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Abstract: DNA methylation is an epigenetic change to the genome that impacts gene activities with-
out modification to the DNA sequence. Alteration in the methylation pattern is a naturally occurring
event throughout the human life cycle which may result in the development of diseases such as cancer.
In this study, we analyzed methylation data from The Cancer Genome Atlas, under the Lower-Grade
Glioma (LGG) and Glioblastoma Multiforme (GBM) projects, to identify methylation markers that
exhibit unique changes in DNA methylation pattern along with tumor grade progression, to predict
patient survival. We found ten glioma grade-associated Cytosine-phosphate-Guanine (CpG) sites that
targeted four genes (SMOC1, KCNA4, SLC25A21, and UPP1) and the methylation pattern is strongly
associated with glioma specific molecular alterations, primarily isocitrate dehydrogenase (IDH)
mutation and chromosome 1p/19q codeletion. The ten CpG sites collectively distinguished a cohort
of diffuse glioma patients with remarkably poor survival probability. Our study highlights genes
(KCNA4 and SLC25A21) that were not previously associated with gliomas to have contributed to the
poorer patient outcome. These CpG sites can aid glioma tumor progression monitoring and serve as
prognostic markers to identify patients diagnosed with less aggressive and malignant gliomas that
exhibit similar survival probability to GBM patients.

Keywords: glioma; glioblastoma; DNA methylation; progression; TCGA; WGCNA; prognosis

1. Introduction

DNA methylation is a heritable epigenetic marker in the genome that does not im-
pact the genetic makeup through the addition of a methyl group to the DNA molecule.
Most DNA methylation in humans occur at the 5′ carbon of the cytosine base which is
followed by a guanine nucleotide. Addition of the methyl group changes the chromatin
structure, making it more condensed, which results in DNA being less accessible for tran-
scription [1,2]. DNA methylation patterns change during development [3] and with age [4].
DNA methylation in the genome also exhibits tissue- and cell-type differences, for example,
highly methylated content is observed in brain tissue [5]. Other than these differences,
which occur naturally during the human life cycle, methylation changes are also related
to diseased cell states. Many studies have revealed two common alterations in cancer:
DNA hypermethylation and hypomethylation [6–8]. Hypermethylation involves DNA
methylation events at the Cytosine-phosphate-Guanine (CpG) site within the promoter
of tumor suppressor gene while hypomethylation removes the methyl group at the pro-
moter site of oncogenes and can be widespread around the genome to promote tumor
progression [9,10].

Although the genome is the same in essentially all cells of the human body, the
epigenome differs from cell to cell and is dynamic, changing with time and exposure to
the environment. Epigenetic mechanisms affect all steps of the gene expression process,
from chromatin state to transcription, post-transcriptional RNA processing, and translation.
Epigenetic mechanisms for regulating gene expression include DNA methylation and
histone modification, arguably the best-established epigenetic processes that regulate gene
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expression at the level of transcription. Histones are highly conserved basic proteins around
which DNA is tightly wrapped to form nucleosomes, or the “beads on a string structure”
that make up chromatin. Histone tails protrude from the nucleosome and are subject to
a variety of post-translational modifications (PTMs), primarily methylation, acetylation,
and phosphorylation. These PTMs affect gene expression by controlling accessibility of
the chromatin structure to expose DNA-binding sites or by closing DNA-binding sites to
facilitate transcription [11]. Non-coding RNAs also have a role in epigenetic modification
by regulating gene expression and chromosomes to control cell differentiation [12]. In
addition, gene expression can be regulated post-transcriptionally through dynamic and
reversible RNA modifications. Extra methyl group modifications induce either duplex
stability or protein–RNA affinity and positively correlate with translation [13]. Epigenetic
mechanisms for regulating gene expression clearly are complex and diverse to create a
dynamic epigenome and epitranscriptome.

Glioma is a type of cancer that occurs in the brain and it is the most prevalent brain
tumor observed in the population. Gliomas are comprised of four subtypes which are
classified based on the World Health Organization of Central Nervous System Tumor
Classification guidelines updated in 2016, with the introduction of molecular biomarkers
to further refine the diagnostic criteria [14]. Grade II and Grade III gliomas include
astrocytoma, oligodendroglioma, and oligoastrocytoma which are frequently considered
to have significantly better patient survival than Grade IV glioma [15]. Glioblastoma
multiforme (GBM), a Grade IV glioma subtype, is an aggressive brain tumor and one of
the most fatal due to its lack of curable treatment. The median survival time for patients is
between 15 to 16 months [16]. One commonly observed biological event that affects patient
survival time is DNA methylation [17]. Studies confirmed a phenomenon called CpG
Island Methylator Phenotype (CIMP) after analyzing DNA methylation data of GBM and
LGG (lower glioma grade) cohorts from The Cancer Genome Atlas (TCGA) database. It
noted hypermethylation on the CpG island of a subset of genes, including ANKRD43, HFE,
MAL, and FAS-1, and classified tumor samples as CIMP-positive or CIMP-negative based
on the methylation level detected on those genes. Glioma patients with CIMP-positive
tumors correlate with better survival. Another well-studied methylation biomarker in
GBM patients is in the DNA repair gene called O6-methylguanine–DNA methyltransferase
(MGMT). Methylation on the promoter site of MGMT reduces gene expression and protein
activity to prevent it from rescuing tumor cells with alkylating agent-induced damage
caused by chemotherapy [18]. As a result, GBM patients with loss of or low MGMT
activity have higher sensitivity to temozolomide, a common chemotherapy used to treat
GBM. Although there is growing attention around the classification of glioma patients
through molecular profiling such as genetic and methylation signatures [19], studying
the connection between DNA methylation pattern changes and tumor grades, which is
classified through histological characteristics as a standard protocol by the World Health
Organization, will improve knowledge about glioma tumor progression.

Despite the current understanding around how alterations in DNA methylation induce
tumor generation and progression [20–22] or predict patient outcome independently [23–25],
it is unclear how DNA methylation changes progress between tumor grades or how they
influence patient survival. We hypothesized there is a correlation between methylation
pattern and glioma grade and such correlation could be used for tumor progression
monitoring as well as patient prognosis. We evaluated the changes in DNA methylation
patterns in LGG and GBM patients and identified changes in methylation level for CpG
sites that have significant impact on patient survival.

2. Results
2.1. Differentially Variable Cytosine-phosphate-Guanine Sites Identified through Sample
Comparison of Different Glioma Grade

The training data set was comprised of 400 glioma samples (Table 1) and β-values,
the methylation level of 180,758 CpG sites that were captured through the probes designed
in Infinium HumanMethylation450K beadchip. We performed two comparisons to assess
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the methylation changes between each glioma grade and its subsequent higher tumor
grade: Grade II vs. Grade III and Grade III vs. Grade IV. In the comparison between
Grade II and Grade III gliomas, 2095 and 146 CpG sites (1.54 × 10−10 ≤ p-value ≤ 0.00062,
2.75 × 10−5 ≤ false discovery rate (FDR) ≤ 0.05) were consistently hypomethylated or
hypermethylated, respectively, in one glioma grade while the other glioma grade shows
variability (Figure 1A). The comparison between Grade III and Grade IV gliomas returned
28,503 hypomethylated and 30,731 hypermethylated CpG sites (3.38 × 10−61 ≤ p-value
≤ 0.016385, 6.11 × 10−56 ≤ FDR ≤ 0.05). The remaining CpG sites that are not part of
the hypo- and hypermethylated groups were considered insignificant in the differential
variability analysis with FDR > 0.05. Differential variability analysis output can be found in
Supplementary File 1. We selected all the significant CpG sites from the Grade II and Grade
III comparison and a subset of significant CpG sites (top 10% by FDR) from the Grade III
and Grade IV comparison for visualization of the methylation expression (Figure 1B) in
the form of heatmaps. Although the number of hyper- and hypomethylated CpG sites are
comparable in the Grade III and Grade IV comparison, more hypomethylated CpG sites
were selected for heatmap visualization due to the smaller FDR.

Table 1. Clinicopathological data of training sample set and validation sample set.

Training (400 Samples) Validation (282 Samples)

Number of
Samples

Percent of
Samples

Number of
Samples

Percent of
Samples

Age 46.19 yo N/A 46.69 yo N/A
Days to death 888.7 days N/A 916.6 days N/A

Days to last follow up 834.9 days N/A 866.4 days N/A
Grade II 154 38.5% 107 37.9%
Grade III 162 40.5% 109 38.7%
Grade IV 84 21.0% 66 23.4%

Astrocytoma 119 29.7% 78 27.7%
Oligoastrocytoma 80 20.0% 55 19.5%

Oligodendroglioma 117 29.3% 83 29.4%
Glioblastoma multiforme (GBM) 84 21.0% 66 23.4%

Alive 259 64.8% 182 64.5%
Dead 141 35.2% 100 35.5%
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CpG sites identified through differential variability analysis conducted on the training data sample. Left panel shows all 
the DV CpG sites from Grade II and Grade III comparison and the right panel shows a subset of DV CpG sites from Grade 
III and Grade IV comparison. Glioma samples are arranged by grade. 
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based on the lowest FDR. Together with the 2241 significant DV CpG sites from the Grade 
II and Grade III comparison, we ran a total of 16,244 unique DV CpG sites through the 
hierarchical clustering method in the network construction function. In Figure 2A, we 
show the cluster dendrogram for one of the data blocks consisting of approximately 5000 
DV CpG sites used during network construction. WGCNA generated eight comethylation 
modules, as depicted in Figure 2B, where each color represents one comethylation module 
with module size shown on the legend. CpG sites without significant correlation with any 
of the eight modules were assigned to the grey module and excluded from the pie chart. 

Figure 1. Differential variability analysis of training data. (A) Summary of differential variability analysis. The numbers of
significant hypo- and hypermethylated Cytosine-phosphate-Guanine (CpG) sites in each comparison are listed. Differential
variability analysis of training data. (B) Heatmaps presenting the methylation status of differentially variable (DV) CpG
sites identified through differential variability analysis conducted on the training data sample. Left panel shows all the DV
CpG sites from Grade II and Grade III comparison and the right panel shows a subset of DV CpG sites from Grade III and
Grade IV comparison. Glioma samples are arranged by grade.

2.2. Comethylation Modules Displaying Correlation with Glioma Grade Progression Identified
through Weighted Correlation Network Analysis

We used the weighted [gene] correlation network analysis (WGCNA) to find methyla-
tion modules of highly correlated CpG sites [26]. Of the 59,234 significant DV CpG sites
detected between Grade III and Grade IV glioma comparison, the top 25% were selected
based on the lowest FDR. Together with the 2241 significant DV CpG sites from the Grade
II and Grade III comparison, we ran a total of 16,244 unique DV CpG sites through the
hierarchical clustering method in the network construction function. In Figure 2A, we show
the cluster dendrogram for one of the data blocks consisting of approximately 5000 DV
CpG sites used during network construction. WGCNA generated eight comethylation
modules, as depicted in Figure 2B, where each color represents one comethylation module
with module size shown on the legend. CpG sites without significant correlation with any
of the eight modules were assigned to the grey module and excluded from the pie chart.
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Figure 2. Weighted Correlation Network Analysis (WGCNA) output of the training data set. (A) The hierarchical clustering
dendrogram of approximately 5000 DV CpG sites inputted to WGCNA. This is a representative cluster block of the four
blocks used in network construction. (B) The WGCNA identified 8 methylation modules and they are represented by
different colors in the pie chart. The grey module is excluded from the pie chart due to CpG sites falling within the grey
modules have low correlation with the other methylation modules. (C) Module and clinical trait association. Correlation
between module and clinical trait (glioma grade) is calculated and displayed on the heatmap, with the associated p-value.
The relationship is demonstrated by color; red to green where green denotes negative correlation while red denotes
positive correlation.

To identify methylation changes in CpG sites that contribute to tumor progression,
we correlated the comethylation modules to the glioma grade (Figure 2C). The brown,
turquoise, and blue methylation modules showed correlation greater than |0.5|. The CpG
sites from the brown and turquoise modules exhibited a negative correlation with tumor
grade (cor = −0.57, p-value = 2 × 10−35 and cor = −0.61, p-value = 2 × 10−40, respectively)
indicating methylation level decreased as tumor grade advanced. On the other hand,
the blue methylation module had a positive correlation (cor = 0.54, p-value = 2 × 10−30)
indicating the methylation level of the CpG sites increased along with tumor grade.
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2.3. Candidate Genes and CpG Sites that Contribute to Tumor Progression

To evaluate the methylation pattern changes associated with tumor progression, CpG
sites with low correlation to glioma grade were eliminated and the analysis continued with
CpG sites that have significance ≥ 0.5 from the brown, turquoise, and blue module with
trait significance ≥ |0.5|. Figure 3A shows the correlation of the module membership and
CpG site significance of individual CpG sites. CpG site significance measures the biological
significance of the CpG sites to glioma grade progression. Module membership evaluates
the correlation between the methylation profile of a given CpG site with the remaining CpG
sites of the module. The three significant modules have a high correlation between CpG
site significance and module membership indicating the CpG sites with high significance
contribute substantially to module and trait relationships. This filter reduced the CpG
sites to 3551, which distributed across 2107 genes (Figure 3B). We increased our chance of
identifying tumor progression-associated genes and the corresponding methylation sites by
including only genes with 5 or more CpG sites associated with them. This step disqualified
most of the genes and retained 150 candidate genes for the next analysis.
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Figure 3. Identification of significant CpG sites. (A) Scatterplots of CpG site significance (y-axis) vs. module membership (x-
axis) in the three glioma grade-associated methylation modules. Overall CpG site significance and Intramodular connectivity
correlation is denoted as cor in the plot. The red line on the plot represents the assigned cutoff at |0.5| significance of
the correlation of the CpG site with trait of interest. (B) Summary of significant glioma tumor grade-associated CpG sites
outputted from WGCNA.

2.4. Establishing Correlation between Gene Expression, Methylation Level, and Glioma Grade

We evaluated the methylation profile of the 150 candidate genes on the associated
significant CpG sites identified from the previous step through heatmap visualization
(Supplementary File 2) and observed that a subset of the genes exhibited steady methylation
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change along with tumor grade advancement. We also examined the gene expression of
the candidate genes through boxplots (Supplementary File 3). Figure 4A shows gene
expression of four genes that showed either an increase (UPP1) or reduction (SMOC1,
KCNA4, and SLC25A21) in gene expression as tumor grade advances. Together with the
methylation heatmaps of the genes, we found the corresponding methylation CpG sites
that may have contributed to the regulation of gene expression and plotted the methylation
level of the training samples, by glioma grade, for confirmation (Figure 4B). There was a
strong correlation between gene expression and methylation level at some specific CpG
sites of the gene; the beta-value of the CpG sites for SMOC1, KCNA4, and SLC25A21
increases as glioma grade progresses and results in decreased gene expression and the
opposite trend was observed for UPP1. To confirm the validity of our observation, we
examined gene expression and methylation level of the IGF2BP3 and Fn14 genes as previous
studies have demonstrated that higher gene expression is associated with higher glioma
grade and negatively correlate with methylation level (Figure 4C) [22,27]. In addition,
our results obtained from the training data set are consistent with those studies; patients
with high gene expression of IGF2BP3 and Fn14 correlate with low methylation levels and
worse survival.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 20 
 

 

(supplementary file 2) and observed that a subset of the genes exhibited steady methyla-
tion change along with tumor grade advancement. We also examined the gene expression 
of the candidate genes through boxplots (supplementary file 3). Figure 4A shows gene 
expression of four genes that showed either an increase (UPP1) or reduction (SMOC1, 
KCNA4, and SLC25A21) in gene expression as tumor grade advances. Together with the 
methylation heatmaps of the genes, we found the corresponding methylation CpG sites 
that may have contributed to the regulation of gene expression and plotted the methyla-
tion level of the training samples, by glioma grade, for confirmation (Figure 4B). There 
was a strong correlation between gene expression and methylation level at some specific 
CpG sites of the gene; the beta-value of the CpG sites for SMOC1, KCNA4, and SLC25A21 
increases as glioma grade progresses and results in decreased gene expression and the 
opposite trend was observed for UPP1. To confirm the validity of our observation, we 
examined gene expression and methylation level of the IGF2BP3 and Fn14 genes as pre-
vious studies have demonstrated that higher gene expression is associated with higher 
glioma grade and negatively correlate with methylation level (Figure 4C) [22,27]. In addi-
tion, our results obtained from the training data set are consistent with those studies; pa-
tients with high gene expression of IGF2BP3 and Fn14 correlate with low methylation lev-
els and worse survival. 

 

 

Figure 4. Cont.



Int. J. Mol. Sci. 2021, 22, 1020 8 of 20
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. Correlation between gene expression and methylation level in the training set. (A) Gene 
expression of samples by glioma grade. Fragments Per Kilobase Million (FPKM) stands for Frag-
ments Per Kilobase of transcript per Million mapped reads. The t.test method is used for statistical 
analysis when comparing two groups of samples. One-way analysis of variance (ANOVA) was 
used when comparing three groups of samples on one variable. (B) Methylation level of samples 
by glioma grade. Methylation level is represented by beta-value. One probe is selected to show the 
methylation level for SMOC1 gene and KCNA4 gene. (C) Boxplots of the IGF2BP3 and Fn14 gene 
expression and methylation level on one of the associated probes. Kaplan-Meier plot measuring 
patient survival through the methylation level of CpG sites captured by cg00508334 for IFG2BP3 
and cg00510447 for Fn14. 

2.5. Discovery and Validation of Prognosis Markers Associated with Tumor Progression 
After establishing the correlation between gene expression and methylation level of 

the candidate genes, CpG sites with a strong negative correlation with the corresponding 
genes were next used for survival analysis. Figure 5 shows the Kaplan-Meier plots of CpG 
sites illustrating the survival analysis. All training samples were separated into two 
groups by comparing their methylation level for the CpG site of interest to the methylation 
median of the training set: hypermethylation and hypomethylation. Ten CpG sites target-
ing SMOC1, KCNA4, SLC25A21, and UPP1 genes, demonstrated significant survival dif-
ferences between the two groups, and nine of them are presented in the figure. A sum-
mary of the ten CpG sites is given in Table 2. 

Table 2. Summary of Prognostic CpG Sites Associated with Glioma Tumor Progression. 

Probe ID 
CpG Position 

Relative to Tar-
geting Gene 

Locus Gene 
CpG Position 

Relative to CpG 
island 

Methylation Sta-
tus for Poor Prog-

nosis *  
cg1627088

5 5’UTR ** chr7:4809672
2 UPP1 S_Shore † Hypomethylation 

cg0849011
5 TSS200 ‡ 

chr11:299952
51 KCNA4 Island Hypermethylation 

cg1504495
7 

TSS200 chr11:299952
48 

KCNA4 Island Hypermethylation 

cg2268540
9 

TSS1500 †† chr11:299952
68 

KCNA4 Island Hypermethylation 

cg0687921
9 TSS200 

chr14:694158
35 SMOC1 Island Hypermethylation 

Figure 4. Correlation between gene expression and methylation level in the training set. (A) Gene expression of samples
by glioma grade. Fragments Per Kilobase Million (FPKM) stands for Fragments Per Kilobase of transcript per Million
mapped reads. The t.test method is used for statistical analysis when comparing two groups of samples. One-way analysis
of variance (ANOVA) was used when comparing three groups of samples on one variable. (B) Methylation level of samples
by glioma grade. Methylation level is represented by beta-value. One probe is selected to show the methylation level for
SMOC1 gene and KCNA4 gene. (C) Boxplots of the IGF2BP3 and Fn14 gene expression and methylation level on one of the
associated probes. Kaplan-Meier plot measuring patient survival through the methylation level of CpG sites captured by
cg00508334 for IFG2BP3 and cg00510447 for Fn14.

2.5. Discovery and Validation of Prognosis Markers Associated with Tumor Progression

After establishing the correlation between gene expression and methylation level of the
candidate genes, CpG sites with a strong negative correlation with the corresponding genes
were next used for survival analysis. Figure 5 shows the Kaplan-Meier plots of CpG sites
illustrating the survival analysis. All training samples were separated into two groups by
comparing their methylation level for the CpG site of interest to the methylation median of
the training set: hypermethylation and hypomethylation. Ten CpG sites targeting SMOC1,
KCNA4, SLC25A21, and UPP1 genes, demonstrated significant survival differences between
the two groups, and nine of them are presented in the figure. A summary of the ten CpG
sites is given in Table 2.

Table 2. Summary of Prognostic CpG Sites Associated with Glioma Tumor Progression.

Probe ID
CpG Position

Relative to
Targeting Gene

Locus Gene
CpG Position

Relative to
CpG Island

Methylation Status
for Poor Prognosis *

cg16270885 5’UTR ** chr7:48096722 UPP1 S_Shore † Hypomethylation
cg08490115 TSS200 ‡ chr11:29995251 KCNA4 Island Hypermethylation
cg15044957 TSS200 chr11:29995248 KCNA4 Island Hypermethylation
cg22685409 TSS1500 †† chr11:29995268 KCNA4 Island Hypermethylation
cg06879219 TSS200 chr14:69415835 SMOC1 Island Hypermethylation
cg08754456 TSS200 chr14:69415812 SMOC1 Island Hypermethylation
cg10983327 TSS200 chr14:69415825 SMOC1 Island Hypermethylation
cg15724184 1st Exon chr14:69416230 SMOC1 Island Hypermethylation
cg19504005 1st Exon chr14:69416170 SMOC1 Island Hypermethylation
cg25051529 Body chr14:36711213 SLC25A21 Island Hypermethylation

* Methylation status for poor prognosis compared to group median methylation level. ** Within 5’ untranslated region. † 0–2 kb downstream
(3’) of CpG island. ‡ 0–200 bases upstream of the transcriptional start site. †† 200–1500 bases upstream of the transcriptional start site
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the rest of the prognosis markers from SMOC1 gene.

2.6. Establishing a Prognostic Model from the Methylation Markers

The last step of the study was to explore all ten methylation markers to check if any of
them contradict each other when used for patient prognosis collectively. Figure 6 shows a
schematic diagram illustrating how the samples are separated into good and poor prognosis
groups during survival analysis. We assigned the training set of patients with methylation
profiles that met the poor patient survival for all ten CpG sites to the poor prognosis group,
which was a total of 70 patients, and the remaining 330 patients as the good prognosis
group. The survival probability of the poor prognosis group dropped dramatically with
a median survival time of 414 days compared to 2433 days for the good prognosis group
(Figure 7). This set of CpG sites are validated with the validation sample set described in
Table 1 and the patients showed a similar trend in prognosis; median survival time was
544 days for the poor prognosis group while the good prognosis group was at 2235 days.
Patient distribution, by glioma grade, of the good prognosis and poor prognosis group for
both sample sets is provided in Table 3.
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2.7. Correlation of Prognostic Markers to Clinical and Molecular Data

To assess the relationship between the methylation pattern of the ten prognostic
CpG sites and tumor molecular features, we plotted the methylation data in heatmaps
(Figure 8A) with glioma grade progression and other molecular alterations that are fre-
quently observed in gliomas for the training samples. cg16270885, the probe that targets the
CpG site of the UPP1 gene shows a decrease in methylation signal as tumor grade advances
while the rest of the CpG sites were methylated as tumor grade progressed. We assessed the
correlation of our prognostic markers with the molecular subtypes described by Ceccarelli
et al. [19] and the methylation pattern of these CpG sites are similar for samples within the
same molecular subtype; the CpG sites we identified align with the molecular profile that
distinguishes glioma samples into smaller subtypes suggested by Ceccarelli et al. The effect
of isocitrate dehydrogenase (IDH) and chromosome 1p/19q codeletion alterations on these
ten prognostic markers was also evaluated and cg16270885 shows a sharp methylation
pattern between different IDH and 1p/19q codeletion status. The highest methylation
signal is observed in samples with IDH mutation and chromosome 1p/19q codeletion,
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but the methylation signal slightly decreased in samples with IDH mutation alone. The
methylation signal of the IDH wild type and no codeletion glioma samples was the lowest
compared to the other two groups. Validation samples show similar patterns as the training
samples (Supplementary File 4).

Table 3. Summary table of the patient distribution in different prognosis group for training set and validation set with
clinical and molecular information.

Training Set (400) Validation Set (282)

Good Prognosis (330) Poor Prognosis (70) Good Prognosis (229) Poor Prognosis (53)

Clinical

Grade
Grade II 153 1 104 3
Grade III 141 21 95 14
Grade IV 36 48 30 36

Histology
Astrocytoma 106 13 69 9
Oligodendroglioma 115 2 78 5
Oligoastrocytoma 73 7 52 3
Glioblastoma 36 48 30 36

Molecular

Isocitrate Dehydrogenase (IDH)
Mutant 256 0 185 0
Wild Type 72 67 39 52
NA 2 3 5 1

1p/19q codeletion
Codeletion 96 0 76 0
No codeletion 233 70 153 51
NA 1 0 0 2

IDH and 1p/19q codeletion status
IDH mutant and codeletion 96 0 76 0
IDH mutant and no-codeletion 159 0 109 0
IDH wild type and no-codeletion 72 67 39 50
NA 3 3 5 3

Chr7 Amplification/Chr 10 Deletion
Chr7 Amp/Chr 10 Del 40 55 19 40
No combined copy number alteration 288 13 206 9
NA 2 0 4 4

Molecular Subtype (Ceccarelli et al., 2016)
Classic-like * 8 33 6 31
Codel 100 0 76 0
G-CIMP **-high 153 0 97 0
G-CIMP **-low 2 0 10 0
LGm6-GBM 4 1 7 1
Mesenchymal-like 38 23 19 20
Pilocytic Astrocytomas (PA) like 22 0 7 0
NA 3 3 7 1

* Classic-like: classical gene expression signature in tumor. ** CIMP: Cytosine-phosphate-Guanine Island Methylator Phenotype.

Sample distribution within the different prognostic groups is summarized in Table 3
with clinical and molecular data presented in bar charts in Figure 8B. All samples in the
poor prognostic group have an IDH wild type genotype and nearly all belong to classic-
like or mesenchymal-like molecular subtypes. Patients with poor outcomes are made up
primarily of Grade IV GBM and Grade III astrocytoma or Grade III oligoastrocytoma. A
small fraction of the poor prognosis samples is oligodendroglioma from either Grade II or
Grade III. Moreover, a large portion of poor patient outcome associated with copy number
alteration (chromosome 7 amplification and 19 deletion) and the corresponding samples
were classified as classic-like or mesenchymal-like molecular subtypes by Ceccarelli et al.
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3. Discussion

With differential variability analysis, we identified CpG sites that behave similarly
within the same glioma grade but differently from the other glioma grades. We compared
Grade II vs. Grade III and Grade III vs. Grade IV and identified 2241 and 59,234 significantly
differentially variable (DV) CpG sites, respectively. The epigenetic profile difference
between Grade III and Grade IV was much greater than the differences observed between
Grade II and Grade III. It was not surprising since previous methylation profiling studies
have shown a similar pattern where Grade II and Grade III samples are more likely
to be clustered together and separate from Grade IV [19,22]. We noticed a progressive
demethylation condition in the top 10% of the DV CpG sites via the methylation profiling
heatmap and this observation aligns with the observations from other studies [22,28].

We applied the network construction function from WGCNA to the subset of CpG sites
and found three comethylation modules highly correlated with the progression of glioma
grade, the clinical trait of interest in our study. Most of the CpG sites displayed a negative
correlation with the increase of tumor grade indicating that more CpG were demethylated
as the tumor progresses. The demethylation pattern in the data set indicates the up-
regulated gene expression in higher glioma grade samples. As hyper- and hypomethylation
in cancer normally applies to extensive methylation or demethylation around the promoter
site, we assessed genes that have five or more significant CpG sites associated with them.
Out of the 150 candidate genes, four of them, SMOC1, KCNA4, SLC25A21, and UPP1 were
most outstanding due to the distinct gene expression pattern changes between the three
glioma grades. Gene expression of SMOC1, KCNA4, and SLC2521 declined as patient
glioma grade increased while UPP1 gene expression showed a positive relationship with
tumor grade. Ten of the CpG sites associated with these four genes displayed a strong
inverse relationship between gene expression and methylation level implying a high
probability that these CpG sites impact gene expression.
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SMOC1 gene encodes a matricellular protein called secreted modular calcium-binding
protein 1 [29] and this protein was shown to regulate growth factors [30–32]. Boon et al.
showed SMOC1 is a Grade II and III astrocytoma-associated gene [33] and this conclusion
aligns with the gene expression data we analyzed; the greatest median gene expression was
observed in Grade II glioma samples and subsequently dropped particularly low for Grade
IV glioma samples. Previous studies revealed several functions of SMOC1 including the
promotion of angiogenesis through regulation of transforming growth factor β signaling
pathway in cultured endothelial cells [32] and inhibition of cell migration induced by
tenascin-C, an extracellular protein that is overexpressed in many human cancer types,
in glioma cell lines [34]. Our analyzed data showed a dramatic reduction in SMOC1
expression and we predict the main function of SMOC1 in Grade IV glioma is to promote
tumor invasion and migration since rapid spreading is one of the signatures of glioblastoma.
Our survival analysis of the SMOC1 targeted CpG sites reflected a poor prognosis in highly
methylated samples which corresponded to down-regulation of SMOC1 gene expression.

KCNA4 (Potassium voltage-gated channel subfamily A member 4, aka Kv1.4) is a
member of the potassium voltage-gated channel family and one of its major functions
is the cardiac transient outward K(+) currents [35]. However, Zheng et al. observed
hypermethylation at KCNA4 promoter site in serum as well as tissue samples of gastric
cancer patients, and it was one of the markers which showed good sensitivity and specificity
for detection [36]. Coma et al. found a global reduction in voltage-gated potassium
channel expression, including KCNA4, in the brain of tumor-bearing animals suffering
from cancer cachexia [37]. Although there is limited information around how KCNA4 is
associated with tumors, other members from the potassium voltage-gated channel family
such as Kv1.3 and Kv1.5 are well-studied and have shown correlations with several human
cancers including gliomas [38,39]. Further investigation on how KCNA4 expression and
methylation impact glioma is needed. The KCNA4 CpG sites we identified indicate worse
patient survival in the hypermethylated group correlating with decreased gene expression
as glioma grade progresses.

Solute Carrier Family 25 Member 21 is encoded by the SLC25A21 gene and it cat-
alyzes the transportation of 2-oxoadipate and 2-oxoglutarate across the mitochondrial
membranes [40]. Rochette et al. reviewed several abnormal SLC25 activities that are linked
to cancer including the overexpression of SLC25A1 in lung cancer, SLC25A43 gene deletion
as well as elevated SLC25A33 expression in breast cancer, and SLC25A10 that regulates
the redox homeostasis was also increased in multiple cancer types [41]. More importantly,
SLC25A12 expression in hepatocellular carcinoma cell line increased through the modifica-
tion of histone acetylation [42]. Although the impact of SLC25A21 on cancer has not been
evaluated, the vast number of studies done on other members of the SLC25 family implies
that SLC25A21 can also be a promising tumor-associated marker. This is proved with the
survival analysis of our study where methylation changes observed in different glioma
grade serves as a good prognosis marker; hypermethylation on the CpG site targeted by
cg25051529 is associated with poorer survival.

UPP1 gene encodes the Uridine Phosphorylase 1 that catalyzes the reversible phospho-
rylation of uridine to uracil [43] and maintains uridine homeostasis [44]. Overexpression
of the UPP1 is associated with cancer. Guan et al. analyzed the TCGA cohort and found
elevated UPP1 in thyroid cancer patients compared to normal tissue samples [45]. The
up-regulated UPP1 expression increased lymph node metastasis risk and promoted tumor
growth. Noushmehr et al. identified hypermethylation of UPP1 gene in patients belong
to the proneural subgroup that were diagnosed with low grade gliomas and many of
the patients were classified to have CIMP-positive tumors [17]. Wang et al. found UPP1
gene expression was up-regulated as glioma grade increased using more than 900 samples
from the TCGA database [46]. The Gene Ontology analysis revealed that UPP1 is likely
associated with immune and inflammatory response and the increase of expression neg-
atively impacted patient survival. The extensive data have proven UPP1 is an efficient
prognosis marker for cancer. Our analysis aligns with the previous studies where UPP1
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gene expression was greatest in glioma Grade IV samples with demethylation at the CpG
site captured by cg16270885 and correlates with lower patient survival.

All ten prognostic methylation CpG candidates showed good prognostic capability
individually but we wanted to investigate their collective efficiency in the prediction of
patient survival. We took the poor prognosis conditions obtained from the ten candidates
(Table 2 and Figure 6) and assigned patients from the training sample set that met all ten
poor survival criteria to the poor prognosis group. The survival probability of the poor
prognosis group dropped remarkedly; 50% survival probability at less than 14 months.
The good prognosis group had a significantly better survival where the median survival
time was more than 81 months. This set of prognostic markers was validated collectively
in the validation sample set and a similar trend was observed: median survival time was
approximately 18 and 74 months for poor and good prognosis group, respectively.

We plotted the identified prognostic CpG sites and observed a consistent methylation
change as glioma grade increases. CpG site of UPP1 demethylate as glioma grade increases
while the remaining genes, SMOC1, KCNA4, and SLC25A21, methylate along with higher
tumor grade. This indicates the methylation pattern changes at these specific CpG sites
change collectively as the tumor progresses. We compared the changes at those CpG sites
with other molecular alterations in glioma and as well as molecular subtypes assigned by
the Ceccarelli et al. We found that the methylation profile of these CpG sites align with
specific molecular subtypes. The greatest methylation signal correlation for our probes
was observed in samples with IDH mutation and 1p/19 codeletion, with a slight decrease
in methylation for samples containing only IDH mutation, and the lowest methylation
for samples with IDH wild type genotype and no 1p/19q codeletion. IDH mutation can
promote CIMP in gliomas [47] which explains the increased methylation in UPP1-associated
probes, but our observation suggests that UPP1 methylation can also be associated with
1p/19q codeletion.

We investigated the sample distribution in both good prognostic and poor prognostic
groups to understand the significance of these genes. All samples in the poor prognostic
group have IDH wild type genotype with no 1p/19q codeletion, which aligns with current
knowledge that IDH mutation and 1p/19q codeletion usually result in more favorable
overall survival compared IDH wild type and non-1p/19q codeletion, independently [15].
The poor prognostic group consists of samples with molecular subtypes of classic-like,
mesenchymal-like, and one case from LGm6-GBM. As summarized by Ceccarelli et al.,
samples from G-CIMP-low and the subtypes mentioned above have poorer patient survival
compared to the samples classified as codeletion, G-CIMP-High, or Pilocytic Astrocytomas
(PA) subtypes. Our results suggest the genes we identified are generally associated with
molecular changes observed in glioma since they identify samples with tumors that display
classic gene expression signature (classic-like) and mesenchymal-like instead of the codel
(1p/19q codeletion) and CIMP subtypes. Mair et al. have reviewed the patient survival
data of gliomas and suggest oligodendroglioma has the most favorable survival in Grade
II and III gliomas with a median overall survival for oligodendroglioma of at least above 11
years [15]. However, our prognostic model allows us to identify oligodendrogliomas that
exhibit similar methylation profile at these CpG sites, as the Grade III astrocytoma, Grade
III oligodendrogliomas, and Grade IV GBM, thus refining the prognosis for these patients.
We found that most of the poor prognostic samples contain chromosome 7 amplification
and chromosome 10 deletion alteration. Chromosome 7 amplification is linked to increased
mesenchymal gene expression which supports our findings of these group of CpG sites
correctly diagnosing poor prognosis.

We identified the median survival time of the patients from the poor prognosis group
to be between 14 to 18 months which is equivalent to the median survival of high glioma
grade, glioblastoma multiforme. Interestingly, the patient composition of the poor prog-
nosis group was a mixture of mainly glioma Grade III and glioma Grade IV patients
suggesting the devastating effect is observed across tumor grades.
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4. Materials and Methods
4.1. Data Sources

DNA methylation data of the 682 glioma tissue samples were downloaded from
the TCGA database under LGG (532 samples) and GBM projects (150 samples) through
the TCGABiolinks R package (version 3.12; https://bioconductor.org/packages/release/
bioc/html/TCGAbiolinks.html) in June 2020 [48–50]. Methylation data, captured through
the Illumina Infinium HumanMethylation 450 platform, is expressed in β-value, which
is the estimated methylation level calculated from the methylation intensity over the
methylation and unmethylation intensities. The data were separated into a training and
a validation set. Among the 400 training set samples, 349 samples have gene expression
quantification data available in the TCGA database and they were downloaded through
the TCGABiolinks R package in November 2020. Gene expression data are expressed as
Fragments Per Kilobase Million (FPKM). Patient’s clinical data for the 682 glioma tissue
samples included age, gender, survival information, histological grade, and histological
subtype were obtained from the portal of FireBrowse (http://firebrowse.org/) in June 2020.
The clinicopathological characteristics of patients in the training sample set and validation
sample set can be found in Table 1.

4.2. Methylation Data Manipulation

We analyzed methylation data around CpG sites located on the CpG island, CpG
island shore (up to 2000 bp upstream and downstream from CpG island), and CpG island
shift (up to 4000 bp upstream and downstream from CpG island). CpG sites that contain
known single nucleotide polymorphisms, obtained from the Illumina product support
website (https://support.illumina.com/array/array_kits/infinium_humanmethylation4
50_beadchip_kit), within two base pairs of the targeted CpG site and cross-reactive sites
were removed from the data set to reduce potential false interpretation of the methyla-
tion state [51,52]. Lastly, we removed CpG sites on the Y chromosome as no data shall
be available for female patients and will eventually be filtered out before the analysis.
The above filtering steps reduced the data set down to 180,758 CpG sites for differential
variability analysis.

4.3. Differential Variability Analysis

We used differential variability analysis to identify CpG sites with a significant
change in methylation variance observed in one group while the contrasting group
displays a consistent methylation level. The two comparisons performed in the study
were Glioma Grade II compared to Glioma Grade III and Glioma Grade III compared
to Glioma Grade IV. The analyses were performed using the limma R package (version
3.42.2; https://www.bioconductor.org/packages/release/bioc/html/limma.html) and
missMethyl R package (version 1.20.4; http://bioconductor.org/packages/release/bioc/
html/missMethyl.html) [53–55]. The variability of each CpG site is calculated followed by
a fitted linear model. CpG sites with FDR ≤ 0.05 from the differential variability analysis
output are considered DV CpG sites. All DV CpG sites from the Grade II and Grade III
comparison and the top 25% DV CpG sites from the Grade III and Grade IV comparison
were inputted for methylation module clustering.

4.4. Weighted Correlation Network Analysis (WGCNA)

We used the WGCNA R Package (version 1.69; https://cran.r-project.org/web/
packages/WGCNA/index.html) to cluster correlated DV CpG sites within the data set [26].
In the analysis, a soft thresholding power (β) of 3, where the R2 of the fitted scale-free
topology model at 0.9 is met, was selected for network construction. The topology overlap
matrix was used to calculate the interconnectivity between two CpG sites and construct
comethylation modules with a minimum of 100 CpG sites per module. The identified
comethylation modules were then correlated with the clinical trait of interest for this study:
glioma grade. Modules with module-trait correlation ≥ |0.5| and p-value ≤ 0.05 were se-
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lected. We narrowed output to CpG sites by including only sites with CpG site significance
≥ 0.5 and p-value ≤ 0.05 from the highly correlated modules. The CpG site significance
of the CpG site represents the absolute value of the correlation between methylation
expression of the CpG site and the glioma grade.

4.5. Gene Expression Data

Gene expression data are mapped to Emsembl IDs while methylation data were
annotated with gene symbols. We used the ensembldb R Package (version 3.12; https:
//www.bioconductor.org/packages/release/bioc/html/ensembldb.html) to convert be-
tween Emsembl ID and gene symbol [56].

4.6. Survival Analysis

Survival analysis was performed on the selected CpG sites with the associated pa-
tient survival information. We used the survival R package (version 3.2.7; https://cran.
r-project.org/web/packages/survival/index.html) alongside with survminer R package
(version 0.4.8; https://cran.r-project.org/web/packages/survminer/index.html) for visu-
alization [57]. The survival curve is fitted through the Kaplan-Meier plot with a p-value
calculated from the log-rank test to evaluate the significance of the survival prediction.
Using the group median methylation level as the cutoff, patients with β-value greater than
the cutoff at the interested CpG site were assigned to the hypermethylation group while
the patients with β-value less than or equal to median were classified as the hypomethyla-
tion group.

5. Conclusions

Glioblastoma multiforme is known to be an aggressive brain tumor with a median
survival of 15 to 16 months while Grade II and Grade III gliomas are less destructive and
leave patients with longer survival time. However, lower-grade gliomas will ultimately
progress to glioblastoma. We need improved systematic approaches to monitor tumor
progression and predict patient survival based on the real-time molecular changes that
result from tumorigenesis and progression. The increased attention around tumor detection
through somatic mutations found in cellular tumor DNA permits an early and noninvasive
way for diagnosis [58]. Methylation changes identified via methylation sequencing provide
more context to the diagnostic process and patient care optimization by pinpointing the
origin of cancerous sites as well as providing progression monitoring [59].

In conclusion, we identified ten methylation markers affecting four genes (SMOC1,
KCNA4, SLC25A21, and UPP1) that are associated with glioma grade progression, and
demonstrate a strong prognostic probability for patient prognosis which is also able to
identify patients usually considered to be good survivors (oligodendroglioma). We found
the gene expression level of SMOC1, KCNA4, SLC25A21, and UPP1 to be closely correlated
with the methylation level of specific CpG sites for each gene. The methylation signal of
these ten CpG sites changed progressively with glioma grade and they showed good prog-
nostic capability collectively. In addition, the identified CpG sites show high correlation
with molecular subtype, IDH alteration, and chromosome 1p/19q alteration, strengthening
the validity of our model.

Our ten-methylation-marker model predicts survival for patients with oligoden-
drogliomas that exhibit similar epigenetic profiles as patients with higher grade glioma and
poorer prognosis. As there is some evidence suggesting that UPP1 and SMOC1 are markers
for glioma, our finding of KCNA4 and SLC25A21 add to the previously identified gene
list to fortify patient outcome prediction and guide future investigations on the impact
of these genes and their pathways involved in glioma progression. The ten methylation
markers evaluated in this study will contribute to the continuous improvement of patient
prognosis; patient prognosis should imitate the model of precision medicine where patients
are treated based on their unique circumstances and given precise diagnosis to receive the
appropriate medical care.

https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://www.bioconductor.org/packages/release/bioc/html/ensembldb.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survminer/index.html
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