samples t-test analyses, performed with ANOVA, indicated a
significant difference between the two means (control and treated) with a p-value of 0.0003.
Furthermore, a large spread in the CD45 for the 15 treated animals, with minimum of 0.094,
median of 0.26, and maximum of 0.411, is evident from the plot, indicating a substantial
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differential response which can be used as a surrogate for lung inflammation/pneumonitis.
Close inspection of the range of values for the control and the treated cohorts indicates
that the variability in CD45 infiltration in the treated group is several times larger than in
the control. In Figure 3, there is marked difference between the staining of lung tissues
between the two cohorts, and the spread of CD45 in the RT + ICI group (red bar on the plot)
indicates a large differential response, i.e., different animals have different inflammation in
the lung tissues, facilitated by the administration of ICI.
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Figure 3. Immunohistochemistry analysis of CD45 cell infiltration in lung sections from control
(top right) and treated with RT and ICI mice (bottom right). The box chart (left) demonstrates the
quantitative analysis of CD45 distribution in the two cohorts.

Table 1. Descriptive statistics on CD45 infiltration obtained from the lung tissues through immuno-
histochemistry evaluation.

Group Number
Mice Min Max Average Median Standard

Deviation

Control 4 0.003 0.037 0.024 0.028 0.015

All treated 15 0.094 0.411 0.258 0.257 0.087

Low
inflammation 7 0.094 0.217 0.176 0.195 0.041

High
inflammation 8 0.263 0.411 0.324 0.327 0.055

After CT and MRI radiomics extraction and ANOVA analyses, three uncorrelated
CT radiomics features emerged as highly significant—average gray, histogram kurtosis,
and co-occurrence matrix entropy. For MRI radiomics, only one feature was selected for
correlation with CD45 infiltration—histogram kurtosis (details on the imaging features are
provided in the Supplementary Materials, Table S1).

Pretreatment CBC data are presented in Table 2. Minimum, maximum, average,
and median values are reported for each parameter. The CBCs were derived from blood
acquired prior to treatment. The only CBC component that correlated with increased lung
inflammation was the neutrophil-to-lymphocyte ratio (NLR).
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Table 2. Descriptive statistics on the complete blood counts, derived from the blood samples acquired
before treatment administration.

CBC Type Min Max Average Median

WBC (103/µL) 0.98 7.95 5.246 5.38

Neu # (103/µL) 0.37 3.09 1.823 1.82

Lym # (103/µL) 0.53 4.43 2.994 3.07

Mon # (103/µL) 0.05 0.42 0.249 0.26

Eos # (103/µL) 0.02 0.28 0.115 0.11

Bas # (103/µL) 0.01 0.12 0.064 0.06

Neu% (%) 26.4 42.2 34.493 33.8

Lym% (%) 48.1 65.5 56.86 57

Mon% (%) 2.2 8 4.94 5.1

Eos% (%) 0.8 5.7 2.4 2.2

Bas% (%) 0.5 1.8 1.3 1.4

RBC (106/µL) 1.79 8.43 6.762 7.18

HGB (g/dL) 4 13.4 10.9 11.7

HCT (%) 8.8 42.4 34.07 36

MCV (fL) 48.5 52.7 50.38 50.2

MCH (pg) 15.6 22.6 16.43 15.9

MCHC (g/dL) 29.9 45.5 32.62 31.7

RDW-CV (%) 12.9 23.3 18.473 18.3

PLT (103/µL) 184 1137 769.466 856

MPV (fL) 5.1 5.9 5.5133 5.6

NLR 0.404 0.873 0.618 0.641
#: Number.

Table 3 presents data for liquid biopsy cytokines extracted from pretreatment blood
serum. Similar to Table 2, minimum, maximum, average, and median values are reported.
The only statistically significant cytokine associated with the observed CD45 difference
was granulocyte-macrophage colony-stimulating factor (GM-CSF).

Table 3. Descriptive statistics on the liquid biopsy cytokines derived from the blood serum derived
from the pretreatment blood collection.

Cytokine Min Max Average Median

KC (A5) 33.345 380.18 138.93 95.16

TNF-α (A6) 3.77 29.59 12.75719 11.465

MCP-1 (A7) 232.235 2362.09 1190.526 1211.983

RANTES (A10) 41.355 41.355 41.355 41.355

IL-1β (B2) 4.87 29.22 10.61281 9.4725

IP-10 (B3) 82.44 512.41 320.8675 331.5525

GM-CSF (B4) 8.54 15.54 10.69313 9.905
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Table 4 outlines the descriptive statistics for the CBC, cytokines, and the imaging
features which were used for model generation. In addition, the p-values describing
the differences between the corresponding features from the high and low inflammation
groups are presented. Since the sample size is small and this is proof-of-principle study,
the predictive model utilized uncorrelated features that differed up to p-values of up to 0.1.

Table 4. Descriptive statistics on significant blood counts, blood cytokines, and radiomics used in
model building. The low/high notation denotes where the corresponding number is from the low or
high inflammation group, based on the observed CD45 from Table 1. The last column outlines the
calculated ANOVA p-value of the difference.

Feature Min Max Average Median Standard
Deviation p-Value

NLR
low/high 0.5/0.4 0.9/0.7 0.7/0.6 0.6/0.5 0.1/0.1 0.035

GM-CSF
low/high 8.5/8.5 10.1/14.5 8.8/11.7 8.5/11.6 0.6/2.2 0.005

CT average
gray

low/high
265.1/255.9 291.2/309.9 278.4/289.9 277.4/292.2 9.0/15.3 0.104

CT
histogram
kurtosis

low/high

1.9/2.2 3.0/6.6 2.6/3.8 2.7/3.3 0.4/1.7 0.093

CT co-
occurrence

matrix
entropy

low/high

11.9/12.2 12.3/12.5 12.1/12.3 12.2/12.3 0.1/0.1 0.012

MR
histogram
kurtosis

low/high

1.8/2.1 10.4/6.8 6.1/3.7 7.4/3.3 3.3/1.6 0.091

The selected imaging, CBC, and cytokine variables were subjected to binary logistic
regression for modeling the dichotomized CD45 infiltration distribution. Modeling was
achieved using the binary logistic regression module in SPSS. The animal cohort was
randomly split in two with seven animals in one group and eight animals in the other, so
that internal cross-validation of the binary logistic regression model was possible. The
results of that two-fold internal cross-validation are presented in Figure 4, where several
AUCs are outlined. The CT model (left) consists of average gray values, histogram kurtosis,
co-occurrence matrix entropy, NLR, and GM-CSF (details on the model values are provided
in the Supplementary Materials, Table S2), while the MRI model (right) utilizes histogram
kurtosis, NLR, and GM-CSF (details on the model values are provided in the Supplementary
Materials, Table S3). The green and the blue lines in each panel represent the ROCs from the
two validation folds, while the red line is the average from combining the two ROC curves.
The corresponding AUCs for each fold and for the average are presented in the parenthesis.
It is evident from the data that the combined model including the CT imaging features
have AUCs over the folds larger than 0.7 and as high as 0.87, with an average of more than
0.75. The spread of the AUCs over the two folds with MRI quantitative imaging data is
somewhat larger ranging from 0.67 to 1.0, but the average is also larger, exceeding 0.8.
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4. Discussion

Very few studies have attempted to predict clinical pneumonitis after ICI treat-
ment [41–44]. With expanded utilization of ICI therapies, identification and prediction
of potentially lethal irAEs such as CIP gain clinical importance [21]. To our knowledge,
this is the first preclinical investigation to study ICI-induced lung inflammation in a sys-
tematic fashion using quantitative imaging, blood counts, and blood biomarkers drawn
from treatment-naïve animals. The variables identified can discriminate high versus low
CD45 infiltration in murine lung tissue and have the potential to be used for prediction
of ICI-induced pneumonitis in humans. The obtained average area-under-the-curve mea-
surements for both CT and MRI imaging modalities were all larger than ~0.75, indicating
good-to-very-good predictive power of the developed models [45]. Overinterpretation of
these findings should be avoided. This proof-of-principle investigation was performed
in a single murine strain using a single ICI agent in combination with extrathoracic RT.
A limitation of our model is that ICI +RT is not commonly used in clinical practice (in
extracranial disease) and a similar model using ICI without RT would be of advantage to
strengthen the results. Our findings need to be generalized further in additional murine
strains and for different immunotherapy agents. Lung inflammation herein was character-
ized by histopathology alone, while clinical lung pneumonitis is a diagnosis of exclusion
informed by high-resolution CT and a constellation of clinical factors (shortness of breath,
dry cough, low-grade fever, chest tightness, general malaise, etc.) That approach is not
feasible in a murine experiment, so histopathology-based lung inflammation was used as
a correlate. Despite these limitations, our findings suggest that pretreatment diagnostic
imaging and common blood markers could be incorporated into a model predictive of
human pneumonitis.

CD45 infiltration is not the only marker that can be applied as a surrogate for lung
inflammation. An excellent review [46] of the cellular and molecular immune markers in
lung cancer identifies additional surrogates for lung inflammation that merit investigation
in future validation studies.

An elevated neutrophil count is known to stimulate tumor angiogenesis and contribute
to disease progression or resistance to therapy, while fewer neutrophils and more lympho-
cytes (lower NLR) in the pretreatment state correlate with better treatment response [47,48].
According to one published clinical study [49], high pretreatment NLR and lymphocy-
topenia are associated with poor clinical outcomes and the reverse is true for lower NLR.
Interestingly, the mean NLR was elevated by 25% in our murine cohort with low-level lung
inflammation compared to the murine cohort with high-level lung inflammation. Taken
together, these findings suggest that a high absolute peripheral lymphocyte count (low
NLR pre-treatment) brings both a higher probability of RT/ICI response as well as a higher
risk of inflammatory side effects such as ICI-induced pneumonitis.
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5. Conclusions

Over the past decade, ICIs have revolutionized the battle against cancer and in combi-
nation with existing therapies have dramatically improved patient outcomes. However,
utilization of the immune system to fight cancer can trigger clinically significant compli-
cations. Refinement in patient selection aided by models that predict treatment-related
toxicity represents an important advance toward fully personalized ICI therapeutics. With
the development of predictive models capable of discriminating subjects with elevated risk
of irAEs, it may become possible to preemptively modify cancer management, intensifying
or de-intensifying dose concentrations, switching agents based on side effect profiles, or
selecting multi-agent treatment for patients with low risk of side effects.

Future directions in our research will include extension of this model to other murine
strains and ICIs with intent to validate and refine a generalized group of imaging features,
CBCs, and inflammatory cytokines that predict both type and severity of toxic response
to ICI agents. Longer follow-up times will allow patterns of murine lung inflammation to
mature and better reflect actual pneumonitis, making subsequent analyses more clinically
relevant and translatable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051173/s1, Table S1: All CBC, blood cytokines,
CD45, CT, and MRI radiomics used in the regression modeling; Table S2: The model values of the
parameters utilizing the CT imaging features in the binary logistic regression.; Table S3: The model
values of the parameters utilizing the MRI imaging features in the binary logistic regression.
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