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Abstract
Background: Studies	of	brain	functional	connectivity	(FC)	and	effective	connectiv-
ity	(EC)	using	the	functional	magnetic	resonance	imaging	(fMRI)	have	advanced	our	
understanding	of	functional	organization	on	visual	cortex	of	human	brain.	The	cur-
rent	studies	mainly	focus	on	static	or	dynamic	connectivity,	while	the	relationships	
between	them	have	not	been	well	characterized	especially	for	static	EC	(sEC)	and	dy-
namic	EC	(dEC),	as	well	as	the	consistency	characteristics	of	changing	trend	of	dFCs	
and	dECs,	which	is	of	great	importance	to	reveal	the	neural	information	processing	
mechanism	in	visual	cortex	region.
Method: In	 this	 study,	 we	 explore	 these	 relationships	 among	 several	 subareas	 of	
human	visual	cortex	(V1–V5)	by	calculating	the	connection	intensity	and	information	
flow	among	them	over	time	by	sliding	window	method,	which	are	defined	by	Pearson	
correlation	coefficient	and	Granger	causality	analysis,	respectively,	in	each	window.
Results: The	 results	 demonstrate	 that	 there	 are	 extensive	 connections	 existing	 in	
human	visual	network,	which	are	time-varying	both	in	resting	and	task-related	states.	
sFC	intensity	is	negatively	correlated	with	the	variance	of	dFC,	while	sEC	intensity	
is	positively	correlated	with	the	variance	of	dEC.	Furthermore,	we	also	find	that	dFC	
within	visual	cortex	at	rest	shows	more	consistency,	while	dEC	shows	less	compared	
with task state in changing trend.
Conclusion: Therefore,	 this	 study	provides	novel	 findings	 about	dynamics	of	 con-
nectivity	 in	 human	 visual	 cortex	 from	 the	 perspective	 of	 functional	 and	 effective	
connectivity.
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dynamic	effective	connectivity,	dynamic	functional	connectivity,	fMRI,	Granger	causality,	
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1  | INTRODUC TION

Functional	 magnetic	 resonance	 imaging	 (fMRI)	 mainly	 refers	 to	
blood	 oxygen	 level-dependent	 fMRI	 (BOLD-fMRI),	 which	 has	 the	

advantages	 of	 noninvasive,	 repeatable,	 and	 high	 spatial	 resolu-
tion,	 and	has	been	applied	 to	various	aspects	of	 clinical	 and	basic	
research	 (Logothetis,	Pauls,	Augath,	Trinath,	&	Oeltermann,	2001).	
Over	the	past	two	decades,	the	study	of	functional	specificity	and	
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functional	integration	has	led	to	the	development	of	fMRI.	The	func-
tional specificity study only focused on the location of important 
brain	 functions	and	the	 functional	activities	of	 local	brain	 regions,	
while ignoring the interrelationships between different brain regions 
and providing only a small part of the brain structure and function 
(Glasser	et	al.,	2016).	Functional	integration	is	described	in	terms	of	
functional	connectivity	(FC)	and	effective	connectivity	(EC)	(Friston,	
Frith,	 &	 Frackowiak,	 1993).	 The	 functional	 connectivity	 describes	
the temporal correlations between spatially remote neurophysi-
ological events. There are two kinds of research methods: One is 
hypothesis-driven	method,	which	mainly	 includes	correlation	anal-
ysis	 (Tian	 et	 al.,	 2010;	 Zhang	 et	 al.,	 2013),	 coherent	 analysis,	 and	
generalized	 linear	 model	 (GLM);	 the	 other	 is	 data-driven	method,	
which	mainly	 includes	 independent	component	analysis	 (ICA)	 (Shi,	
Zeng,	Wang,	&	Chen,	2015;	Shi,	Zeng,	Wang,	&	Zhao,	2018),	prin-
cipal	component	analysis	 (PCA),	and	cluster	analysis	methods.	The	
EC reflects the directional connectivity between different neural 
units or brain regions and forms a network with edges representing 
directed weights of one neuron or brain region relative to the other. 
The models for studying the brain's effective connectivity include 
structural	equation	model	(SEM)	(Bavelier	et	al.,	2000),	transfer	en-
tropy	(Vicente,	Wibral,	Lindner,	&	Pipa,	2011),	dynamic	causal	model	
(DCM)	(Xin	&	Biswal,	2014),	and	Granger	causality	analysis.	Among	
these,	Granger	causality	method	is	a	statistical	method	for	investi-
gating	the	flow	of	information	between	time	series,	which	does	not	
require prior knowledge and emphasizes the trait of time sequence 
when	 analyzing	 data	 interactions.	 So,	 it	 has	 been	 widely	 applied	
by	neuroscientists	 to	diverse	sources	of	data,	 including	electroen-
cephalography	 (EEG),	 magnetoencephalography	 (MEG),	 fMRI,	 and	
local	 field	potentials	 (LFP)	 (Dimitriadis,	Laskaris,	Tsirka,	Vourkas,	&	
Micheloyannis,	2012;	Gao	et	al.,	2015).

BOLD-fMRI	studies	have	traditionally	investigated	patterns	of	
FC	 and	 EC	 that	 are	 static	within	 the	 scanning	 period.	However,	
studies in recent years have shown that the connectivity of the 
brain	regions	has	instantaneous	changes,	and	the	dynamics	of	this	
connectivity are reflected in the brains during a task or at rest 
(Bassett	 et	 al.,	 2011;	 Hutchison,	 Womelsdorf,	 Gati,	 Everling,	 &	
Menon,	 2013).	 Studying	 the	 time-dependent	 information	 of	 the	
brain connectivity helps humans to have a more comprehensive 
understanding of the brain's functional and structural organiza-
tion,	so	dFC	and	dEC	analyses	have	become	a	new	exploration	field	
in brain connectivity research though the dynamic changes have 
hitherto	been	overlooked	 in	 fMRI	 studies	most	 likely	due	 to	 the	
poor	temporal	resolution	of	fMRI	especially	in	dEC.	The	common	
sliding window method uses a moving window to divide the entire 
BOLD	 signal	 into	multiple	 short	 signals	 (Tobia,	 Hayashi,	 Ballard,	
Gotlib,	 &	Waugh,	 2017).	 Different	windows	 can	 obtain	multiple	
functional connectivity and effective connectivity matrices to re-
flect	the	dynamic	brain	network	connectivity.	Dynamic	FC	often	
occurs within the same individual and is clearly relevant to be-
havior.	 Some	 researchers	 believe	 that	 it	 may	 be	 heavily	 related	
to	 high-level	 thought	 or	 consciousness	 (Hutchison,	Womelsdorf,	

Allen,	 et	 al.,	 2013).	 It	 is	 also	 associated	with	 a	 variety	 of	 differ-
ent neurological disorders and can potentially serve as disease 
biomarkers	(Kaiser	et	al.,	2016).	Previous	studies	have	also	found	
that	 the	 effective	 connectivity	 exhibits	 changes	 across	 cortex	
of	 human	 brain	 (Hu,	 Zhang,	&	Hu,	 2012;	 Spadone,	 et	 al.,	 2015).	
Compared	with	 sFC	and	 sEC	based	on	 the	 traditional	 fMRI	 time	
series	 analytical	methods,	 dynamic	 connectivity	 technology	 can	
better reflect the dynamic participation of different brain regions 
in	the	actual	brain,	which	has	been	suggested	to	be	a	more	accu-
rate representation of functional brain networks.

Functional	magnetic	resonance	imaging	has	made	some	progress	
in	the	basic	research	of	normal	human	brain	functional	networks	(vi-
sual,	auditory,	motor,	sensory,	etc.).	The	study	of	visual	cortex	is	the	
earliest	field	of	application	of	fMRI,	which	is	mainly	relevant	to	the	
easy	control	of	visual	stimulation	conditions,	and	the	relatively	large	
intensity	 of	 the	 visual	 cortex	 activation	 signal.	 In	 visual	 research,	
when	a	 subject	 receives	a	 certain	kind	of	visual	 stimuli,	 the	visual	
signal	is	transmitted	through	the	visual	pathway	to	the	visual	cortex,	
and the increase of neuronal activity for processing relevant visual 
information	causes	local	blood	flow	to	change.	The	fMRI	can	reflect	
the	location,	range,	and	intensity	of	neuron	activity	and	has	become	
an	effective	method	for	visual	research.	The	first	human	brain	fMRI	
obtained	by	Belliveau	et	al.	(1991)	in	1991	was	related	to	visual	re-
search	and	created	a	historical	precedent	for	the	study	of	fMRI	in	the	
localization of human brain function. The results showed a signifi-
cant increase in the volume of blood flow in the primary visual cor-
tex	after	visual	stimulation,	and	the	extent	and	coordinates	of	brain	
activation were reported. Research on the anatomy and physiology 
of	 the	visual	cortex	of	primates	has	provided	valuable	 information	
for	the	study	of	the	human	visual	cortex.	Through	these	studies,	it	
has	been	found	that	the	human	visual	cortex	is	homologous	to	the	
visual	cortex	of	primates	and	confirmed	that	humans	have	at	 least	
25	visual	cortical	areas,	which	cover	more	than	half	of	the	cortical	
area	(Sereno	et	al.,	1995).	In	recent	years,	the	BOLD-fMRI	method	
has	been	used	to	located	accurate	visual	subregions	such	as	V1,	V2,	
V3,	V4,	and	MT/V5,	which	is	basically	consistent	with	the	traditional	
view	(Warnking	et	al.,	2002).

In	 this	 study,	we	 adopted	 fMRI	 data	 considering	 research	 on	
sFC,	sEC,	dFC,	and	dEC	in	both	task-related	and	resting	states.	As	
compared	with	literature	of	dynamic	FC	and	EC,	the	novelty	of	this	
study	 is	 threefold.	 First,	 most	 of	 previous	 studies	were	 focused	
on	difference	of	 (a)	FC	or	EC	between	 tasks	and	 rest	 to	observe	
the modulation effect of tasks on brain network connectivity 
(Spadone,	 et	 al.,	 2015),	 (b)	 FC	 between	 task	 and	 control	 periods	
during	a	block	design	experiment	 (Di	et	al.,	2015),	or	 (c)	dynamic	
changes	in	FC	during	tasks	or	at	rest	(Allen	et	al.,	2014;	Gonzalez-
Castillo	&	Bandettini,	2017).	However,	our	study	is	aimed	to	inves-
tigate	changes	in	FC	and	especially	EC	at	the	same	time	over	time	
in normal subjects at rest and during a task with repeatedly pre-
sented	identical	stimuli,	which	may	provide	new	information	on	the	
dynamic	recombination	of	cerebral	cortex	under	visual	stimulation.	
Second,	the	relationship	between	intensity	of	sFC	and	variance	of	
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dFC	(Fong	et	al.,	2019)	has	gained	attention	in	recent	years	but	not	
in	EC,	so	it	is	going	to	be	discussed	in	this	paper.	Third,	the	dynam-
ics of functional connectivity is usually characterized by its own 
variance,	which	is	viewed	within	a	partial	perspective	and	is	clearly	
not	 enough.	 The	dFC	or	 dEC	between	 two	 certain	 brain	 regions	
can	be	viewed	as	a	vector,	which	is	described	as	the	changing	trend	
with	elements	calculated	in	all	windows.	Therefore,	we	studied	the	
consistency	of	changing	trend,	which	reflects	the	covariation	rela-
tionship	of	dFCs	or	dECs	on	the	whole.	In	other	words,	FCs	or	ECs	
describe the undirected or directed relationship among time series 
of	brain	regions	obtained	from	fMRI	scans,	while	the	consistency	
of	changing	trend	describes	the	relationship	between	time-varying	
FCs	which	no	longer	describes	a	single	dFC.	We	explore	 it	 in	the	
present study to further investigate the dynamic characteristics of 
brain	connectivity.	The	dynamics	study	of	FC	and	EC	in	this	paper	
is	divided	into	three	steps:	(a)	A	sliding	window	method	was	used	
to	estimate	 the	 time-varying	 correlation	 coefficient	 and	Granger	
causality	among	V1–V5	of	visual	subregions	(Luo	et	al.,	2016);	 (b)	
the	relationship	between	the	intensity	of	static	FC	and	variance	of	
dynamic	FC,	and	the	intensity	of	static	EC	and	variance	of	dynamic	
EC	 was	 calculated,	 respectively;	 (c)	 the	 consistency	 of	 changing	
trend	 in	 dFC	 and	 dEC	 was	 estimated	 to	 validate	 the	 connectiv-
ity dynamics from a global perspective. The results showed that 
there	were	 indeed	 extensive	 connections	 between	 various	 brain	
regions	of	the	visual	system,	and	the	network	of	brain	regions	was	
dynamic	both	in	rest	and	task	states.	Static	functional	connection	
intensity	is	negatively	correlated	with	the	variance	of	dynamic	FC,	
while static effective connection intensity is positively correlated 
with	the	variance	of	dynamic	EC.	We	can	also	find	that	dFC	within	
visual	cortex	at	rest	shows	more	consistency,	while	dEC	shows	less	
compared	with	task	state.	In	conclusion,	dynamic	brain	connectiv-
ity	 analysis	 is	 expected	 to	 be	 a	more	 accurate	 representation	 of	

functional brain networks and may shed a bright light on a variety 
of	vision-related	disorders.

2  | MATERIAL S AND METHODS

2.1 | Participants and fMRI data acquisition

Resting-state	 and	 task-related	 fMRI	 data	were	 collected	 from	 the	
enhanced	 Nathan	 Kline	 Institute	 (NKI)/Rockland	 sample	 of	 the	
international	 neuroimaging	 data-sharing	 initiative	 (INDI)	 (http://
fcon_1000.proje	cts.nitrc.org/indi/enhan	ced/)	 (Nooner,	 Colcombe,	
Tobe,	Mennes,	&	Milham,	2012).	Institutional	Review	Board	Approval	
was	obtained	 for	 this	 project	 at	 the	Nathan	Kline	 Institute	 and	 at	
Montclair	State	University.	Written	informed	consent	was	obtained	
for	all	study	participants.	Only	the	resting-state	and	block-designed	
visual	checkerboard	data	with	a	relatively	short	repetition	time	(TR)	
of	645	ms	were	used	 in	 the	current	 analysis,	which	could	provide	
necessary	high	temporal	resolution	to	unravel	FC	and	EC	dynamics.	
In	total,	53	subjects	(18–41	years,	mean	=	23.3	years,	standard	de-
viation	=	5.6	years)	in	session	DS2	from	this	dataset	were	included	
in the current study.

The	task-related	fMRI	data	were	recorded	from	a	simple	check-
erboard	 visual	 experiment,	 where	 the	 checkerboard	 stimuli	 were	
presented in the center of the screen with a flickering frequency 
of	 4	 Hz.	 There	 was	 a	 black-and-white	 flipped	 checkerboard	 with	
radial	 shape	 during	 the	 stimulus	 state,	 and	 a	 cross	 on	 the	 black	
screen	 during	 the	 control	 state	 is	 shown	 in	 Figure	 1.	 The	 block	
types	are	[FIXATION,	CHECKER,	FIXATION,	CHECKER,	FIXATION,	
CHECKER,	FIXATION]	 (see	Figure	1),	with	seven	blocks	 in	all.	The	
total	scan	time	was	about	2	min	35	s	with	totally	240	images	acquired.	
The	resting-state	and	task-related	fMRI	data	were	all	scanned	using	

F I G U R E  1  Verification	test	of	visual	
stimulation.	(a)	A	black	screen	during	
fixation	state,	(b)	picture	of	checkerboard	
patterns	after	stain.	(c)	Block	design	of	
task-related	fMRI	experiment.	The	scan	
started	with	a	20-s	fixation	condition	
and	followed	by	a	20-s	checkerboard	
condition	with	three	repetitions.	After	the	
third	checkerboard	block,	there	was	an	
additional	35-s	fixation	condition

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
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a	multiband	echo-planar	imaging	(EPI)	sequence	with	the	following	
parameters:	TR/TE	=	645/30	ms;	acquisition	matrix	=	74	×	74;	flip	
angle	=	60°;	voxel	size	=	3	mm3	isotropic;	slices	=	40.

2.2 | Data preprocessing

Data were preprocessed using an automated pipeline based around 
DPARSF	(Yan	&	Zang,	2010)	software	package.	Preprocessing	in-
cluded	the	removal	of	the	first	10	image	volumes,	motion	correc-
tion,	 spatial	 normalization	 into	 Montreal	 Neurological	 Institute	
space,	 reslicing	 to	 3	 mm	 ×	 3	 mm×3	 mm	 voxels,	 and	 smoothing	
with	a	Gaussian	kernel	(FWHM	=	4	mm),	detrending	and	nuisance	
covariates	 regression	 (six	parameters	 related	 to	head	movement,	
white	matter,	and	CSF	signals).	Poor-quality	scans	with	nonstation-
ary	and	excessive	head	motion,	defined	a	priori	as	>2	mm	transla-
tion,	or	>2°	rotation,	were	excluded	from	analysis;	this	included	six	
resting	runs	and	two	task	runs,	so	45	subjects	were	included	in	the	
final analysis.

2.3 | ROI selection

The	 probability	 map	 in	 the	 SPM	 anatomy	 toolbox	 (Eickhoff	
et	al.,	2005)	is	used	to	select	V1–V5	as	the	ROIs,	which	are	shown	
in	Figure	2.	The	mean	time	series	for	regions	of	 interest	(ROI)	was	
extracted	for	each	subject	of	resting	and	task-related	fMRI	data	with	
REST	1.8	software	(http://restf	mri.net/forum	/REST_V1.8).

2.4 | Method

2.4.1 | Static functional connectivity (sFC)

The	static	functional	connection	matrix	R	(size:	m	×	m)	is	computed	
as	the	Pearson	correlation	coefficient	matrix	between	the	average	
time series of ROIs Xt	(i	=	1,2,…,m)	(m	is	the	number	of	ROIs)	over	
the entire scan time with Rij	=	Rji	=	corr(Xi,Xj)	and	then	averaged	
across	all	subjects	in	each	group,	respectively.	To	avoid	repeated	
information,	only	the	lower	triangular	portion	of	the	symmetrical	
FC	matrix	was	properly	converted	into	a	static	FC	intensity	vector	
Rs	 (size:	1×

m2
−m

2
)	 for	further	analysis.	 In	this	study,	there	are	five	

ROIs and each subject has ten functional connectivity strength 
values.

2.4.2 | Static effective connectivity (sEC)

Granger	causality	analysis	(GCA)	method	is	used	in	this	article,	which	
refers	 to	 a	 predictive	 relationship	 among	 time	 series.	 Generally	
speaking,	given	two	time	series	X(n)	and	Y(n)	(n	=	1,2,…,t),	we	say	that	
YG	causes	X	if	it	would	be	more	favorable	in	predicting	X	with	the	
incorporation	of	Y's	historical	information	than	only	using	X's	histori-
cal	information.	In	order	to	check	whether	YG	causes	X	conditional	
on	Z	(given	Z),	the	vector	autoregressive	(VAR(p))	and	joint	autore-
gressive model are described as:

where a1i,c1i,a2i,c2i and b2i	are	best	regression	parameters	of	the	model,	
�1t and �2t	 are	 two	 zero-mean	 uncorrelated	white-noise	 series.	 The	
model order p	can	be	determined	by	BIC	criterion.	var(�1t) and var(�2t) 
represent	 the	estimation	accuracy	of	 the	X's	 current	value	with	 the	
past	behavior	of	X	and	the	past	behavior	of	X	joint	with	Y	in	condition	
of	Z,	respectively.	The	measure	of	the	strength	of	the	causality	Y	→	X	
in	condition	of	Z	can	be	defined	as,

If	 there	 is	no	direct	causality	between	Y	and	X	but	an	 indirect	
causal	 relationship	 between	 them	because	of	Z,	b2i	 =	 0	 in	 (2)	 and	
var(�1t)=var(�2t),	resulting	in	FY→X|Z=0. It means that under the con-
dition	of	Z,	adding	Y	to	the	model	does	not	improve	the	prediction	
accuracy.

We	 use	 the	 code	 provided	 in	 Luca	 Faes's	 paper	 (Faes,	 Nollo,	
Stramaglia,	&	Marinazzo,	2017)	to	calculate	the	effective	connectiv-
ity	between	ROIs	and	obtain	the	static	effective	connection	matrix	F 
(size:	m	×	m)	for	all	subjects,	which	were	then	averaged	in	each	group,	
respectively,	with	the	model	order	p optimized separately for each 
subject	using	the	BIC	criterion.	The	static	EC	intensity	vector	Fs	(size:	
1× (m2

−m))	 is	 defined	 as	 the	 effective	 connectivity	 strength	 be-
tween	ROIs	during	the	entire	scan	time	period,	that	is,	we	removed	
the diagonal from F and then converted it into a row vector. In this 
study,	there	are	five	ROIs	and	each	subject	has	twenty	effective	con-
nectivity strength values.

(1)Xt=

p∑
i=1

a1iXt−i+

p∑
i=1

c1iZt−i+�1t

(2)Xt=

p∑
i=1

a2iXt−i+

p∑
i=1

c2iZt−i+

p∑
i=1

b2iYt−i+�2t

(3)FY→X|Z= ln
var(�1t)

var(�2t)

F I G U R E  2  Selection	of	V1–V5	as	ROIs.	
Five	ROIs	used	in	the	current	analyses	are	
displayed	in	red	(V1),	green	(V2),	yellow	
(V3),	violet	(V4),	and	blue	(V5)	according	
to	PMaps	of	SPM	anatomy	toolbox

http://restfmri.net/forum/REST_V1.8
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2.4.3 | dFC and dEC

Static	connectivity	methods	assume	networks	in	the	brain	are	sta-
tionary	over	the	whole	scan	length	(typically	ranging	from	6–10	min),	
which	represents	an	average	state.	However,	dynamic	connectivity	
methods regard the networks as a function of time with variabil-
ity	often	quantified	as	ALFF-FC	map	(Allen	et	al.,	2014;	Qin,	Chen,	
Hu,	 Zeng,	&	 Shen,	 2015),	 the	 index	 of	 dispersion	 (variance/mean)	
(Demirtaş	 et	 al.,	 2016;	Tian,	 Li,	Wang,	&	Yu,	2018),	 or	 simple	 var-
iance	 (Fong	et	 al.,	 2019;	 Jin	 et	 al.,	 2017)	 of	 the	dFC,	which	 is	 like	
higher	 order	 statistics	 of	 connectivity.	 However,	 previous	 studies	
often	aim	at	static	and	dynamic	FCs.	The	dynamic	property	of	the	
EC especially the relationship between static EC and dynamic EC is 
so far overlooked.

Based	on	the	sliding	window	method,	dynamic	functional	and	ef-
fective connectivity network for each subject were calculated using 
the	defined	V1–V5	as	the	ROIs.	The	BOLD	signal	Xi (i=1,2,...,m) of the 
ROI is segmented into a short time series Xi,w (i=1,2,...,m;w=1,2,...,n). 
m is the number of ROIs and n is the number of windows. The window 
width	often	ranged	from	8	to	240	s	(Shakil,	Lee,	&	Keilholz,	2016)	in	
the	study	of	dynamic	brain	network	connectivity	previously.	Granger	
pointed out that sample size is an important factor influencing cau-
sality.	Zhou	and	Zinai	(2004)	tested	two	stationary	sequences	with	
the	first-order	lag	model	and	found	that	the	probability	of	Granger	
causality increased significantly with the increase of sample size. In 
this	paper,	the	number	of	time	points	for	each	window	is	set	to	100	
and	the	step	size	is	set	to	1,	so	n	=	131	for	fMRI	data.	The	functional	
connection	matrix	Rw	 (size:	m	×	m)	corresponding	to	the	window	is	
calculated by Xi,w (i=1,2,...,m;w=1,2,...,n),	see	formula	(4),	where	the	
element	 value	 of	 the	 i-th	 row	 and	 the	 j-th	 column	 is	 indicated	 as	
Rw(i,j),	and	corr	represents	the	calculation	of	the	Pearson	correlation	
coefficient.	Therefore,	Rw(w=1,2,...,n) obtained by each subject can 
reflect the dynamic brain functional connectivity network of the 

subject.	The	functional	connection	matrix	of	all	subjects	was	aver-
aged	 to	obtain	 the	dynamic	 functional	connectivity	matrix	 (dFCM,	
size: m	 ×	m	 ×	 n)	 for	 each	 group.	 At	 the	 same	 time,	 the	 effective	
connection	matrix	Fw	 (size:	m	 ×	m)	 corresponding	 to	each	window	
is	calculated	by	Granger	causality	analysis	method,	with	Fw(i,j) repre-
senting the effective connection value from the j-th	ROI	to	the	i-th	
ROI. Fw(w=1,2,...,n) obtained by each subject can reflect the dynamic 
brain effective connectivity network of the subject. The effective 
connection	matrix	of	all	the	subjects	was	averaged	to	obtain	the	dy-
namic	effective	connectivity	matrix	(dECM,	size:	m	×	m	×	n)	for	each	
group. 

By	 vectorizing	 the	 lower	 triangular	 elements	 in	 the	 functional	
connection	matrix	Rw	 of	 each	window,	 a	dynamic	FC	 intensity	ma-
trix	Rtotal of n× m2

−m

2
 for each subject can be obtained. Each column of 

the	matrix	Rtotal	represents	the	time-varying	changing	trend	between	
two	brain	regions	(i.e.,	a	specific	dFC),	and	its	variance	is	calculated	to	
characterize	the	variability	of	each	functional	connection.	Since	there	
are	ten	FCs	among	five	ROIs,	we	can	get	ten	variance	values,	which	
form	a	vector	for	each	subject.	Obviously,	the	high	consistency	indi-
cates	that	dFCs	or	dECs	have	a	similar	trend	as	time	goes	on.	For	ex-
ample,	when	the	dFC	vector	between	V1	and	V2	(denoted	by	dFC12)	
is	highly	correlated	with	dFC	vector	between	V3	and	V4	(dFC34),	it	
is	considered	that	the	consistency	of	changing	trend	between	dFC12	
and	dFC34	is	high,	that	is,	changing	trend	of	different	dFCs	is	similar.	
Similarly,	the	dynamic	EC	intensity	matrix	Ftotal	(size:	n× (m2

−m))	is	ob-
tained,	and	twenty	variance	values	are	calculated	for	each	subject.

The	overall	processing	flowchart	is	shown	in	Figure	3,	which	in-
cludes	the	above-mentioned	analyses.

(4)Rw(i,j)=

⎧
⎪⎨⎪⎩

corr(Xi,w,Xj,w),if i≠ j

0,if i= j

F I G U R E  3   Overall processing 
flowchart. m is the number of ROIs;n is 
the number of windows; k is the number 
of	subjects.	dECM,	static	effective	
connection	matrix;	dFCM,	dynamic	
functional	connection	matrix;	sECM,	static	
effective	connection	matrix;	sFCM,	static	
functional	connection	matrix
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3  | RESULTS

3.1 | Relationship between static and dynamic FCs

For	the	average	sFC	intensity	(Rs)	and	the	average	dFC	variance	of	all	
subjects,	the	Pearson	correlation	coefficient	between	them	was	cal-
culated.	The	result	was	−0.9867	for	data	at	rest	and	−0.9841	for	data	
recorded	during	a	visual	task.	It	shows	that	the	sFC	intensity	and	dFC	
variance are negatively correlated with each other. We can also see 
from	Figure	4	that	the	average	sFC	intensity	and	the	variance	of	dFC	
have opposite fluctuation trends regardless of the resting state or 
the	visual	stimulation	state,	that	is,	strong	functional	connectivity	is	
always	accompanied	by	 small	 variability.	After	 calculating	Pearson	
correlation	coefficient	between	sFC	intensity	and	dFC	variance	like-
wise	for	each	subject,	we	find	the	results	were	−0.8873	±	0.1017	for	
45	subjects	at	rest	and	−0.9245	±	0.0798	during	task,	respectively.	
It	also	shows	that	there	is	a	high	negative	correlation	between	sFC	
intensity	and	dFC	variance	as	a	whole.	The	larger	the	sFC	intensity	is,	
the	smaller	the	variance	of	dFC	would	be.	At	level	of	single	subject,	
the	correlation	was	slightly	reduced,	which	is	likely	due	to	individual	
differences	or	machine	noise.	We	also	used	an	independent-sample	t 
test to compare the differences in functional connectivity of the two 
groups for each pair of ROIs with threshold p	<	.005	(.05/10)	correct-
ing	for	multiple	comparisons	of	correlations.	FCs	showing	significant	
difference	are	denoted	in	Figure	4	with	*.	Detailed	values	of	average	
sFC	and	variance	of	dFC	are	shown	in	Table	S1,	and	statistical	param-
eters	of	the	difference	in	both	states	are	shown	in	Table	S3.

3.2 | Relationship between static and dynamic ECs

Likewise,	 for	 the	 average	 sEC	 intensity	 (Fs)	 and	 the	 average	 dEC	
variance	 of	 all	 subjects,	 the	 Pearson	 correlation	 coefficient	 be-
tween	them	was	calculated.	The	result	was	0.8984	for	data	at	rest	
and	0.8726	for	data	recorded	during	a	visual	task.	We	can	observe	
that the average sEC intensity has a similar fluctuation trend with 
the	dEC	variance	at	 rest	 and	 in	 the	visual	 stimulation	experiment.	
After	 calculating	 Pearson	 correlation	 coefficient	 between	 sEC	 in-
tensity	and	dEC	variance	for	each	subject,	we	find	the	results	were	
0.6025	±	0.2716	for	45	subjects	at	rest	and	0.6634	±	0.2675	during	
task,	 respectively.	 The	Pearson	 correlation	 coefficient	 of	 the	 sub-
ject level is lower than that of group analysis. It is probably because 

causality	 value	 is	 small,	 and	 the	 group-level	 calculation	 used	 the	
mean value of static connectivity intensity and variance of dynamic 
connectivity,	 which	 may	 balance	 out	 some	 individual	 differences.	
Overall,	there	is	a	high	positive	correlation	between	static	EC	inten-
sity	and	dEC	variance,	and	the	larger	the	sEC	intensity	is,	the	larger	
the variance of the dEC variation would be. It can also be seen from 
Figure	5	that	there	are	stronger	effective	connectivity	and	greater	
variability for data collected during visual stimulation than at rest 
though there is no significant difference in EC between two condi-
tions	(p>	.05/20).	Detailed	values	of	average	sEC	and	variance	of	dEC	
are	shown	in	Table	S2,	and	statistical	parameters	of	the	difference	in	
both	states	are	shown	in	Table	S4.	Besides,	the	results	of	other	two	
dynamic	measurement	methods	(i.e.,	ALFF	and	dispersion)	of	FC	and	
EC	fluctuation	are	demonstrated	in	Figure	S1.

3.3 | Consistency in changing trend of dFC

Since	 the	 dFC	 or	 dEC	 between	 two	 certain	 brain	 regions	 can	 be	
viewed	as	a	vector,	which	is	described	as	the	changing	tread	with	el-
ements	calculated	in	all	windows,	the	consistency	of	changing	trend	
of	all	dFCs	or	dECs	is	studied	to	investigate	the	dynamic	character-
istics of brain connectivity. Each column of the dynamic functional 
connectivity	 strength	 matrix	Rtotal	 (n	 ×	 10)	 is	 the	 changing	 trend	
for	each	FC	during	an	experiment,	and	each	row	is	all	FCs	within	a	
time window. The Pearson correlation coefficient among columns 
is	calculated	to	obtain	the	correlation	matrix	(size:	10	×	10)	for	each	
subject,	which	is	then	averaged	in	each	group	(see	Figure	6).	It	can	
be observed that the functional connectivity changes with similar 
trends.	Compared	to	the	resting	state,	the	data	during	a	visual	stim-
ulation showed a consistent decrease in changing trend between 
dFCs,	which	is	denoted	in	Figure	6	with	*	(p	<	.0011,	namely	.05/45).

3.4 | Consistency in changing trend of dEC

Each	column	of	the	dynamic	effective	connectivity	strength	matrix	
Ftotal	(n	×	20)	is	the	changing	trend	for	each	EC	during	an	experiment,	
and each row is all ECs within a time window. The Pearson correla-
tion coefficient among columns is calculated to obtain the correla-
tion	matrix	(size:	20	×	20)	for	each	subject.	After	taking	the	absolute	
value,	 the	 averaged	 correlation	 matrix	 is	 obtained	 (see	 Figure	 7).	

F I G U R E  4  Mean	sFC	intensity	(a)	
and	dFC	variance	(b)	for	resting	and	
task-related	states,	respectively.	FCi,j 
represents the Pearson correlation 
coefficient between time series of 
ROIi	and	ROIj.	*	denotes	that	there	is	a	
significant	difference	by	independent-
sample t	test	(p	<	.005),	indicating	the	
functional	connectivity	between	V5	
and	V1–V4	during	visual	stimulation	is	
significantly lower than at rest
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Compared	to	the	resting	state,	the	task-related	data	showed	a	con-
sistent	increase	in	changing	trend	between	dEC,	which	is	denoted	in	
Figure	7	with	*	(p	<	2.6316e−04,	namely	.05/190).

4  | DISCUSSION

Visual	cortex	is	primarily	responsible	for	visual	information	process-
ing,	which	is	located	around	the	occipital	lobe	and	receives	visual	in-
formation input from the lateral geniculate nucleus of the thalamus. 
The	human	visual	cortex	includes	the	primary	visual	cortex	(V1,	also	
known	as	the	striate	cortex)	and	the	extrastriate	cortex	(such	as	V2,	
V3,	V4,	 and	V5).	 The	 flickering	 checkerboard	 stimulus	 experiment	
is	the	most	widely	used	and	stable	method	to	explore	the	function	
of human brain visual system for clinical and scientific researchers 
engaged	 in	 ophthalmology	 and	 neuroscience.	 It	 provides	 complex	
visual	stimuli,	including	optical	and	graphic	information,	so	that	the	
corresponding	cortex	of	 the	subject	can	be	significantly	activated.	
Wohlschläger	et	al.	(2005)	studied	the	V1,	V2,	and	Brodmann	areas	
(BA)	17	and	18	of	 the	 functional	magnetic	 resonance	 retinal	brain	
map	 and	 found	 that	 they	 were	 basically	 consistent,	 respectively,	
indicating a certain degree of interoperability between functional 
partition	 and	 traditional	 anatomical	 partition.	 BA17	 is	 the	 original	
sensory area that is directly subjected to visual stimuli and aims to 
identify	 the	 three-dimensional	 structure	 of	 the	 object	 image	 such	
as	 form	perception,	 depth	perception,	 and	 color	 vision.	BA18	and	

BA19,	known	as	the	visual	association	area,	commonly	used	to	syn-
thesize	 visual	 information,	 form	 a	 conscious	 awareness	 and	 con-
nect	with	motor,	sensory,	auditory,	 language,	and	other	centers	of	
ipsilateral	and	contralateral	brains.	The	two-stream	hypothesis	 is	a	
widely accepted and influential model of the neural processing of vi-
sion,	which	argues	that	humans	possess	two	distinct	visual	systems	
(see	Figure	8)	 (Ungerleider	&	Haxby,	1994).	The	dorsal	 stream	 (or,	
“where	pathway”)	 stretches	 from	the	primary	visual	cortex	 (V1)	 in	
the occipital lobe forward into the parietal lobe and is proposed to 
be involved in the guidance of actions and recognize where objects 
are	in	space.	Also	known	as	“what	pathway,”	the	ventral	stream	goes	
through	V2	and	V4	from	V1	to	areas	of	the	 inferior	temporal	 lobe	
and is associated with object recognition and form representation. 
In	 the	 present	 paper,	 the	 visual	 cortex	 areas	 from	V1	 to	V5	were	
selected for further analysis.

Recently,	 the	 temporal	 variability	 of	 functional	 connectivity	
and	effective	connectivity	has	attracted	increasing	attention	(Park,	
Friston,	Pae,	Park,	&	Razi,	2018;	Zalesky,	Fornito,	Cocchi,	Gollo,	&	
Breakspear,	2014).	 Functional	brain	networks	demonstrate	 signifi-
cant temporal variability and dynamic reconfiguration even in the 
resting	 state.	 Either	 sliding	 window	 or	 time–frequency	 analysis	
shows	nonstationarity	in	spontaneous	brain	activity,	which	triggers	
temporal	changes	 in	connectivity	of	 its	 functional	architecture.	As	
the resting state is an unconstrained condition that involves vary-
ing	 levels	of	mind-wandering,	arousal,	attention,	and	vigilance,	 the	
temporal variability of functional brain networks derived from the 

F I G U R E  5  Mean	sEC	intensity	(a)	and	
dEC	variance	(b)	for	resting	and	task-
related	states,	respectively.	ECij represents 
Granger	causality	from	ROIi	to	ROIj,	
denoted	by	ROIi	→	ROIj
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BOLD-fMRI	may	be	driven	ultimately	by	changes	in	mental	state.	In	
addition,	specific	changes	 in	synchronization	and	 information	 flow	
occur within and between networks that correlate with behavioral 
performance.

The temporal variability of a functional connectivity character-
izes	the	changes	in	the	Pearson	correlation	between	BOLD	signals	
of	two	corresponding	ROIs.	Low	temporal	variability	means	that	the	
functional connectivity of two given ROIs is stable across different 

F I G U R E  6  Average	dFC	correlation	coefficient	plots	for	visual	stimulation	experiment	(a)	and	resting-state	experiment	(b),	respectively.	*	
indicates	significant	difference	in	consistency	of	dFC	changing	trend	by	independent-sample	t	test	(p	<	.05/45).	dFCij	is	a	vector,	which	means	
time-varying	functional	connectivity	(namely,	changing	trend)	with	elements	calculated	by	the	Pearson	correlation	coefficient	between	ROIi	
and ROIj in all windows

F I G U R E  7  Average	dEC	correlation	coefficient	plots	for	visual	stimulation	experiment	(a)	and	resting-state	experiment	(b),	respectively.	
*	denotes	significant	differences	in	consistency	of	dEC	changing	trend	by	independent-sample	t	test	(p	<	.05/190).	dECij	is	a	vector,	which	
means	time-varying	effective	connectivity	(namely,	changing	trend)	from	ROIi	to	ROIj	in	all	windows	with	elements	calculated	by	the	
Granger	causality	method
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time	windows,	and	vice	versa.	From	Figure	4,	we	note	the	low	vari-
ability,	together	with	the	strong	functional	connectivity	within	the	
visual network during task and rest states. It shows that whether 
in	 rest	 or	 task	 state,	 there	 are	 indeed	 widespread	 connectivities	
between	 brain	 regions	 in	 the	 visual	 cortex	 (Power,	 Schlaggar,	 &	
Petersen,	2014),	and	the	network	formed	by	the	brain	region	is	dy-
namic	 (Vidaurre	et	al.,	2018).	The	human	brain	demonstrates	tight	
association	in	its	structure	and	function,	and	regions	within	one	net-
work tend to synchronize more easily with each other and thus have 
lower	 temporal	variability.	The	 results	on	FC	variability	are	also	 in	
agreement	with	Ref.	(Power	et	al.,	2011),	which	suggested	that	visual	
system is rather stationary. It is meaningful and helpful to study static 
and	dynamic	connectivities	at	the	same	time,	especially	the	relation-
ship	between	them.	Studies	have	shown	that	in	different	cognitive	
states,	or	different	diseases,	not	only	the	connectivity	of	the	brain	
changes,	 but	 also	 the	 variability	 of	 dynamic	 connectivity	 changes	
(Demirtaş	 et	 al.,	 2016).	 Sometimes,	 better	 classification	 charac-
teristics than static characteristics can be obtained from dynamic 
brain	connectivity	analysis	(Jie,	Liu,	&	Shen,	2018;	Qin	et	al.,	2015).	
Fong	et	al.	(2019)	pointed	out	that	combining	static	and	dynamic	FC	
features numerically improves predictions over either model alone. 
Incorporating	 dynamic	 FC	 features	 consistently	 improves	 predic-
tions	upon	static	FC	alone	and	dFC	may	complement	sFC	in	charac-
terizing individual differences in attention. It figured out that static 
and dynamic matrices were highly dissimilar under both rest and 
task,	but	no	specific	 relationship	was	explored.	From	Figure	4,	we	
note	 that	 the	 sFC	 intensity	has	 a	 strong	negative	 correlation	with	
variance	 of	 dFC,	 which	 is	 similar	 to	 previous	 studies.	 Deng,	 Sun,	
Cheng,	and	Tong	(2016)	discovered	a	strong	negative	correlation	be-
tween	inter-regional	FC	and	FC	variability.	Jin	et	al.	(2017)	found	that	
PTSD	subjects	have	stronger	static	connectivity,	but	reduced	tem-
poral	variability	of	connectivity.	Zhang	et	al.	 (2016)	found	that	the	
temporal variability of a region correlates negatively with both the 
amplitude	of	its	BOLD	activity	and	the	node	degree,	since	the	BOLD	
activity	 of	 a	 region	 and	 its	 degree	 are	 positively	 correlated.	 Thus,	
static	 and	 dynamic	 connectivities	 explore	 brain	 connectivity	 from	
different	angles	and	comparing	them	within	the	context	of	the	same	
study may help to better characterize the function of brain areas.

Compared	 with	 resting	 state,	 subjects	 in	 task	 state	 exhibited	
significantly	 decreased	 functional	 connectivity	 between	 V5	 and	
V1–V4	(p	<	.005).	The	discovery	that	FCs	among	occipital	 lobe	de-
crease during task state comparing with resting state is similar to 
previous	 studies	 (Cole,	 Bassett,	 Power,	 Braver,	 &	 Petersen,	 2014;	
Spadone,	 et	 al.,	 2015).	 Comparisons	 of	 functional	 network	 con-
nectivity during resting and task conditions also showed that func-
tional network connectivity was stronger during rest compared 
to	 task	 (Arbabshirani,	Havlicek,	Kiehl,	Pearlson,	&	Calhoun,	2013).	
According	 to	 Figure	 6,	 the	 consistency	 of	 dFC	 changing	 trend	 in	
the	visual	 stimulus	 state	 is	 smaller	 than	 rest	 state,	 indicating	a	 lit-
tle	asynchronism	in	FC	and	providing	evidence	of	smaller	functional	
connectivity. One possibility of this effect is due to some difference 
in electrophysiological brain rhythms during resting state relative 
to	 task.	 For	 instance,	 alpha	 rhythms	 that	 are	 consistently	 present	
during rest may indirectly result in increased synchronizations in the 
BOLD	signal,	such	that	shifts	to	other	frequencies	during	the	flicker-
ing	checkerboard	condition	decrease	fMRI-based	FC	compared	with	
the	fixation	condition.	Another	possibility	is	that	each	brain	region	
performs	 different	 functions	 in	 response	 to	 some	 aspects	 (not	 all	
aspects)	of	the	task,	thus	causing	increased	activation	and	decreased	
synchronicity	 for	 respective	 responsibilities,	which	 further	explain	
the	 disassociation	 between	 FCs	 and	 BOLD	 response.	Meanwhile,	
regions contributing significantly within a given functional area are 
often	structurally	connected	to	each	other,	or	alternatively	a	brain	
region with more fiber connections to those of the same commu-
nity	would	 be	 involved	more	 stably	 in	 that	 functional	 community,	
which	will	result	in	a	strong	connectivity.	Thus,	FCs	between	adja-
cent	brain	regions	(such	as	V1	and	V2,	V2	and	V3,	V3	and	V4,	V4	and	
V5)	are	relatively	larger	than	remote	brain	regions	(such	as	V1	and	
V5)	 and	 show	 less	 variability.	Also,	 there	 is	 evidence	 that	middle/
superior	occipital	gyrus	demonstrates	 low	variability,	while	middle	
temporal	gyrus	demonstrates	a	high	variability,	which	may	also	ex-
plain	why	 variabilities	 of	 FC	 among	V1–V4	 are	 smaller	 than	 those	
involving	V5	(Zhang	et	al.,	2016).

As	with	 the	 temporal	variability	of	FC,	 the	 temporal	variability	
of EC is defined as the variance of dynamic EC in all time windows 
across	the	whole	experiment.	That	 is,	 the	fluctuation	amplitude	of	
the	Granger	causality	time	courses	represents	the	variability	of	each	
connection	between	regions	over	time.	As	far	as	we	know,	no	fMRI	
studies have focused on the relationship between static and dynamic 
ECs.	However,	it	is	discovered	that	static	EC	is	positively	correlated	
with	 variance	of	 the	dEC,	which	 is	 different	 from	 the	 relationship	
in	FC	and	 is	novel	 to	our	perception.	 It	means	 that	 large	effective	
connectivity is accompanied by large variance of dEC. We specu-
lated	that	when	the	brain	receives	visual	stimulation,	the	information	
flows	in	the	visual	cortex	changes	and	keeps	at	high	level	for	a	period	
of	time.	After	the	visual	simulation	disappears	and	the	screen	reverts	
to	black,	the	information	flow	returns	back	to	the	baseline	state.	So,	
the changes in information flow in brain regions may be due to the 
cyclical	changes	in	external	stimuli	during	a	block-designed	experi-
ment.	The	more	ECs	among	V1–V5	increase	when	receiving	continu-
ous	visual	stimulation,	the	more	they	differ	with	resting	state,	which	

F I G U R E  8   Dorsal and ventral pathways
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will result in larger variability as the ECs need to increase and recover 
to resting level periodically.

There is no significant difference in effective connectivity be-
tween	 two	 groups	 (p>	 .05/20)	 though	 we	 can	 find	 that	 the	 ECs	
among	 V1–V5	 increase	 during	 task	 state	 compared	 with	 resting	
state when using a less stringent correction threshold especially 
EC12,	EC13,	EC14,	EC21,	and	EC23	 (see	Figure	5).	This	phenom-
enon	of	increase	in	EC	among	V1–V5	is	consistent	with	visual	for-
mation	as	the	visual	cortex	produces	the	flow	of	information	when	
stimulated.	It	is	generally	believed	that	V2	and	V3	revolve	around	
V1	and	accept	the	contact	fibers	emitted	by	V1.	They	are	not	lim-
ited	to	a	certain	function,	but	process	and	integrate	various	infor-
mation	to	complete	advanced	cognitive	activity.	V2	is	the	second	
major	visual	 area	of	 the	visual	 cortex	and	 the	 first	 station	of	 the	
visual	 association	 area,	 receiving	 strong	 feedforward	 connection	
from	V1,	and	sending	connection	to	V3–V5,	and	also	having	strong	
feedback	connection	to	V1.	V3	is	located	in	the	front	of	V2,	equiv-
alent	to	anatomically	Brodmann	area	19,	which	receives	input	from	
V1	and	V2	and	is	projected	into	the	posterior	parietal	cortex.	The	
dorsal	 and	 ventral	 parts	 of	V3	 are	 responsible	 for	 the	 lower	 and	
upper	1/4	of	the	lateral	field	of	vision,	respectively.	V4	is	the	third	
visual	area	of	the	ventral	stream,	receiving	powerful	feedforward	
input	 from	V2.	 V4	 also	 receives	 direct	 input	 from	V1,	 especially	
the	 central	 part.	 Similar	 to	 V1,	 V4	modulates	 orientation,	 spatial	
frequency,	and	color	stimuli,	which	are	just	included	in	a	flickering	
checkerboard,	but	 it	 can	only	modulate	moderately	complex	 fea-
tures	of	objects,	such	as	simple	geometric	shapes	of	objects,	and	
cannot	process	information	about	complex	objects	like	faces.	It	can	
also	be	reflected	from	Figure	5a	that	the	effective	connectivity	be-
tween	V4	and	other	visual	areas	 is	 larger	than	that	of	the	resting	
state.	The	V5	region,	also	known	as	the	middle	temporal	gyrus,	is	
composed of many neurons that are selective to the movement of 
complex	visual	stimuli,	which	can	integrate	local	visual	signals	into	
the	overall	movement	of	complex	objects.	 In	this	paper,	the	flick-
ering	checkerboard	visual	stimulation	experiment	did	not	contain	
much	information	about	motion,	so	the	dorsal	stream	through	V5	
did	not	change	significantly.	Figure	7	shows	an	increase	in	consis-
tency	of	 changing	 trend	 among	dEC	during	 visual	 stimulus	 state,	
which indicates that the EC shows stronger synchronization in 

different	 windows,	 that	 is,	 EC	 has	 similar	 changing	 trend,	 which	
may	explain	why	it	is	stronger	than	that	at	rest	in	some	aspects.

Choosing an appropriate window size is an area of concern when 
using	the	sliding	window	approach	to	estimate	FC	and	EC	dynamics.	
Theoretically,	the	window	size	should	be	sufficiently	small	enough	to	
detect	potentially	 interesting	 transients	 in	 the	 low-frequency	 fluc-
tuations	 in	 brain	 connectivity.	However,	 an	 excessively	 small	win-
dow	will	decrease	 the	signal-to-noise	 ratio	 (SNR)	of	 the	estimated	
dFC	and	dEC.	Since	the	duration	of	design	block	of	the	experimen-
tal	paradigm	is	40	s	 (62	×	0.645	s),	 the	window	width	 is	set	to	31,	
46,	62,	77,	93,	100,	and	108,	respectively,	to	measure	the	impact	of	
the sliding window size on relationship between static and dynamic 
connectivities.	 Seven	 different	 window	widths	 were	 employed	 to	
calculate the Pearson correlation coefficient between intensity of 
static connectivity and variance of dynamic connectivity. The result 
demonstrated that the influence of window size on PCC results was 
relatively	minimal	 (see	 Figure	 9).	 Besides,	 the	 results	 of	 the	 other	
two	dynamic	measurement	methods	(i.e.,	ALFF	and	dispersion)	are	
illustrated	in	Figures	S2	and	S3.

5  | CONCLUSION

fMRI	 has	 the	 characteristics	 of	 real-time	 and	 high	 spatial–tem-
poral	resolution,	and	has	been	widely	used	in	the	basic	cognitive	
research and clinic of ophthalmic fields such as optic nerve dis-
ease and ophthalmic acupuncture treatment. The present study 
explores	 time-varying	 coupling	 and	 causal	 information	 of	 the	
modulation effects among several subareas of human visual cor-
tex	 (V1–V5)	 (Samdin,	 Ting,	 Salleh,	Hamedi,	&	Noor,	 2016;	Xin	&	
Biswal,	 2015).	 Besides,	 the	 relationship	 between	 static	 and	 dy-
namic	connectivities	especially	for	static	EC	(sEC)	and	dynamic	EC	
(dEC),	as	well	as	the	consistency	characteristics	of	changing	trend	
of	dFCs	and	dECs,	 is	 also	 investigated.	The	connection	 intensity	
and information flow were calculated in each window among the 
visual	 areas	 by	 the	 Pearson	 correlation	 coefficient	 and	 Granger	
causality	 analysis,	 respectively,	 over	 time	 with	 sliding	 window	
method.	 The	 results	 demonstrate	 that	 there	 are	 extensive	 con-
nections	existing	in	human	visual	network,	which	are	time-varying	

F I G U R E  9   Pearson correlation 
coefficient between variance of dynamic 
FC	and	intensity	of	sFC	(a)	and	variance	of	
dynamic	EC	and	intensity	of	sEC	(b)	under	
different window width from group level 
and	subject	level,	respectively
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both	in	resting	and	task-related	states.	sFC	intensity	is	negatively	
correlated	with	 the	variance	of	dFC,	while	 sEC	 intensity	 is	 posi-
tively	correlated	with	the	variance	of	dEC.	Furthermore,	we	also	
find	that	dFC	within	visual	cortex	at	rest	shows	more	consistency,	
while dEC shows less compared with task state in changing trend. 
Therefore,	this	study	provides	insights	into	the	dynamics	of	con-
nectivity	 in	human	visual	 cortex	and	 the	changes	 in	visual	path-
ways when visually stimulated from the perspective of functional 
and effective connectivities. This may contribute to the study of 
the	clinical	diagnosis,	treatment,	and	pathological	mechanism	re-
search	of	ophthalmic	diseases	such	as	amblyopia,	which	is	caused	
by the lack of effective stimulation of visual cells due to vari-
ous reasons during visual development in terms of diagnosis and 
treatment.

6  | IMPLIC ATIONS AND FUTURE STUDIES

Still,	 there	 are	 three	 implications	 that	 need	 further	 study.	 First,	
this	 paper	 studies	 the	 dynamic	 changes	 in	 FC	 and	 EC	 in	 visual	
cortex	during	a	visual	task	and	the	comparison	with	resting	state.	
However,	it	is	impossible	to	determine	the	exact	neuronal	mecha-
nisms in the brain that are subject to changes in task modulation. 
For	example,	this	may	be	due	to	short-term	brain	plasticity	regu-
lation	 (Yao,	Shi,	Han,	Gao,	&	Dan,	2007),	or	synchronous	oscilla-
tions	 in	 neural	 cell	 clusters	 (Buzsáki	&	Draguhn,	 2004).	A	 single	
brain imaging technique can lead to incomplete information ac-
quisition.	 In	 the	 future,	multimodal	 data	 such	 as	 PET,	MEG,	 and	
EEG	can	be	combined	to	obtain	more	information	on	brain	activ-
ity.	Second,	the	brain	is	an	organic	whole	and	there	are	wide	con-
nections across the brain particularly between the visual area and 
other	 brain	 functional	 areas	 such	 as	 BA39	 area,	 which	 involves	
spatial	 imagination	and	visual	movement,	BA7	area,	which	refers	
to	 temporal	 and	 spatial	 processing	 and	memory	 retrieval,	 BA37	
area,	which	relates	to	vision	and	language	(vocabulary	and	object	
recognition,	 naming	 and	 face	 recognition).	 This	 study	 only	 se-
lected	visual	subareas	V1–V5	as	the	research	object	and	the	char-
acteristics of dynamic connectivity under visual stimulus task can 
be	examined	 from	whole	brain	 in	 the	 future.	 Third,	 the	Pearson	
correlation,	 Granger	 causality	 analysis,	 and	 sliding	 time	window	
method are used as measurement methods for functional connec-
tivity,	effective	connectivity,	and	dynamics	assessment	 (Calhoun	
&	Adali,	2016;	Thompson	&	Fransson,	2017)	 in	this	paper.	 In	the	
future,	other	measurement	methods	can	be	used	to	further	verify	
the	experimental	results	of	this	paper.
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