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Introduction
Advances in genomics over the past two decades have prompted 
researchers to reexamine noncoding RNAs (ncRNAs). As 
genomes of different mammalian species were sequenced, stud-
ies reported that protein-coding genes comprised only a tiny 
fraction of the total genomes, suggesting that the remaining 
genome likely had some function that remained to be explored. 
Efforts to explore this large and elusive portion of the human 
genome had yielded some 3,000 ncRNA genes with known 
functions, including most of the well- known small ncRNA, 
and some of the long noncoding RNAs (lncRNAs).1 Studies 
revealed lncRNAs as prominent regulators of several biological 
processes, including apoptosis,2 tumor development and pro-
gression,3 and metastases of cancer cells.4

Since lncRNAs represent an extensive and largely 
unexplored part of the genome,5 there has been consider-
able debate on the actual functions and processes by which 

lnc RNAs interact with other systems. Two competing theories 
posit that lncRNAs function either as a sponge, absorbing 
microRNA and thereby regulating its target message RNA,6 or, 
alternatively, as chromatin regulators by binding to histones or 
other protein complexes and, thereby, regulating global gene 
transcription.7 While the sponge model has enjoyed compara-
tively stronger support, the chromatin model has received a 
substantial boost from investigation into nuclear paraspeckle 
assembly transcript 1 (NEAT1), which constitutes nuclear bod-
ies known as paraspeckles that are found in all human cells, but 
whose function is not well understood. Recent studies found 
that NEAT1 plays a critical role in tissue development of the 
corpus luteum,8 placenta9 and mammary glands.10 Moreover, 
the expression of Neat1 is induced upon immune responses to 
viral infections11 and is also involved in tumorigenesis, includ-
ing leukemia12 and prostate cancer.13 Neat1, spliced by serine/
arginine-rich splicing protein, could regulate PARγ2, which 
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is a pivotal molecule for adipogenesis.14 Collectively, these 
biological functions were theoretically postulated via regula-
tion of transcription by binding to chromatin.15

Mir-548, a super primate-specific miRNA gene family, has 
69 genes located in almost all human chromosomes. As a result 
of its perfect alignment with human immunodeficiency virus 
(HIV-1), hepatitis C virus, and hepatitis B virus, miR-548 has 
become an attractive target for the development of novel anti-
viral therapeutics, although other studies have demonstrated 
that mir-548 may play an important role in cancer.16 Both 
possibilities are intriguing, given that one of the genes in the 
mir-548 family, mir-548ar, is located on chromosome 11q22.1, 
which is nearly 70 kb upstream of transcription of NEAT1.

NEAT1 was recently found to be involved in HIV-1 rep-
lication,17 while NEAT1 knockdown accompanied a reduc-
tion in paraspeckle bodies, suggesting a previously unknown 
involvement of paraspeckles in regulating the expression of 
HIV-1 instability element-containing RNAs. Similarly, HIF-
2α-dependent transcriptional activation of NEAT1 by induc-
tion of nuclear paraspeckle formation that accompanies tumor 
hypoxia led to cancer cell survival.18 Collectively, these evi-
dences suggest that lncRNA is not only functional, but it may 
also be a key player in various biological processes that accom-
pany both viral infections and cancer progression.

Fused in sarcoma/translocated in liposarcoma (FUS/TLS) 
is an RNA-binding protein (RBP) that becomes a primary 
cause of familial amyotrophic lateral sclerosis (ALS).19 It has 
been reported that 30 mutations of FUS/TLS attributed to 
nearly 4% of familial ALS and in rare sporadic patients with 
no apparent familial history.20 FUS was not only identified as 
a prominent pathological hallmark in ALS and frontotemporal 
lobar degeneration,21,22 but it has also been reported to play an 
important role in many cellular processes, such as alternative 
splicing,23 embryogenesis,24 and stress response.25 However, 
little attention has been given to examining FUS in terms of 
breast development and cancer.

While investigations into the connection between 
NEAT1 and HIV-1 are ongoing, the underlying mecha-
nisms of NEAT1 in cancer progression and breast tumor cells 
remain elusive. Our research showed that FUS can bind with 
NEAT1 physically,26 and we were curious to find that NEAT, 
which was regulated by miR-548-ar, is required for survival 
of breast cancer cells and may go on with its function through 
forming a complex with RBP FUS.

Materials and Methods
cell culture. Human breast cancer cell lines (MCF-7 

and MDA-MB-231) were cultured in Dulbecco’s Modified 
Eagle Medium supplemented with 10% fetal bovine serum, 
1% penicillin, and 1% streptomycin at 37 °C in a humidified 
atmosphere of 5% carbon dioxide.

real-time quantitative Pcr. Total RNA was 
extracted from cell lines using TRIzol (Invitrogen), and 
2 µg of total RNA was reverse transcribed into first-strand 

cDNA using the TaKaRa reverse transcription reagent 
kit according to the manufacturer’s protocol. Quantita-
tive PCR was performed with SYBR Green real-time PCR 
kit (Toyobo) using the ABI StepOnePlus Real-Time PCR 
system (Applied Biosystems). All quantifications were per-
formed with GAPDH as the internal standard. The primer 
sequences were as follows: NEAT1 forward primer 5′CCA-
GTTTTCCGAGAACCAAA3′, NEAT1 reverse primer  
5′ATGCTGATCTGCTGCGTATG3′, FUS forward primer 
5′GTGGAGGCAGAGGTGGCATGGGCGG3′, and FUS 
reverse primer 5′ACATTCTCACCCAGGCCTTGCACAA3′. 
 Results were quantified from three independent experiments.

rNAi. RNAi-mediated knockdown of mRNAs was 
achieved in all cell types using Stealth RNAi oligos (Ribo-
Bio) against NEAT1 (Catalog No. mss205313), FUS (Cata-
log No. mss208598), or a nonspecific control (Catalog No. 
12935-300), at a final concentration of 50 nM. Transfection of 
RNAi oligos into cell lines was achieved using Lipofectamine 
2000 (Invitrogen).

cell proliferation. siRNA were transfected into all 
cell lines at a final concentration of 50 nM using Lipo-
fectamine 2000 (Invitrogen). After 24–96 hours, the cells 
were harvested using trypsin (0.05%) and then manually 
counted using a Nikon TMS microscope and hemocytometer 
chamber (Assistent).

Flow cytometry analysis of cell apoptosis. After being 
treated with siRNA for 48 hours, MCF-7 cells were harvested, 
suspended in phosphate-buffered saline (PBS), stained with 
Annexin-V-FITC Apoptosis Detection Kit (BD Biosciences), 
and analyzed by fluorescence-activated cell sorting analysis, 
which was carried out using a FACScan flow cytometer (Bec-
ton Dickinson) and FlowJo software.

cell immunofluorescence. In addition to Annexin-V/PI 
double staining to detect cell apoptosis, activation of apoptosis 
was also confirmed biochemically by quantification of cleaved 
caspase-3. Briefly, MCF-7 cells were cultured for 48 hours, 
treated with siRNA for 12 hours, and then fixed in 4% para-
formaldehyde. Cleaved caspase-3 was labeled using a rab-
bit polyclonal antibody (9661S; Cell Signaling Technology) 
and Alexa Fluor 488 fluorescent secondary antibody (anti-
rabbit IgG (H+L) antibody, KPL). Cell nuclei were stained 
with DAPI.

bioinformatic analyses. The likelihood of miRNA 
binding to NEAT1 was evaluated using the RNAhybrid 
package.27 After filtering for conservation, five putative target 
sites were identified. The human FUS/TLS CLIP-seq data-
set (SRR556766) was downloaded from European Nucleotide 
Archive. Barcode and adaptor sequences were removed from 
reads. Reads were then mapped to the University of California, 
Santa Cruz human hg19 genome assembly using Bowtie 2.

rNA immunoprecipitation assay. RNA immunoprecip-
itation assay has been described in our previous study.28 Briefly, 
107 MCF-7 cells were grown in 15-cm plates. Cells were har-
vested in PBS and lysed in 3 mL hypotonic lysis buffer [20 mM 
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Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM EDTA, 0.5% NP-40, 
0.1% Triton X-100, 1 × EDTA-free protease inhibitor cocktail 
(ROCHE)] for five minutes on ice. The suspension was then 
sonicated at 30% amplitude with a microtip in 2-second bursts 
with 10-second intervals for a total of 30 seconds (Branson 
Digital Sonifier 250). The lysate was centrifuged at 15,000 × g 
for 10 minutes at 4 °C. The lysate was incubated for 2 hours 
at 4 °C with 10 µg of anti-FUS/TLS antibody (A300-293A; 
Bethyl) precoupled to 50 µL of Protein G Dynabeads (Invit-
rogen) according to the manufacturer’s instructions. The RNA-
protein complexes captured on the beads were washed eight 
times with 1 mL IsoWB (20 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, and 0.1% NP-40), then eluted with 200 µL of clear 
sample buffer (100 mM Tris-HCl, pH 6.8, 4% SDS, 10 mM 
EDTA and 100 mM DTT) at 25 °C for 5 minutes and subse-
quently at 95 °C for 2 minutes. The RNA present in the pull-
down material was detected by qRT-PCR.

statistical analyses. All findings are the results of at 
least three independent experiments. Data are shown as 
mean ± standard deviation, and the statistical significance of 

differences between means was assessed by two-tailed t-test. 
A P-value of 0.05 or less was considered significant.

results
Knockdown of NeAt1 inhibits growth and induces 

apoptosis in breast cancer cells. To determine whether 
NEAT1 promotes cell survival, siRNA was used to knock 
down NEAT1 expression; relative NEAT1 expression was 
verified using qRT-PCR (Fig. 1A). Sulforhodamine B assay 
showed that the knockdown of NEAT1 significantly inhibited 
cell growth in MCF-7 (Fig. 1B) and MDA-MB231 (Supple-
mentary Fig. 1) cell lines. We noticed that the rate of apopto-
sis significantly increased after knocking down NEAT1, with 
the percentage of early apoptotic cells in siNEAT1 cells being 
~2-fold greater than siControl. In addition, the percentage of 
late apoptotic cells increased by more than 25% in siNEAT1 
cells (Fig. 1C). These apoptotic effects were further confirmed 
via immunofluorescence analysis (Fig. 1D); cleaved caspase-3-
positive cells were also significantly increased compared with 
control (Fig. 1E).
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Figure 1. Knockdown of neat1 inhibited cell growth and increased cell apoptosis. (A) MCF-7 cells were transfected with NEAT1-specific siRNA (50 nM) 
and nonspecific control siRNA (50 nM). Knockdown efficiency was determined by qRT-PCR. (B) the time-dependent effect of siRna on cell growth is 
shown by the sulforhodamine B assay. Findings are the results of three independent experiments and presented as mean ± Sem. (C) Cell apoptosis 
was evaluated with Annexin-V and PI double staining at 48 hours by flow cytometry. Values in the lower right quadrant represent the percentage of early 
apoptotic cells. Values in the upper right quadrant represent the percentage of late apoptotic cells. (d) Immunofluorescence was measured using cleaved 
caspase-3 (green, apoptotic cells). nuclei were stained with daPi (blue). arrows mark caspase-3-positive cells. (E) the frequency of caspase-3-positive 
cells is shown. the percent of caspase-3-positive cells was used for chi-square test statistics. asterisk indicates P , 0.05.
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FUs physically interacts with NeAt1. NEAT1 has 
previously been shown to have significant TDP43 and FUS 
CLIP (ultraviolet cross-linking and immunoprecipitation) 
signals,26,29 suggesting that FUS physically binds to NEAT1 
(Fig. 2A). We verified this physical interaction by performing 
RNA immunoprecipitation using a FUS antibody (Fig. 2B). 
Functionally, administration of si-FUS, whose knockdown 
efficiencies are shown in Figure 2C, induced cell apoptosis in 
MCF-7 similar to NEAT1 knockdown (Fig. 2D). These find-
ings suggested that NEAT1 may interact with RBP FUS to 
influence breast cancer cell apoptosis.

overexpressing the mir-548ar downregulates NeAt1 
expression. We also further explored that miRNAs could 
bind to the lncRNA NEAT1 by evaluating the likelihood of 
mature miRNAs binding to NEAT1 using the RNAhybrid 
package. After screening based on the scores of conservation, 
the top five putative miRNAs were identified based on the 
strength of binding with lncRNA NEAT1 (Fig. 3A). These 
five miRNA mimics were then synthesized for transfection of 

MCF-7 cells. Upon overexpressing each candidate miRNA, 
only miR-548ar demonstrated reduced NEAT1 expression as 
assessed by qRT-PCR (Fig. 3B). We further found that the 
expression of NEAT1 was increased after transfecting cells 
with siRNA of AGO2 or Dicer, which was key to miRNA 
processing (Fig. 3C). These findings suggest that certain 
miRNAs can downregulate NEAT1 expression. To verify 
the regulation of miR-548ar on NEAT1, we transfected cells 
with the miR-548ar miRNA mimic to determine whether 
overexpressing miR-548ar also promotes apoptosis. Indeed, 
our results showed that overexpression of miR-548ar induced 
cell apoptosis (Fig. 3D). Together, these findings indicate that 
miR-548ar can downregulate the expression of NEAT1 and 
induce cell apoptosis.

discussion
Despite the critical roles that lncRNAs may play in gene 
regulation, the sheer quantity ncRNAs and early stages of the 
research have made it difficult for researchers to succinctly 
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pinpoint the general working mechanism underlying lnc RNAs 
or their specific interactions. As more lncRNAs are studied 
and their regulatory activities are investigated, the need to 
derive a working model for lncRNA becomes more press-
ing. As we mentioned earlier, there are two major models: the 
sponge model and the chromatin model. Differing reports have 
lent support to either model, but our current findings suggest 
that neither may be fully correct. Alternatively, we propose 
that our observations of NEAT1 suggest a novel, third model, 
wherein the RBP FUS and NEAT1 forms a complex, which 
target on apoptosis signals; the stabilization of this complex 
then becomes critical in the regulation of chromatin and 
gene expression.

There are a few fragmented reports dealing with RBPs 
and cell survival. The RNA-binding motif 5 (RBM5) and 10 
(RBM10) were found to promote apoptosis in cancer cells by 
activating alternative splicing of key death/survival genes.30 
Silencing the RBP human antigen R was able to inhibit cell 
proliferation and increase apoptosis.31 Ectopic expression of 
RBP poly C-binding protein was found to induce cell cycle 
arrest in G2 and apoptosis through the cyclin-dependent 

kinase inhibitor p21.32 Though these lines of evidence do 
not elucidate the underlying mechanism of RBPs on cancer 
cell apoptosis, our model suggests that RBPs exert their sur-
vival functions by mediating lncRNA and RBP complexes. 
In practice, this means that lncRNAs can stabilize RBPs or 
vice versa, a finding that was found during an investigation 
into liver cancer.33 This model paired with further consistent 
results may open a new avenue of inquiry for exploring the 
functions of RBPs.

miRNAs may regulate cell apoptosis in several ways. 
First, miRNAs can target genes involved in apoptosis. For 
example, let-7a was shown to regulate the drug-induced apop-
tosis in cells by targeting caspase-334; miR-21 and miR-15/16 
can target the proapoptotic factor B-cell CLL/lymphoma 
2 (BCL-2) to inhibit cell apoptosis in glioblastoma and 
lymphoma.35 Second, miRNAs can target factors that can 
then influence cell apoptosis. For example, miR-155 directly 
regulates FOXO3a in the control of breast cancer cell survival, 
promoting cell death by upregulation of proapoptotic genes, 
including BCL-2-like 11 (BIM), p27, BCL-2/adenovirus 
E1B 19 kDa interacting protein 3 (BNIP3), and repression 
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of antiapoptotic genes such as FLIP and BCL-XL.36 miR-21  
was also reported to negatively regulate F-box protein 11 
(FBXO11) in cancer cells, acting as a tumor suppressor and 
promoting apoptosis by interacting with antiapoptotic gene 
B-cell CLL/lymphoma 6 (BCL6).37 Although the miR-548 
family was not previously reported to be involved in regulat-
ing cell apoptosis, we found that miR-548ar could induce cell 
apoptosis in the breast cancer cell lines MCF-7 and MDA-
MB231. Accordingly, we propose that miR-548ar may regu-
late cell apoptosis by interacting with NEAT1. Although 
we found that overexpressing miR-548ar downregulated the 
expression of NEAT1, our luciferase assay demonstrated 
that miR-548ar could not directly bind to NEAT1 (data not 
shown). It will be necessary to further characterize the mech-
anisms of miR-548ar interacting with NEAT1.

In terms of stress, while previous reports demonstrated 
that NEAT1 deficiency could only induce apoptosis upon 
hypoxia,18 our data showed that normal oxygen stress dis-
ruption of NEAT1 could also serve as an incentive for cell 
death. This discrepancy may be due to the different strategies 
used for knocking down expression. For example, our studies 
employed double-stranded siRNAs that targeted the 5′ end of 
NEAT1_1, while the antisense oligos in hypoxia stress tar-
geted the 3′ end, raising the possibility that RBP is recognized 
through the 5′ region. The region of our siRNA-targeted has 
stronger binding affinity to FUS than the other regions includ-
ing antisense oligos used in other studies (Supplementary 
Fig. 2), supporting our hypothesis that the complex of FUS 
and NEAT1 promotes the survival of breast cancer cells.

Taken together, our research indicated that lncRNA 
NEAT1 is required for the survival of breast cancer cells. The 
findings of this study have significant implications regarding 
our understanding of lncRNA to breast cancer. RBP FUS could 
physically bind with NEAT1, which may mediate the role of 
NEAT1 in the survival of breast cancer cells. Besides, NEAT1 
could also be regulated by miRNA miR-548ar, which also 
influences apoptosis in human breast cancer cells. And future 
work should be focused on the specific mechanism of NEAT1-
targeting FUS and miR-548ar to influence cell apoptosis.
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supplementary Materials
supplementary Figure 1. Knockdown of NEAT1 

inhibited cell growth in MDA-MB231. MDA-MB231 cells 
were transfected with NEAT1-specific siRNA(50nM) and 

negative control siRNA(50nM). (A) Knockdown efficiency 
was determined by qRT-PCR. (b) The time-dependent effect 
of siRNA on cell growth is shown by the SRB assay. Results 
were quantitated from three independent experiments. Data 
are presented as means ± SEM.

supplementary Figure 2. Cell apoptosis could be 
induced by treated with different si-NEAT1. MCF7 cells 
were transfected with NEAT1 50nM siRNAs targeted by 
different position of NEAT1. (A) Knockdown efficiency was 
determined by qRT-PCR. (b) Cell apoptosis was evaluated 
with Annexin-V and PI double-staining at 48 h by Flow cyto-
metric analysis. Si-NEAT1–1051 and si-NEAT1–3529 stand 
for siRNA targeted the 1051 and 3529 position of NEAT1 
RNA. Si-NEAT1-GIVEN represents the siRNA which used 
in the parper of Choudhry H et al, 2014.
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