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Abstract
Background: Studies of brain functional connectivity (FC) and effective connectiv-
ity (EC) using the functional magnetic resonance imaging (fMRI) have advanced our 
understanding of functional organization on visual cortex of human brain. The cur-
rent studies mainly focus on static or dynamic connectivity, while the relationships 
between them have not been well characterized especially for static EC (sEC) and dy-
namic EC (dEC), as well as the consistency characteristics of changing trend of dFCs 
and dECs, which is of great importance to reveal the neural information processing 
mechanism in visual cortex region.
Method: In this study, we explore these relationships among several subareas of 
human visual cortex (V1–V5) by calculating the connection intensity and information 
flow among them over time by sliding window method, which are defined by Pearson 
correlation coefficient and Granger causality analysis, respectively, in each window.
Results: The results demonstrate that there are extensive connections existing in 
human visual network, which are time-varying both in resting and task-related states. 
sFC intensity is negatively correlated with the variance of dFC, while sEC intensity 
is positively correlated with the variance of dEC. Furthermore, we also find that dFC 
within visual cortex at rest shows more consistency, while dEC shows less compared 
with task state in changing trend.
Conclusion: Therefore, this study provides novel findings about dynamics of con-
nectivity in human visual cortex from the perspective of functional and effective 
connectivity.
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1  | INTRODUC TION

Functional magnetic resonance imaging (fMRI) mainly refers to 
blood oxygen level-dependent fMRI (BOLD-fMRI), which has the 

advantages of noninvasive, repeatable, and high spatial resolu-
tion, and has been applied to various aspects of clinical and basic 
research (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 
Over the past two decades, the study of functional specificity and 
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functional integration has led to the development of fMRI. The func-
tional specificity study only focused on the location of important 
brain functions and the functional activities of local brain regions, 
while ignoring the interrelationships between different brain regions 
and providing only a small part of the brain structure and function 
(Glasser et al., 2016). Functional integration is described in terms of 
functional connectivity (FC) and effective connectivity (EC) (Friston, 
Frith, & Frackowiak,  1993). The functional connectivity describes 
the temporal correlations between spatially remote neurophysi-
ological events. There are two kinds of research methods: One is 
hypothesis-driven method, which mainly includes correlation anal-
ysis (Tian et  al.,  2010; Zhang et  al.,  2013), coherent analysis, and 
generalized linear model (GLM); the other is data-driven method, 
which mainly includes independent component analysis (ICA) (Shi, 
Zeng, Wang, & Chen, 2015; Shi, Zeng, Wang, & Zhao, 2018), prin-
cipal component analysis (PCA), and cluster analysis methods. The 
EC reflects the directional connectivity between different neural 
units or brain regions and forms a network with edges representing 
directed weights of one neuron or brain region relative to the other. 
The models for studying the brain's effective connectivity include 
structural equation model (SEM) (Bavelier et al., 2000), transfer en-
tropy (Vicente, Wibral, Lindner, & Pipa, 2011), dynamic causal model 
(DCM) (Xin & Biswal, 2014), and Granger causality analysis. Among 
these, Granger causality method is a statistical method for investi-
gating the flow of information between time series, which does not 
require prior knowledge and emphasizes the trait of time sequence 
when analyzing data interactions. So, it has been widely applied 
by neuroscientists to diverse sources of data, including electroen-
cephalography (EEG), magnetoencephalography (MEG), fMRI, and 
local field potentials (LFP) (Dimitriadis, Laskaris, Tsirka, Vourkas, & 
Micheloyannis, 2012; Gao et al., 2015).

BOLD-fMRI studies have traditionally investigated patterns of 
FC and EC that are static within the scanning period. However, 
studies in recent years have shown that the connectivity of the 
brain regions has instantaneous changes, and the dynamics of this 
connectivity are reflected in the brains during a task or at rest 
(Bassett et  al.,  2011; Hutchison, Womelsdorf, Gati, Everling, & 
Menon,  2013). Studying the time-dependent information of the 
brain connectivity helps humans to have a more comprehensive 
understanding of the brain's functional and structural organiza-
tion, so dFC and dEC analyses have become a new exploration field 
in brain connectivity research though the dynamic changes have 
hitherto been overlooked in fMRI studies most likely due to the 
poor temporal resolution of fMRI especially in dEC. The common 
sliding window method uses a moving window to divide the entire 
BOLD signal into multiple short signals (Tobia, Hayashi, Ballard, 
Gotlib, & Waugh,  2017). Different windows can obtain multiple 
functional connectivity and effective connectivity matrices to re-
flect the dynamic brain network connectivity. Dynamic FC often 
occurs within the same individual and is clearly relevant to be-
havior. Some researchers believe that it may be heavily related 
to high-level thought or consciousness (Hutchison, Womelsdorf, 

Allen, et al., 2013). It is also associated with a variety of differ-
ent neurological disorders and can potentially serve as disease 
biomarkers (Kaiser et al., 2016). Previous studies have also found 
that the effective connectivity exhibits changes across cortex 
of human brain (Hu, Zhang, & Hu,  2012; Spadone, et  al.,  2015). 
Compared with sFC and sEC based on the traditional fMRI time 
series analytical methods, dynamic connectivity technology can 
better reflect the dynamic participation of different brain regions 
in the actual brain, which has been suggested to be a more accu-
rate representation of functional brain networks.

Functional magnetic resonance imaging has made some progress 
in the basic research of normal human brain functional networks (vi-
sual, auditory, motor, sensory, etc.). The study of visual cortex is the 
earliest field of application of fMRI, which is mainly relevant to the 
easy control of visual stimulation conditions, and the relatively large 
intensity of the visual cortex activation signal. In visual research, 
when a subject receives a certain kind of visual stimuli, the visual 
signal is transmitted through the visual pathway to the visual cortex, 
and the increase of neuronal activity for processing relevant visual 
information causes local blood flow to change. The fMRI can reflect 
the location, range, and intensity of neuron activity and has become 
an effective method for visual research. The first human brain fMRI 
obtained by Belliveau et al. (1991) in 1991 was related to visual re-
search and created a historical precedent for the study of fMRI in the 
localization of human brain function. The results showed a signifi-
cant increase in the volume of blood flow in the primary visual cor-
tex after visual stimulation, and the extent and coordinates of brain 
activation were reported. Research on the anatomy and physiology 
of the visual cortex of primates has provided valuable information 
for the study of the human visual cortex. Through these studies, it 
has been found that the human visual cortex is homologous to the 
visual cortex of primates and confirmed that humans have at least 
25 visual cortical areas, which cover more than half of the cortical 
area (Sereno et al., 1995). In recent years, the BOLD-fMRI method 
has been used to located accurate visual subregions such as V1, V2, 
V3, V4, and MT/V5, which is basically consistent with the traditional 
view (Warnking et al., 2002).

In this study, we adopted fMRI data considering research on 
sFC, sEC, dFC, and dEC in both task-related and resting states. As 
compared with literature of dynamic FC and EC, the novelty of this 
study is threefold. First, most of previous studies were focused 
on difference of (a) FC or EC between tasks and rest to observe 
the modulation effect of tasks on brain network connectivity 
(Spadone, et  al.,  2015), (b) FC between task and control periods 
during a block design experiment (Di et al., 2015), or (c) dynamic 
changes in FC during tasks or at rest (Allen et al., 2014; Gonzalez-
Castillo & Bandettini, 2017). However, our study is aimed to inves-
tigate changes in FC and especially EC at the same time over time 
in normal subjects at rest and during a task with repeatedly pre-
sented identical stimuli, which may provide new information on the 
dynamic recombination of cerebral cortex under visual stimulation. 
Second, the relationship between intensity of sFC and variance of 
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dFC (Fong et al., 2019) has gained attention in recent years but not 
in EC, so it is going to be discussed in this paper. Third, the dynam-
ics of functional connectivity is usually characterized by its own 
variance, which is viewed within a partial perspective and is clearly 
not enough. The dFC or dEC between two certain brain regions 
can be viewed as a vector, which is described as the changing trend 
with elements calculated in all windows. Therefore, we studied the 
consistency of changing trend, which reflects the covariation rela-
tionship of dFCs or dECs on the whole. In other words, FCs or ECs 
describe the undirected or directed relationship among time series 
of brain regions obtained from fMRI scans, while the consistency 
of changing trend describes the relationship between time-varying 
FCs which no longer describes a single dFC. We explore it in the 
present study to further investigate the dynamic characteristics of 
brain connectivity. The dynamics study of FC and EC in this paper 
is divided into three steps: (a) A sliding window method was used 
to estimate the time-varying correlation coefficient and Granger 
causality among V1–V5 of visual subregions (Luo et al., 2016); (b) 
the relationship between the intensity of static FC and variance of 
dynamic FC, and the intensity of static EC and variance of dynamic 
EC was calculated, respectively; (c) the consistency of changing 
trend in dFC and dEC was estimated to validate the connectiv-
ity dynamics from a global perspective. The results showed that 
there were indeed extensive connections between various brain 
regions of the visual system, and the network of brain regions was 
dynamic both in rest and task states. Static functional connection 
intensity is negatively correlated with the variance of dynamic FC, 
while static effective connection intensity is positively correlated 
with the variance of dynamic EC. We can also find that dFC within 
visual cortex at rest shows more consistency, while dEC shows less 
compared with task state. In conclusion, dynamic brain connectiv-
ity analysis is expected to be a more accurate representation of 

functional brain networks and may shed a bright light on a variety 
of vision-related disorders.

2  | MATERIAL S AND METHODS

2.1 | Participants and fMRI data acquisition

Resting-state and task-related fMRI data were collected from the 
enhanced Nathan Kline Institute (NKI)/Rockland sample of the 
international neuroimaging data-sharing initiative (INDI) (http://
fcon_1000.proje​cts.nitrc.org/indi/enhan​ced/) (Nooner, Colcombe, 
Tobe, Mennes, & Milham, 2012). Institutional Review Board Approval 
was obtained for this project at the Nathan Kline Institute and at 
Montclair State University. Written informed consent was obtained 
for all study participants. Only the resting-state and block-designed 
visual checkerboard data with a relatively short repetition time (TR) 
of 645 ms were used in the current analysis, which could provide 
necessary high temporal resolution to unravel FC and EC dynamics. 
In total, 53 subjects (18–41 years, mean = 23.3 years, standard de-
viation = 5.6 years) in session DS2 from this dataset were included 
in the current study.

The task-related fMRI data were recorded from a simple check-
erboard visual experiment, where the checkerboard stimuli were 
presented in the center of the screen with a flickering frequency 
of 4  Hz. There was a black-and-white flipped checkerboard with 
radial shape during the stimulus state, and a cross on the black 
screen during the control state is shown in Figure  1. The block 
types are [FIXATION, CHECKER, FIXATION, CHECKER, FIXATION, 
CHECKER, FIXATION] (see Figure 1), with seven blocks in all. The 
total scan time was about 2 min 35 s with totally 240 images acquired. 
The resting-state and task-related fMRI data were all scanned using 

F I G U R E  1  Verification test of visual 
stimulation. (a) A black screen during 
fixation state, (b) picture of checkerboard 
patterns after stain. (c) Block design of 
task-related fMRI experiment. The scan 
started with a 20-s fixation condition 
and followed by a 20-s checkerboard 
condition with three repetitions. After the 
third checkerboard block, there was an 
additional 35-s fixation condition

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
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a multiband echo-planar imaging (EPI) sequence with the following 
parameters: TR/TE = 645/30 ms; acquisition matrix = 74 × 74; flip 
angle = 60°; voxel size = 3 mm3 isotropic; slices = 40.

2.2 | Data preprocessing

Data were preprocessed using an automated pipeline based around 
DPARSF (Yan & Zang, 2010) software package. Preprocessing in-
cluded the removal of the first 10 image volumes, motion correc-
tion, spatial normalization into Montreal Neurological Institute 
space, reslicing to 3  mm  ×  3  mm×3  mm voxels, and smoothing 
with a Gaussian kernel (FWHM = 4 mm), detrending and nuisance 
covariates regression (six parameters related to head movement, 
white matter, and CSF signals). Poor-quality scans with nonstation-
ary and excessive head motion, defined a priori as >2 mm transla-
tion, or >2° rotation, were excluded from analysis; this included six 
resting runs and two task runs, so 45 subjects were included in the 
final analysis.

2.3 | ROI selection

The probability map in the SPM anatomy toolbox (Eickhoff 
et al., 2005) is used to select V1–V5 as the ROIs, which are shown 
in Figure 2. The mean time series for regions of interest (ROI) was 
extracted for each subject of resting and task-related fMRI data with 
REST 1.8 software (http://restf​mri.net/forum​/REST_V1.8).

2.4 | Method

2.4.1 | Static functional connectivity (sFC)

The static functional connection matrix R (size: m × m) is computed 
as the Pearson correlation coefficient matrix between the average 
time series of ROIs Xt (i = 1,2,…,m) (m is the number of ROIs) over 
the entire scan time with Rij = Rji = corr(Xi,Xj) and then averaged 
across all subjects in each group, respectively. To avoid repeated 
information, only the lower triangular portion of the symmetrical 
FC matrix was properly converted into a static FC intensity vector 
Rs (size: 1×

m2
−m

2
) for further analysis. In this study, there are five 

ROIs and each subject has ten functional connectivity strength 
values.

2.4.2 | Static effective connectivity (sEC)

Granger causality analysis (GCA) method is used in this article, which 
refers to a predictive relationship among time series. Generally 
speaking, given two time series X(n) and Y(n) (n = 1,2,…,t), we say that 
YG causes X if it would be more favorable in predicting X with the 
incorporation of Y's historical information than only using X's histori-
cal information. In order to check whether YG causes X conditional 
on Z (given Z), the vector autoregressive (VAR(p)) and joint autore-
gressive model are described as:

where a1i,c1i,a2i,c2i and b2i are best regression parameters of the model, 
�1t and �2t are two zero-mean uncorrelated white-noise series. The 
model order p can be determined by BIC criterion. var(�1t) and var(�2t) 
represent the estimation accuracy of the X's current value with the 
past behavior of X and the past behavior of X joint with Y in condition 
of Z, respectively. The measure of the strength of the causality Y → X 
in condition of Z can be defined as,

If there is no direct causality between Y and X but an indirect 
causal relationship between them because of Z, b2i  =  0 in (2) and 
var(�1t)=var(�2t), resulting in FY→X|Z=0. It means that under the con-
dition of Z, adding Y to the model does not improve the prediction 
accuracy.

We use the code provided in Luca Faes's paper (Faes, Nollo, 
Stramaglia, & Marinazzo, 2017) to calculate the effective connectiv-
ity between ROIs and obtain the static effective connection matrix F 
(size: m × m) for all subjects, which were then averaged in each group, 
respectively, with the model order p optimized separately for each 
subject using the BIC criterion. The static EC intensity vector Fs (size: 
1× (m2

−m)) is defined as the effective connectivity strength be-
tween ROIs during the entire scan time period, that is, we removed 
the diagonal from F and then converted it into a row vector. In this 
study, there are five ROIs and each subject has twenty effective con-
nectivity strength values.

(1)Xt=

p∑
i=1

a1iXt−i+

p∑
i=1

c1iZt−i+�1t

(2)Xt=

p∑
i=1

a2iXt−i+

p∑
i=1

c2iZt−i+

p∑
i=1

b2iYt−i+�2t

(3)FY→X|Z= ln
var(�1t)

var(�2t)

F I G U R E  2  Selection of V1–V5 as ROIs. 
Five ROIs used in the current analyses are 
displayed in red (V1), green (V2), yellow 
(V3), violet (V4), and blue (V5) according 
to PMaps of SPM anatomy toolbox

http://restfmri.net/forum/REST_V1.8
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2.4.3 | dFC and dEC

Static connectivity methods assume networks in the brain are sta-
tionary over the whole scan length (typically ranging from 6–10 min), 
which represents an average state. However, dynamic connectivity 
methods regard the networks as a function of time with variabil-
ity often quantified as ALFF-FC map (Allen et al., 2014; Qin, Chen, 
Hu, Zeng, & Shen,  2015), the index of dispersion (variance/mean) 
(Demirtaş et al., 2016; Tian, Li, Wang, & Yu, 2018), or simple var-
iance (Fong et  al.,  2019; Jin et  al.,  2017) of the dFC, which is like 
higher  order statistics of connectivity. However, previous studies 
often aim at static and dynamic FCs. The dynamic property of the 
EC especially the relationship between static EC and dynamic EC is 
so far overlooked.

Based on the sliding window method, dynamic functional and ef-
fective connectivity network for each subject were calculated using 
the defined V1–V5 as the ROIs. The BOLD signal Xi (i=1,2,...,m) of the 
ROI is segmented into a short time series Xi,w (i=1,2,...,m;w=1,2,...,n). 
m is the number of ROIs and n is the number of windows. The window 
width often ranged from 8 to 240 s (Shakil, Lee, & Keilholz, 2016) in 
the study of dynamic brain network connectivity previously. Granger 
pointed out that sample size is an important factor influencing cau-
sality. Zhou and Zinai (2004) tested two stationary sequences with 
the first-order lag model and found that the probability of Granger 
causality increased significantly with the increase of sample size. In 
this paper, the number of time points for each window is set to 100 
and the step size is set to 1, so n = 131 for fMRI data. The functional 
connection matrix Rw (size: m × m) corresponding to the window is 
calculated by Xi,w (i=1,2,...,m;w=1,2,...,n), see formula (4), where the 
element value of the i-th row and the j-th column is indicated as 
Rw(i,j), and corr represents the calculation of the Pearson correlation 
coefficient. Therefore, Rw(w=1,2,...,n) obtained by each subject can 
reflect the dynamic brain functional connectivity network of the 

subject. The functional connection matrix of all subjects was aver-
aged to obtain the dynamic functional connectivity matrix (dFCM, 
size: m  × m  ×  n) for each group. At the same time, the effective 
connection matrix Fw (size: m  × m) corresponding to each window 
is calculated by Granger causality analysis method, with Fw(i,j) repre-
senting the effective connection value from the j-th ROI to the i-th 
ROI. Fw(w=1,2,...,n) obtained by each subject can reflect the dynamic 
brain effective connectivity network of the subject. The effective 
connection matrix of all the subjects was averaged to obtain the dy-
namic effective connectivity matrix (dECM, size: m × m × n) for each 
group. 

By vectorizing the lower triangular elements in the functional 
connection matrix Rw of each window, a dynamic FC intensity ma-
trix Rtotal of n× m2

−m

2
 for each subject can be obtained. Each column of 

the matrix Rtotal represents the time-varying changing trend between 
two brain regions (i.e., a specific dFC), and its variance is calculated to 
characterize the variability of each functional connection. Since there 
are ten FCs among five ROIs, we can get ten variance values, which 
form a vector for each subject. Obviously, the high consistency indi-
cates that dFCs or dECs have a similar trend as time goes on. For ex-
ample, when the dFC vector between V1 and V2 (denoted by dFC12) 
is highly correlated with dFC vector between V3 and V4 (dFC34), it 
is considered that the consistency of changing trend between dFC12 
and dFC34 is high, that is, changing trend of different dFCs is similar. 
Similarly, the dynamic EC intensity matrix Ftotal (size: n× (m2

−m)) is ob-
tained, and twenty variance values are calculated for each subject.

The overall processing flowchart is shown in Figure 3, which in-
cludes the above-mentioned analyses.

(4)Rw(i,j)=

⎧
⎪⎨⎪⎩

corr(Xi,w,Xj,w),if i≠ j

0,if i= j

F I G U R E  3   Overall processing 
flowchart. m is the number of ROIs;n is 
the number of windows; k is the number 
of subjects. dECM, static effective 
connection matrix; dFCM, dynamic 
functional connection matrix; sECM, static 
effective connection matrix; sFCM, static 
functional connection matrix
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3  | RESULTS

3.1 | Relationship between static and dynamic FCs

For the average sFC intensity (Rs) and the average dFC variance of all 
subjects, the Pearson correlation coefficient between them was cal-
culated. The result was −0.9867 for data at rest and −0.9841 for data 
recorded during a visual task. It shows that the sFC intensity and dFC 
variance are negatively correlated with each other. We can also see 
from Figure 4 that the average sFC intensity and the variance of dFC 
have opposite fluctuation trends regardless of the resting state or 
the visual stimulation state, that is, strong functional connectivity is 
always accompanied by small variability. After calculating Pearson 
correlation coefficient between sFC intensity and dFC variance like-
wise for each subject, we find the results were −0.8873 ± 0.1017 for 
45 subjects at rest and −0.9245 ± 0.0798 during task, respectively. 
It also shows that there is a high negative correlation between sFC 
intensity and dFC variance as a whole. The larger the sFC intensity is, 
the smaller the variance of dFC would be. At level of single subject, 
the correlation was slightly reduced, which is likely due to individual 
differences or machine noise. We also used an independent-sample t 
test to compare the differences in functional connectivity of the two 
groups for each pair of ROIs with threshold p < .005 (.05/10) correct-
ing for multiple comparisons of correlations. FCs showing significant 
difference are denoted in Figure 4 with *. Detailed values of average 
sFC and variance of dFC are shown in Table S1, and statistical param-
eters of the difference in both states are shown in Table S3.

3.2 | Relationship between static and dynamic ECs

Likewise, for the average sEC intensity (Fs) and the average dEC 
variance of all subjects, the Pearson correlation coefficient be-
tween them was calculated. The result was 0.8984 for data at rest 
and 0.8726 for data recorded during a visual task. We can observe 
that the average sEC intensity has a similar fluctuation trend with 
the dEC variance at rest and in the visual stimulation experiment. 
After calculating Pearson correlation coefficient between sEC in-
tensity and dEC variance for each subject, we find the results were 
0.6025 ± 0.2716 for 45 subjects at rest and 0.6634 ± 0.2675 during 
task, respectively. The Pearson correlation coefficient of the sub-
ject level is lower than that of group analysis. It is probably because 

causality value is small, and the group-level calculation used the 
mean value of static connectivity intensity and variance of dynamic 
connectivity, which may balance out some individual differences. 
Overall, there is a high positive correlation between static EC inten-
sity and dEC variance, and the larger the sEC intensity is, the larger 
the variance of the dEC variation would be. It can also be seen from 
Figure 5 that there are stronger effective connectivity and greater 
variability for data collected during visual stimulation than at rest 
though there is no significant difference in EC between two condi-
tions (p> .05/20). Detailed values of average sEC and variance of dEC 
are shown in Table S2, and statistical parameters of the difference in 
both states are shown in Table S4. Besides, the results of other two 
dynamic measurement methods (i.e., ALFF and dispersion) of FC and 
EC fluctuation are demonstrated in Figure S1.

3.3 | Consistency in changing trend of dFC

Since the dFC or dEC between two certain brain regions can be 
viewed as a vector, which is described as the changing tread with el-
ements calculated in all windows, the consistency of changing trend 
of all dFCs or dECs is studied to investigate the dynamic character-
istics of brain connectivity. Each column of the dynamic functional 
connectivity strength matrix Rtotal (n  ×  10) is the changing trend 
for each FC during an experiment, and each row is all FCs within a 
time window. The Pearson correlation coefficient among columns 
is calculated to obtain the correlation matrix (size: 10 × 10) for each 
subject, which is then averaged in each group (see Figure 6). It can 
be observed that the functional connectivity changes with similar 
trends. Compared to the resting state, the data during a visual stim-
ulation showed a consistent decrease in changing trend between 
dFCs, which is denoted in Figure 6 with * (p < .0011, namely .05/45).

3.4 | Consistency in changing trend of dEC

Each column of the dynamic effective connectivity strength matrix 
Ftotal (n × 20) is the changing trend for each EC during an experiment, 
and each row is all ECs within a time window. The Pearson correla-
tion coefficient among columns is calculated to obtain the correla-
tion matrix (size: 20 × 20) for each subject. After taking the absolute 
value, the averaged correlation matrix is obtained (see Figure  7). 

F I G U R E  4  Mean sFC intensity (a) 
and dFC variance (b) for resting and 
task-related states, respectively. FCi,j 
represents the Pearson correlation 
coefficient between time series of 
ROIi and ROIj. * denotes that there is a 
significant difference by independent-
sample t test (p < .005), indicating the 
functional connectivity between V5 
and V1–V4 during visual stimulation is 
significantly lower than at rest
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Compared to the resting state, the task-related data showed a con-
sistent increase in changing trend between dEC, which is denoted in 
Figure 7 with * (p < 2.6316e−04, namely .05/190).

4  | DISCUSSION

Visual cortex is primarily responsible for visual information process-
ing, which is located around the occipital lobe and receives visual in-
formation input from the lateral geniculate nucleus of the thalamus. 
The human visual cortex includes the primary visual cortex (V1, also 
known as the striate cortex) and the extrastriate cortex (such as V2, 
V3, V4, and V5). The flickering checkerboard stimulus experiment 
is the most widely used and stable method to explore the function 
of human brain visual system for clinical and scientific researchers 
engaged in ophthalmology and neuroscience. It provides complex 
visual stimuli, including optical and graphic information, so that the 
corresponding cortex of the subject can be significantly activated. 
Wohlschläger et al. (2005) studied the V1, V2, and Brodmann areas 
(BA) 17 and 18 of the functional magnetic resonance retinal brain 
map and found that they were basically consistent, respectively, 
indicating a certain degree of interoperability between functional 
partition and traditional anatomical partition. BA17 is the original 
sensory area that is directly subjected to visual stimuli and aims to 
identify the three-dimensional structure of the object image such 
as form perception, depth perception, and color vision. BA18 and 

BA19, known as the visual association area, commonly used to syn-
thesize visual information, form a conscious awareness and con-
nect with motor, sensory, auditory, language, and other centers of 
ipsilateral and contralateral brains. The two-stream hypothesis  is a 
widely accepted and influential model of the neural processing of vi-
sion, which argues that humans possess two distinct visual systems 
(see Figure 8) (Ungerleider & Haxby, 1994). The dorsal stream (or, 
“where pathway”)  stretches from the primary visual cortex  (V1) in 
the occipital lobe forward into the parietal lobe and is proposed to 
be involved in the guidance of actions and recognize where objects 
are in space. Also known as “what pathway,” the ventral stream goes 
through V2 and V4 from V1 to areas of the inferior temporal lobe 
and is associated with object recognition and form representation. 
In the present paper, the visual cortex areas from V1 to V5 were 
selected for further analysis.

Recently, the temporal variability of functional connectivity 
and effective connectivity has attracted increasing attention (Park, 
Friston, Pae, Park, & Razi, 2018; Zalesky, Fornito, Cocchi, Gollo, & 
Breakspear, 2014). Functional brain networks demonstrate signifi-
cant temporal variability and dynamic reconfiguration even in the 
resting state. Either sliding window or time–frequency analysis 
shows nonstationarity in spontaneous brain activity, which triggers 
temporal changes in connectivity of its functional architecture. As 
the resting state is an unconstrained condition that involves vary-
ing levels of mind-wandering, arousal, attention, and vigilance, the 
temporal variability of functional brain networks derived from the 

F I G U R E  5  Mean sEC intensity (a) and 
dEC variance (b) for resting and task-
related states, respectively. ECij represents 
Granger causality from ROIi to ROIj, 
denoted by ROIi → ROIj
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BOLD-fMRI may be driven ultimately by changes in mental state. In 
addition, specific changes in synchronization and information flow 
occur within and between networks that correlate with behavioral 
performance.

The temporal variability of a functional connectivity character-
izes the changes in the Pearson correlation between BOLD signals 
of two corresponding ROIs. Low temporal variability means that the 
functional connectivity of two given ROIs is stable across different 

F I G U R E  6  Average dFC correlation coefficient plots for visual stimulation experiment (a) and resting-state experiment (b), respectively. * 
indicates significant difference in consistency of dFC changing trend by independent-sample t test (p < .05/45). dFCij is a vector, which means 
time-varying functional connectivity (namely, changing trend) with elements calculated by the Pearson correlation coefficient between ROIi 
and ROIj in all windows

F I G U R E  7  Average dEC correlation coefficient plots for visual stimulation experiment (a) and resting-state experiment (b), respectively. 
* denotes significant differences in consistency of dEC changing trend by independent-sample t test (p < .05/190). dECij is a vector, which 
means time-varying effective connectivity (namely, changing trend) from ROIi to ROIj in all windows with elements calculated by the 
Granger causality method
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time windows, and vice versa. From Figure 4, we note the low vari-
ability, together with the strong functional connectivity within the 
visual network during task and rest states. It shows that whether 
in rest or task state, there are indeed widespread connectivities 
between brain regions in the visual cortex (Power, Schlaggar, & 
Petersen, 2014), and the network formed by the brain region is dy-
namic (Vidaurre et al., 2018). The human brain demonstrates tight 
association in its structure and function, and regions within one net-
work tend to synchronize more easily with each other and thus have 
lower temporal variability. The results on FC variability are also in 
agreement with Ref. (Power et al., 2011), which suggested that visual 
system is rather stationary. It is meaningful and helpful to study static 
and dynamic connectivities at the same time, especially the relation-
ship between them. Studies have shown that in different cognitive 
states, or different diseases, not only the connectivity of the brain 
changes, but also the variability of dynamic connectivity changes 
(Demirtaş et al., 2016). Sometimes, better classification charac-
teristics than static characteristics can be obtained from dynamic 
brain connectivity analysis (Jie, Liu, & Shen, 2018; Qin et al., 2015). 
Fong et al. (2019) pointed out that combining static and dynamic FC 
features numerically improves predictions over either model alone. 
Incorporating dynamic FC features consistently improves predic-
tions upon static FC alone and dFC may complement sFC in charac-
terizing individual differences in attention. It figured out that static 
and dynamic matrices were highly dissimilar under both rest and 
task, but no specific relationship was explored. From Figure 4, we 
note that the sFC intensity has a strong negative correlation with 
variance of dFC, which is similar to previous studies. Deng, Sun, 
Cheng, and Tong (2016) discovered a strong negative correlation be-
tween inter-regional FC and FC variability. Jin et al. (2017) found that 
PTSD subjects have stronger static connectivity, but reduced tem-
poral variability of connectivity. Zhang et al. (2016) found that the 
temporal variability of a region correlates negatively with both the 
amplitude of its BOLD activity and the node degree, since the BOLD 
activity of a region and its degree are positively correlated. Thus, 
static and dynamic connectivities explore brain connectivity from 
different angles and comparing them within the context of the same 
study may help to better characterize the function of brain areas.

Compared with resting state, subjects in task state exhibited 
significantly decreased functional connectivity between V5 and 
V1–V4 (p < .005). The discovery that FCs among occipital lobe de-
crease during task state comparing with resting state is similar to 
previous studies (Cole, Bassett, Power, Braver, & Petersen,  2014; 
Spadone, et  al.,  2015). Comparisons of functional network con-
nectivity during resting and task conditions also showed that func-
tional network connectivity was stronger during rest compared 
to task (Arbabshirani, Havlicek, Kiehl, Pearlson, & Calhoun, 2013). 
According to Figure  6, the consistency of dFC changing trend in 
the visual stimulus state is smaller than rest state, indicating a lit-
tle asynchronism in FC and providing evidence of smaller functional 
connectivity. One possibility of this effect is due to some difference 
in electrophysiological brain rhythms during resting state relative 
to task. For instance, alpha rhythms that are consistently present 
during rest may indirectly result in increased synchronizations in the 
BOLD signal, such that shifts to other frequencies during the flicker-
ing checkerboard condition decrease fMRI-based FC compared with 
the fixation condition. Another possibility is that each brain region 
performs different functions in response to some aspects (not all 
aspects) of the task, thus causing increased activation and decreased 
synchronicity for respective responsibilities, which further explain 
the disassociation between FCs and BOLD response. Meanwhile, 
regions contributing significantly within a given functional area are 
often structurally connected to each other, or alternatively a brain 
region with more fiber connections to those of the same commu-
nity would be involved more stably in that functional community, 
which will result in a strong connectivity. Thus, FCs between adja-
cent brain regions (such as V1 and V2, V2 and V3, V3 and V4, V4 and 
V5) are relatively larger than remote brain regions (such as V1 and 
V5) and show less variability. Also, there is evidence that middle/
superior occipital gyrus demonstrates low variability, while middle 
temporal gyrus demonstrates a high variability, which may also ex-
plain why variabilities of FC among V1–V4 are smaller than those 
involving V5 (Zhang et al., 2016).

As with the temporal variability of FC, the temporal variability 
of EC is defined as the variance of dynamic EC in all time windows 
across the whole experiment. That is, the fluctuation amplitude of 
the Granger causality time courses represents the variability of each 
connection between regions over time. As far as we know, no fMRI 
studies have focused on the relationship between static and dynamic 
ECs. However, it is discovered that static EC is positively correlated 
with variance of the dEC, which is different from the relationship 
in FC and is novel to our perception. It means that large effective 
connectivity is accompanied by large variance of dEC. We specu-
lated that when the brain receives visual stimulation, the information 
flows in the visual cortex changes and keeps at high level for a period 
of time. After the visual simulation disappears and the screen reverts 
to black, the information flow returns back to the baseline state. So, 
the changes in information flow in brain regions may be due to the 
cyclical changes in external stimuli during a block-designed experi-
ment. The more ECs among V1–V5 increase when receiving continu-
ous visual stimulation, the more they differ with resting state, which 

F I G U R E  8   Dorsal and ventral pathways
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will result in larger variability as the ECs need to increase and recover 
to resting level periodically.

There is no significant difference in effective connectivity be-
tween two groups (p>  .05/20) though we can find that the ECs 
among V1–V5 increase during task state compared with resting 
state when using a less stringent correction threshold especially 
EC12, EC13, EC14, EC21, and EC23 (see Figure 5). This phenom-
enon of increase in EC among V1–V5 is consistent with visual for-
mation as the visual cortex produces the flow of information when 
stimulated. It is generally believed that V2 and V3 revolve around 
V1 and accept the contact fibers emitted by V1. They are not lim-
ited to a certain function, but process and integrate various infor-
mation to complete advanced cognitive activity. V2 is the second 
major visual area of the visual cortex and the first station of the 
visual association area, receiving strong feedforward connection 
from V1, and sending connection to V3–V5, and also having strong 
feedback connection to V1. V3 is located in the front of V2, equiv-
alent to anatomically Brodmann area 19, which receives input from 
V1 and V2 and is projected into the posterior parietal cortex. The 
dorsal and ventral parts of V3 are responsible for the lower and 
upper 1/4 of the lateral field of vision, respectively. V4 is the third 
visual area of the ventral stream, receiving powerful feedforward 
input from V2. V4 also receives direct input from V1, especially 
the central part. Similar to V1, V4 modulates orientation, spatial 
frequency, and color stimuli, which are just included in a flickering 
checkerboard, but it can only modulate moderately complex fea-
tures of objects, such as simple geometric shapes of objects, and 
cannot process information about complex objects like faces. It can 
also be reflected from Figure 5a that the effective connectivity be-
tween V4 and other visual areas is larger than that of the resting 
state. The V5 region, also known as the middle temporal gyrus, is 
composed of many neurons that are selective to the movement of 
complex visual stimuli, which can integrate local visual signals into 
the overall movement of complex objects. In this paper, the flick-
ering checkerboard visual stimulation experiment did not contain 
much information about motion, so the dorsal stream through V5 
did not change significantly. Figure 7 shows an increase in consis-
tency of changing trend among dEC during visual stimulus state, 
which indicates that the EC shows stronger synchronization in 

different windows, that is, EC has similar changing trend, which 
may explain why it is stronger than that at rest in some aspects.

Choosing an appropriate window size is an area of concern when 
using the sliding window approach to estimate FC and EC dynamics. 
Theoretically, the window size should be sufficiently small enough to 
detect potentially interesting transients in the low-frequency fluc-
tuations in brain connectivity. However, an excessively small win-
dow will decrease the signal-to-noise ratio (SNR) of the estimated 
dFC and dEC. Since the duration of design block of the experimen-
tal paradigm is 40 s (62 × 0.645 s), the window width is set to 31, 
46, 62, 77, 93, 100, and 108, respectively, to measure the impact of 
the sliding window size on relationship between static and dynamic 
connectivities. Seven different window widths were employed to 
calculate the Pearson correlation coefficient between intensity of 
static connectivity and variance of dynamic connectivity. The result 
demonstrated that the influence of window size on PCC results was 
relatively minimal (see Figure  9). Besides, the results of the other 
two dynamic measurement methods (i.e., ALFF and dispersion) are 
illustrated in Figures S2 and S3.

5  | CONCLUSION

fMRI has the characteristics of real-time and high spatial–tem-
poral resolution, and has been widely used in the basic cognitive 
research and clinic of ophthalmic fields such as optic nerve dis-
ease and ophthalmic acupuncture treatment. The present study 
explores time-varying coupling and causal information of the 
modulation effects among several subareas of human visual cor-
tex (V1–V5) (Samdin, Ting, Salleh, Hamedi, & Noor,  2016; Xin & 
Biswal,  2015). Besides, the relationship between static and dy-
namic connectivities especially for static EC (sEC) and dynamic EC 
(dEC), as well as the consistency characteristics of changing trend 
of dFCs and dECs, is also investigated. The connection intensity 
and information flow were calculated in each window among the 
visual areas by the Pearson correlation coefficient and Granger 
causality analysis, respectively, over time with sliding window 
method. The results demonstrate that there are extensive con-
nections existing in human visual network, which are time-varying 

F I G U R E  9   Pearson correlation 
coefficient between variance of dynamic 
FC and intensity of sFC (a) and variance of 
dynamic EC and intensity of sEC (b) under 
different window width from group level 
and subject level, respectively



     |  11 of 13ZHAO et al.

both in resting and task-related states. sFC intensity is negatively 
correlated with the variance of dFC, while sEC intensity is posi-
tively correlated with the variance of dEC. Furthermore, we also 
find that dFC within visual cortex at rest shows more consistency, 
while dEC shows less compared with task state in changing trend. 
Therefore, this study provides insights into the dynamics of con-
nectivity in human visual cortex and the changes in visual path-
ways when visually stimulated from the perspective of functional 
and effective connectivities. This may contribute to the study of 
the clinical diagnosis, treatment, and pathological mechanism re-
search of ophthalmic diseases such as amblyopia, which is caused 
by the lack of effective stimulation of visual cells due to vari-
ous reasons during visual development in terms of diagnosis and 
treatment.

6  | IMPLIC ATIONS AND FUTURE STUDIES

Still, there are three implications that need further study. First, 
this paper studies the dynamic changes in FC and EC in visual 
cortex during a visual task and the comparison with resting state. 
However, it is impossible to determine the exact neuronal mecha-
nisms in the brain that are subject to changes in task modulation. 
For example, this may be due to short-term brain plasticity regu-
lation (Yao, Shi, Han, Gao, & Dan, 2007), or synchronous oscilla-
tions in neural cell clusters (Buzsáki & Draguhn,  2004). A single 
brain imaging technique can lead to incomplete information ac-
quisition. In the future, multimodal data such as PET, MEG, and 
EEG can be combined to obtain more information on brain activ-
ity. Second, the brain is an organic whole and there are wide con-
nections across the brain particularly between the visual area and 
other brain functional areas such as BA39 area, which involves 
spatial imagination and visual movement, BA7 area, which refers 
to temporal and spatial processing and memory retrieval, BA37 
area, which relates to vision and language (vocabulary and object 
recognition, naming and face recognition). This study only se-
lected visual subareas V1–V5 as the research object and the char-
acteristics of dynamic connectivity under visual stimulus task can 
be examined from whole brain in the future. Third, the Pearson 
correlation, Granger causality analysis, and sliding time window 
method are used as measurement methods for functional connec-
tivity, effective connectivity, and dynamics assessment (Calhoun 
& Adali, 2016; Thompson & Fransson, 2017) in this paper. In the 
future, other measurement methods can be used to further verify 
the experimental results of this paper.
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