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ABSTRACT

Objective: Hyperglycemia has emerged as an important clinical manifestation of coronavirus disease 2019

(COVID-19) in diabetic and nondiabetic patients. Whether these glycemic changes are specific to a subgroup of

patients and persist following COVID-19 resolution remains to be elucidated. This work aimed to characterize

longitudinal random blood glucose in a large cohort of nondiabetic patients diagnosed with COVID-19.

Materials and Methods: De-identified electronic medical records of 7502 patients diagnosed with COVID-19

without prior diagnosis of diabetes between January 1, 2020, and November 18, 2020, were accessed through

the TriNetX Research Network. Glucose measurements, diagnostic codes, medication codes, laboratory values,

vital signs, and demographics were extracted before, during, and after COVID-19 diagnosis. Unsupervised time-

series clustering algorithms were trained to identify distinct clusters of glucose trajectories. Cluster associations

were tested for demographic variables, COVID-19 severity, glucose-altering medications, glucose values, and

new-onset diabetes diagnoses.

Results: Time-series clustering identified a low-complexity model with 3 clusters and a high-complexity model

with 19 clusters as the best-performing models. In both models, cluster membership differed significantly by

death status, COVID-19 severity, and glucose levels. Clusters membership in the 19 cluster model also differed

significantly by age, sex, and new-onset diabetes mellitus.

Discussion and Conclusion: This work identified distinct longitudinal blood glucose changes associated with

subclinical glucose dysfunction in the low-complexity model and increased new-onset diabetes incidence in the

high-complexity model. Together, these findings highlight the utility of data-driven techniques to elucidate lon-

gitudinal glycemic dysfunction in patients with COVID-19 and provide clinical evidence for further evaluation of

the role of COVID-19 in diabetes pathogenesis.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by infection with

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1 and

has resulted in over 3 million deaths worldwide as of April 2021.2

Hyperglycemia, defined as elevated blood glucose, has emerged as an

important manifestation of COVID-19 in diabetic and nondiabetic

patients.3–7 Studies have linked hyperglycemia to worse clinical out-

comes,5,8–11 COVID-19 severity,12–15 exacerbation of diabetes

symptoms,16–19 and mortality,20,21 but few have explored whether

these glycemic changes persist following resolution of COVID-19.
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Recent case reports of new-onset diabetes19,22,23 have increased

speculation of long-term glycemic dysfunction following COVID-19

infection. Coronaviruses have previously been associated with dysre-

gulation of glucose metabolism and transient hyperglycemia.24–26

SARS-CoV-2 is thought to mediate impaired beta-cell function

through angiotensin-converting enzyme 2 receptor-induced inflam-

matory responses in the pancreas.24,27–34 SARS-CoV-2-associated

inflammation may also impair insulin signaling in adipose tissue,35

resulting in hyperglycemia and insulin resistance.29 Recent findings

suggest a pathogenic role of COVID-19 in inducing diabetes

through beta-cell transdifferentiation36 and direct beta-cell apopto-

sis.37 Together, these findings indicate potential mechanisms for per-

sistent COVID-19 induced glucose dysfunction.

Evidence evaluating longitudinal effects of COVID-19 on blood

glucose has been difficult to ascertain. Considerable heterogeneity

observed in patients who experienced hyperglycemia during

COVID-1938 suggests that there may be subgroups of patients with

similar glucose changes. Reported incidences of new-onset diabetes

mellitus also varied, as some studies found an increased prevalence

during peak periods of the pandemic,39 others reported no change40

or a decrease.41 The CoviDIAB Project was established to define the

phenotype of COVID-19-related new-onset diabetes,42 but does not

consider transient or subclinical instances of glucose dysfunction.

Previous studies with small sample sizes and short time frames of

analysis highlight the need for big data repositories in evaluating

long-term effects of COVID-19 and identifying subphenotypes of

glucose dysregulation.

This work aims to characterize longitudinal glucose changes in a

large cohort of patients with COVID-19. De-identified electronic

medical records were utilized to train unsupervised machine learning

models to identify glucose trajectories. The goal of this work was to

provide a foundational framework for data-driven methods in iden-

tifying clinically useful stratifications of blood glucose.

METHODS

In this section, we briefly describe the methods used in this work.

For a detailed and reproducible account, see Supplementary Meth-

ods.

Study cohort
TriNetX, a health research network whose functionalities are de-

scribed elsewhere43,44 (Supplementary Methods), was queried for

COVID-19 patients confirmed by ICD-10 codes or laboratory test-

ing indicating the presence of SARS-CoV-2 between January 20,

2020, and November 18, 2020 (Supplementary Table S1). De-iden-

tified data were obtained for 256,566 patients with confirmed

COVID-19. Patients with at least 1 glucose measurement defined by

laboratory codes (Supplementary Table S1) in each of the following

timepoints were included: before (2 years to 1 week before COVID-

19 diagnosis), during (1 week before to 2 weeks after COVID-19 di-

agnosis), and after (2 weeks to 1 year after COVID-19 diagnosis).

Patients with a history of type 1 or type 2 diabetes defined by ICD-9

or ICD-10 codes prior to COVID-19 diagnosis were excluded (Sup-

plementary Table S1). Using these inclusion and exclusion criteria, a

cohort of 7502 patients was assembled (Supplementary Figure S1).

The study was deemed exempt by the University of Utah Institu-

tional Review Board.

Preprocessing
Random blood glucose measurements were extracted using LOINC

value sets for glucose, and 3 trajectory datasets were created: seg-

ment, 3-month, and 6-month (Supplementary Methods). The seg-

ment trajectory dataset was created by averaging glucose at each

timepoint (before, during, and after). The 3-month trajectory data-

set was created by averaging glucose over 3 months’ intervals at

each timepoint. The 6-month trajectory dataset was created by aver-

aging glucose over 6 months’ intervals at each timepoint. All trajec-

tory datasets were scaled using a mean-variance scaler (tslearn 0.4.1

in Python45).

Clustering
Unsupervised k-means clustering was performed to identify distinct

glucose trajectories (Supplementary Methods). In this work, 2 k-

means unsupervised algorithms were trained: time-series k-means (ts

k-means) and kernel k-means46,47 (kernel) (tslearn 0.4.1 in Py-

thon45). Clustering models were created for each unique combina-

tion of trajectory datasets (segment, 3-month, and 6-month) and

clustering algorithm (ts k-means and kernel) (Supplementary Figure

S2). Clustering was performed for k of 2–20 and performance was

evaluated using the Silhouette Score (SS) (scikit-learn 0.24.1 in Py-

thon48,49) (Supplementary Methods). The model with the best SS

score as confirmed by elbow method heuristics was selected for fur-

ther analysis. Trajectories assigned to each cluster and cluster cen-

ters were plotted.

Phenotype analysis
Data extraction

Medications, diagnoses, vital signs, and demographics facts were

downloaded for all 7502 patients in the cohort (Supplementary Fig-

ure S3). Standardized terminologies and terminology harmonization

methods are described in the Supplementary Methods.

LAY SUMMARY

Hyperglycemia is defined as elevated blood glucose measurements and is common in diabetic patients. Recent findings sug-

gest that patients diagnosed with coronavirus disease 2019 (COVID-19) may experience elevated blood glucose levels during

COVID-19 infection. Whether blood glucose levels remain elevated after COVID-19 infection remains poorly understood. This

study aimed to identify how patterns of blood glucose levels before, during, and after COVID-19 change. This work analyzed

blood glucose levels from 7,502 patients diagnosed with COVID-19 and used machine learning to identify different patterns

of blood glucose changes. We found patterns demonstrating an overall increase, overall, decrease, temporary increase, and

temporary decrease in blood glucose levels. Some of these patterns were associated with COVID-19 severity and proportion

of patients with new-onset diabetes. These findings demonstrate the usefulness of machine learning in understanding glu-

cose changes following COVID-19 diagnosis and indicate that more research is needed to understand if blood glucose moni-

toring in COVID-19 patients should be routinely performed.AQ6
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luster interpretation

Clusters with similar centers were grouped and features were

extracted for each group (Supplementary Methods). Categorical fea-

tures included the proportion of patients with age older than 65, fe-

male sex, death, moderate disease severity, severe disease severity,

critical disease severity, hyperglycemic before, during, and after

COVID-19, antihyperglycemic agents and insulin, glucose, steroids,

and new-onset type 1 or type 2 diabetes (Supplementary Table S2).

Continuous features included age, age at death, glucose before, dur-

ing, and after COVID-19 diagnosis.

Statistical analysis

Continuous features were assessed for normality using D’Agostino’s

test50,51 (scipy 1.6.0 in Python52) and independence using Kruskal–

Wallis H-test53 (Pingouin 0.3.9 in Python54). Categorical features

were assessed for independence using Chi-square tests with Yates

continuity correction (Pingouin 0.3.9 in Python54). Categorical vari-

ables were also evaluated for Cramer’s V effect size55 (Pingouin

0.3.9 in Python54). P-values for continuous and categorical variables

were considered significant at the .05 level. Statistically significant

categorical features were further analyzed by scaling the proportions

for each feature and visualized using a radar diagram (plotly v4.14.3

in Python56).

RESULTS

Cohort characteristics
For the 7502 patients with COVID-19, the mean (standard devia-

tion [SD]) age was 56.25 (19.25) years, 56% (n¼4197) were fe-

male, 7% (n¼514) died, and the mean (SD) death age was 66.72

(17.50) years. From the cohort, 8% (n¼578) of patients were classi-

fied as having critical, 3% (n¼244) as severe, and 4% (n¼277) as

moderate COVID-19 severity; 7% (n¼494) patients were pre-

scribed antihyperglycemic agents and insulin, 12% (n¼915) were

prescribed glucose, and 14% (n¼1080) were prescribed steroids.

The mean (SD) glucose before COVID-19 diagnosis was 6.23

(2.01) mmol/L and 21% (1592) were hyperglycemic. The mean (SD)

glucose during COVID-19 diagnosis was 6.06 (1.71) mmol/L and

14% (n¼1084) were hyperglycemic. The mean (SD) glucose after

COVID-19 diagnosis was 6.42 (1.97) mmol/L and 24% (n¼1824)

were hyperglycemic; 1.4% (n¼103) of patients diagnosed devel-

oped new-onset diabetes during or after COVID-19.

Clustering results
A total of 114 models with unique trajectories (segment, 3-month,

or 6-month) and algorithms (ts k-means or kernel) were trained on

clusters ranging from 2 to 20. The comparison of the best-perform-

ing clusters from each model (Supplementary Table S4) clearly

Table 1. Statistical summary of phenotypic features of 3 clusters from the segment and k-means model

Feature Cluster 1 Cluster 2 Cluster 3 P-value

Risers (n¼ 2976) Decliners (n¼ 2341) Peakers (n¼ 2185)

Demographics

Age Median (IQR) (years) 59 (27) 58 (29) 58 (30) P¼ .082

% >65 years (n) 36% (1085) 34% (802) 34% (738) P¼ .091

Sex % Female (n) 56% (1657) 56% (1312) 56% (1228) P¼ .926

Death Median (IQR) (years) 70 (22) 71 (21) 70 (24.5) P¼ .798

% Death (n) 6% (193) 10% (233) 4% (88) P < .001

V 5 .092

COVID-19 severity

Moderate % (n) 4% (130) 4% (82) 3% (65) P 5 .027

V 5 .031

Severe % (n) 4% (111) 3% (65) 3% (68) P¼ .137

Critical % (n) 9% (276) 8% (183) 5% (119) P < .001

V 5 .059

Glucose-altering medications

Anti-hyperglycemic agents and insulin % (n) 7% (208) 7% (153) 6% (133) P¼ .432

Glucose % (n) 12% (361) 13% (293) 12% (261) P¼ .833

Steroids % (n) 15% (449) 15% (342) 13% (289) P¼ .160

Glucose levels

Before Median (IQR) (mmol/L) 5.55 (1.28) 6.60 (1.83) 5.28 (1.05) P < .001

% Hyperglycemic (n) 15% (445) 40% (925) 9% (201) P < .001

V 5 .313

During Median (IQR) (mmol/L) 5.55 (1.05) 5.55 (1.00) 6.16 (1.39) P < .001

% Hyperglycemic (n) 10% (290) 10% (223) 26% (561) P < .001

V 5 .208

After Median (IQR) (mmol/L) 6.66 (1.94) 5.72 (1.33) 5.44 (1.11) P < .001

% Hyperglycemic (n) 40% (1191) 17% (395) 10% (219) P < .001

V 5 .309

New-onset diabetes diagnoses

Diabetes % (n) 1% (40) 1% (34) 1% (29) P¼ .923

Note: Statistical summary of all features is presented for each cluster. Differences in continuous variables were tested using Kruskal–Wallis H-test. Differences

between clusters in categorical variables were tested using the Chi-squared test for independence with Yates Continuity Correction and Cramer’s V for effect size

was calculated for statistically significant features. P-values were evaluated at the .05 significance level, and the bold text indicates statistical significance.

Abbreviations: COVID-19: coronavirus disease 2019; IQR: interquartile range.
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shows the superiority of the segment approach. The model with the

best SS corresponds to the segment trajectory dataset, ts k-means,

and 19 clusters (SS ¼ 0.53). However, elbow method evaluation of

the segment trajectory dataset and ts k-means models demonstrated

a positive inflection point at 3 clusters (SS ¼ 0.52) (Supplementary

Figure S4). Therefore, both models were selected for further analysis

as exemplars of low-complexity with k¼3 and high-complexity

clustering with k¼19.

Three clusters model
Cluster visualization

Cluster trajectories and centers from the 3 cluster model, segment

trajectory dataset, and ts k-means model are depicted in Figure 1.

Three patterns were visually identified according to the cluster cen-

ter trajectory. Cluster 1 was labeled as “Risers” because its center

demonstrated an increasing pattern in scaled glucose during and af-

ter COVID-19 diagnosis (Figure 1A, top). Cluster 2 was labeled as

“Decliners” because its center demonstrated a decreasing pattern in

scaled glucose during and after COVID-19 diagnosis (Figure 1B,

top). Cluster 3 was labeled as “Peakers” because its center demon-

strated a peak in scaled glucose only during COVID-19 diagnosis

(Figure 1C, top).

Phenotype results

Summary statistics for all features were calculated for each cluster

(Table 1).

The proportion of patients who died was significantly different

between clusters (P< .001, V¼ .092), with the “Decliners” contain-

ing a greater proportion of patients who died compared to the

“Risers” and “Peakers” (10%, n¼233; 6%, n¼193; and 4%,

n¼88, respectively). Moderate and critical COVID-19 severity

were also significantly different between clusters (P¼ .027, V¼ .031

and P< .001, V¼ .059, respectively), with the “Peakers” containing

the lowest proportion of moderate and critical cases (3%, n¼65

and 5% n¼119, respectively).

Glucose levels (P< .001 for all 3 comparisons) and the propor-

tion of patients with hyperglycemic glucose measurements before,

during, and after COVID-19 diagnosis (P< .001 for all 3 compari-

sons, V¼ .313, .208, and .309, respectively) were significantly dif-

ferent between clusters. The “Decliners” demonstrated the highest

median and greatest proportion of hyperglycemia before COVID-19

diagnosis (median (interquartile range [IQR]) ¼ 6.60 (1.83) mmol/

L; 40%, n¼925). The “Peakers” demonstrated the highest median

and greatest proportion of hyperglycemia during COVID-19 diag-

nosis (median (IQR) ¼ 6.16 (1.39) mmol/L; 26%, n¼561), while

the “Risers” demonstrated the highest median and greatest propor-

tion of hyperglycemia after COVID-19 diagnosis (median (IQR) ¼
6.66 (1.94) mmol/L; 40%, n¼1191).

Radar visualization

Significantly different scaled categorical features were displayed in a

radar diagram for each cluster and features with a value greater than

0.5 are reported. “Risers” were characterized by hyperglycemia af-

ter COVID-19 diagnosis and moderate and critical COVID-19 se-

verity (Figure 1a, bottom). “Decliners” were characterized by the

greatest proportion of patients who died and hyperglycemia before

COVID-19 diagnosis (Figure 1B, bottom). “Peakers” were charac-

terized by hyperglycemia during COVID-19 diagnosis (Figure 1C,

bottom).

Nineteen clusters model
Cluster visualization

Cluster trajectories and centers from the 19 cluster model, segment

trajectory dataset, and ts k-means model are depicted in Figure 2,

from which 8 general patterns were visually identified according to

cluster centers.

Figure 1. Glucose trajectories and radar plots of phenotypic features of 3 clusters from the segment and k-means model. (A) Glucose trajectory of the ‘Risers’ clus-

ter with black lines representing individual trajectories and the red line representing cluster centers (top) and radar plot of the scaled statistically significant fea-

tures (bottom). (B) Glucose trajectory of the ‘Decliners’ cluster with black lines representing individual trajectories and the red line representing cluster centers

(top) and radar plot of the scaled statistically significant features (bottom). (C) Glucose trajectory of the ‘Peakers’ cluster with black lines representing individual

trajectories and the red line representing cluster centers (top) and radar plot of the scaled statistically significant features (bottom).
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The first set of clusters were labeled as “Risers” because all clus-

ter means demonstrated an overall increase in scaled glucose values

and varied by timing of that increase (Figure 2A). Clusters 3 and 16

were included into the “Steady Risers” because their centers demon-

strated a steady increase in scaled glucose during and after COVID-

19 diagnosis. Clusters 6, 12, and 13 were included into the “Delayed

Risers” because their centers demonstrated a delayed increase in

scaled glucose that occurred after COVID-19 diagnosis. Clusters 7

and 11 were included into the “Early Risers” because their centers

demonstrated an early increase in scaled glucose during and per-

sisted after COVID-19 diagnosis. The next set of clusters were la-

beled as “Peakers” because their centers demonstrated a peak in

scaled glucose during COVID-19 diagnosis that subsequently

returned to baseline (Figure 2B). Clusters 2, 10, 14, and 15 were in-

cluded into the “Peakers.”

The next set of clusters were labeled as “Decliners” because their

centers demonstrated an overall decrease in scaled glucose values

and varied by timing of that decrease (Figure 2C). Cluster 18 was in-

cluded in “Steady Decliners” because its center demonstrated a

steady decline in scaled glucose during and after COVID-19 diagno-

sis. Clusters 4 and 9 were included in “Delayed Decliners” because

their centers demonstrated a delayed decline in scaled glucose after

COVID-19 diagnosis. Clusters 5, 8, and 19 were included into the

“Early Decliners” because their centers demonstrated an early de-

cline in scaled glucose that occurred during and persisted following

COVID-19 diagnosis. The final set of clusters were labeled as

“Valleyers” because their centers demonstrated a drop in scaled glu-

cose during COVID-19 diagnosis that returned to baseline afterward

(Figure 2D). Clusters 1 and 17 were included into the “Valleyers.”

Phenotype results

Summary statistics for all features were calculated for each cluster

(Table 2).

Age (P< .001) and proportion of patients greater than 65 years

(P¼ .004, V¼ .052) were significantly different among groups, with

“Valleyers” having the oldest and greatest proportion of patients

older than 65 (median (IQR) ¼ 62 (26) years; 40%, n¼337). The

proportion of females were also significantly different among

groups, though the effect size was small (P¼ .042, V¼ .044). The

proportion of patients who died was significantly differ among

groups (P< .001, V¼ .147), with the greatest proportion of death

observed for the “Valleyers” (15%, n¼123). Moderate and critical

COVID-19 severity were significantly different among groups

(P¼ .004, V¼ .053 and P< .001, V¼ .089, respectively).

“Valleyers” and “Delayed Risers” demonstrated the greatest pro-

portion of patients with moderate (6%, n¼46 and 5%, n¼73, re-

spectively) and critical severity (12%, n¼100, and 10%, n¼157,

respectively).

Glucose levels (P< .001 for all 3 comparisons) and the propor-

tion of patients with hyperglycemia before, during, and after

COVID-19 diagnosis (P< .001 for all 3 comparisons, V¼ .370,

.242, and .359, respectively) were significantly different between

groups. The greatest median glucose and highest proportion of hy-

perglycemia were attributed to “Early Decliners” before COVID-19

diagnosis (median (IQR) ¼ 6.88 (2.05) mmol/L; 47%, n¼559, re-

spectively), “Peakers” during COVID-19 diagnosis (median (IQR)

¼ 6.33 (1.61) mmol/L; 31%, n¼426, respectively), and “Delayed

Risers” after COVID-19 diagnosis (median (IQR) ¼ 6.88 (2.11)

mmol/L; 46%, n¼736, respectively). Diagnosis of diabetes mellitus

Figure 2. Glucose trajectories of the 19 clusters from the segment and k-means model. (A) Glucose trajectory of the ‘Risers’ cluster with black lines representing

individual trajectories and the red line representing cluster centers. (B) Glucose trajectory of the ‘Peakers’ cluster with black lines representing individual trajecto-

ries and the red line representing cluster centers. (C) Glucose trajectory of the ‘Decliners’ cluster with black lines representing individual trajectories and the red

line representing cluster centers. (D) Glucose trajectory of the ‘Valleyers’ cluster with black lines representing individual trajectories and the red line representing

cluster centers.
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was also significantly different between groups (P¼ .048, V¼ .043),

with “Delayed Risers” containing the greatest number of patients

with new-onset Diabetes (2%, n¼25).

Radar visualization

Significantly different scaled categorical features were displayed in a

radar diagram for each group (Figure 3) and features with a value

greater than 0.5 are reported. “Steady Risers” were characterized by

female sex and hyperglycemia after COVID-19 diagnosis, “Delayed

Risers” were characterized by patients aged 65 or older, moderate

and critical COVID-19 severity, hyperglycemia after COVID-19 di-

agnosis, and new-onset diabetes mellitus, and “Early Risers” were

characterized by hyperglycemia during COVID-19 diagnosis (Figure

3A). “Peakers” were characterized by hyperglycemia during

COVID-19 and new-onset diabetes mellitus (Figure 3B). “Steady

Decliners” were characterized by female sex and hyperglycemia be-

fore COVID-19 diagnosis, “Delayed Decliners” were characterized

by female sex, and “Early Decliners” were characterized by death,

hyperglycemia before COVID-19 diagnosis, and new-onset diabetes

mellitus (Figure 3C). “Valleyers” were characterized by patients

aged 65 or older, death, moderate and critical COVID-19 severity,

hyperglycemia before and after COVID-19, and new-onset diabetes

mellitus (Figure 3D).

DISCUSSION

This study provides the first data-driven assessment of random

blood glucose measurements in a large, multicenter cohort of

patients diagnosed with COVID-19 in the United States. Time-series

clustering identified 2 optimal models for characterizing glucose tra-

jectories: a low-complexity model with 3 clusters and a high-com-

plexity model with 19 clusters. Cluster membership for both models

was associated with proportions of patients with moderate and criti-

cal COVID-19 severity, mortality, and hyperglycemia at each time-

point, and mean glucose values at each timepoint (Tables 1 and 2).

The 19 cluster model was additionally associated with the propor-

tion of patients with age older than 65 years, female sex, and new-

onset diabetes mellitus diagnosis, and mean age at death (Table 2).

These results highlight the utility of using unsupervised clustering to

learn novel patterns of glucose changes and call for longitudinal glu-

cose monitoring in patients with COVID-19.

The simpler 3 cluster model consisted of “Risers,” “Decliners,”

and “Peakers.” Findings from the “Risers” suggest that there is a

group of individuals who experience moderate or critical COVID-

19 with associated increases in blood glucose after resolution of dis-

ease. Though this does not indicate an increase in new-onset diabe-

tes mellitus, this work shows that subclinical glucose dysfunction

can occur in patients following COVID-19. The “Decliners” demon-

strated that elevated glucose before COVID-19 diagnosis is associ-

ated with death. These findings support previous evidence that

hyperglycemia before COVID-19 indicates a poor prognosis.3,57–59

Finally, findings from the “Peakers” suggest that a group of patients

experience elevated blood glucose during COVID-19 diagnosis that

is not characterized by moderate and critical COVID-19 severity,

supporting previous evidence that coronaviruses can induce tran-

sient hyperglycemia.24 The 19 cluster model consisted of 8 groups

that captured a wide variety of subtle changes in glucose trajectories

that remained masked in the 3 cluster model. The “Early Decliners,”

“Valleyers,” “Delayed Risers,” and “Peakers” were characterized

by a sharp peak in diabetes diagnosis. Of these 4 groups, only the

“During Decliners” and “Delayed Risers” were associated with

moderate or critical COVID-19 severity. Together, these findings

suggest that glucose trajectories may be associated with increased di-

abetes incidence following SARS-CoV-2 infection in both symptom-

atic and asymptomatic patients.

This work highlights the potential for data-driven techniques to

elucidate longitudinal glycemic dysfunction in patients with

COVID-19. Unlike previous studies characterizing glucose in

COVID-19,3,9,20,60 this work utilizes electronic medical records

from a large cohort of patients across the United States. Presentation

of a low- and high-complexity model emphasizes the heterogeneity

in glucose curves of patients with COVID-19. The presented analyti-

cal approach can serve as a framework for future data-driven ana-

lyzes in longitudinal glycemic evaluation of COVID-19 patients. In

addition, the presented analysis demonstrates the utility of real-

world clinical data in longitudinal research analyses. This work also

captures COVID-19 cases from a broader range of pandemic, as pre-

vious studies are limited by short time frames that often coincide

with peak periods of the pandemic.5,8 There is a dearth of knowl-

edge on the long-term outcomes of patients with COVID-19 because

longitudinal studies of the clinical sequela are limited, and this study

contributes to the longitudinal understanding of glycemic changes

following COVID-19 diagnosis.

To the best of our knowledge, this is the first work assessing the

role of COVID-19 in the etiology of diabetes using real-world clini-

cal data. Many viruses, including enterovirus, Coxsackievirus B, ro-

tavirus, mumps virus, cytomegalovirus, and rubella, have been

associated with diabetes pathogenesis in epidemiological stud-

ies.61,62 Similarly, these results provide hypotheses for further inves-

tigation into why certain individuals may develop diabetes following

a COVID-19 infection. Though this work follows individuals for a

short period of time surrounding COVID-19 infection, these results

highlight the need for longer-term follow-ups and the development

of trajectories for other diabetes-related parameters, as evidenced by

previous studies investigating body mass index and glycosylated he-

moglobin.63–66 Initiatives such as the National COVID Cohort Col-

laborative (N3C) provide opportunities for addresses longer-term

follow-up and diabetes-related clinical consequences of COVID-

19.67 N3C leverages the vast amount of electronic medical record

collected through the course of the pandemic and aims to facilitate

novel scientific discoveries to aid in responding to the pandemic.

There are several limitations of this work. First, it is possible that

fewer individuals with asymptomatic or mild disease sought medical

care at large healthcare organizations that are represented by Tri-

NetX. Due to inherent limitations in electronic medical record data,

distinguishing asymptomatic and mild COVID-19 was not possible.

In addition, recent work suggests that asymptomatic COVID-19

cases are more prevalent than previously thought.68 Therefore, these

results may represent glycemic changes in a more severe spectrum of

COVID-19 cases. Next, this study only included individuals with

glucose measurements before, during, and after COVID-19, result-

ing in a significant reduction of patients from the original cohort

(Supplementary Figure S1). Duration of COVID-19 is highly vari-

able in patients and our stratification may oversimply the COVID-

19 time course. However, this stratification of glucose timepoints

was necessary because electronic medical record data are highly var-

iable and identifying a consistent time axis for analysis was not pos-

sible. This was partially accounted for by comparing the

performance of multiple time intervals, and our findings call for lon-

gitudinal cohort studies in patients diagnosed with COVID-19 with

consistently and uniformly collected glucose measurements. In addi-

tion, these inclusion criteria may favor patients who receive care
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continuously from a single medical center. Further work is needed

to validate the impact of COVID-19 on longitudinal glucose changes

in populations who do not receive consistent care. Additionally,

there were a variable number of glucose measurements for each pa-

tient included in generating the segment trajectory dataset (Supple-

mentary Methods). A subset of patients only contained single

random glucose levels per timepoint, which may under-represent

overall glucose levels for the given patients. Of the 7502 patients in-

Figure 3. Radar plot of phenotypic features of the 19 clusters from the segment and k-means model. (A) Radar plot of the scaled statistically significant features of

the ‘Risers’ cluster. (B) Radar plot of the scaled statistically significant features of the ‘Peakers’ cluster. (C) Radar plot of the scaled statistically significant features

of the ‘Decliners’ cluster. (D) Radar plot of the scaled statistically significant features of the ‘Valleyers’ cluster.
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cluded in this study, 7230 patients had more than 1 glucose mea-

surement per timepoint, suggesting that the bias due to the number

of random blood glucose measurements may be minimal. Given that

the average time to COVID-19 symptom onset is 5 days69 and viral

detection 2 weeks after symptom onset was minimal,70 we defined 3

weeks to encompass COVID-19 duration. However, the time to re-

covery for COVID-19 patients is variable and more robust methods

may be needed to capture disease duration. Random blood glucose

measurements were selected as they are appropriate estimates for

glycemic control in noninsulin-dependent patients.71 However, their

use is imprecise, and further studies should be conducted using fast-

ing blood glucose measurements in well-defined cohorts recruited

for specific studies. While our cluster groups were derived using sub-

jective methods, we plan to validate these phenotypes using external

data-centric methods72 with availability of longer post-COVID

records for these patients in TriNetX and N3C.

CONCLUSIONS

This work utilizes time-series unsupervised clustering techniques to

identify distinct groups of glucose trajectories. We provide a detailed

analysis of 2 models corresponding to 3 and 19 clusters. Both mod-

els provide insights on how cluster features can be associated with

clinical phenotypes and expected outcomes. This work demonstrates

that unsupervised learning models of different complexities can be

used to provide a clinically useful stratification of glucose trajecto-

ries in patients diagnosed with COVID-19. Further subtyping and

longer follow-up can identify subphenotypes of patients who are

more susceptible to glycemic dysregulation following COVID-19 in-

fection and inform appropriate point-of-care guidelines for COVID-

19 management.
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