
Sensors 2011, 11, 7625-7643; doi:10.3390/s110807625

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Enhanced Precision Time Synchronization for Wireless
Sensor Networks

Hyuntae Cho 1, Jongdeok Kim 2 and Yunju Baek 2,*

1 Institute of Logistics Information Technology, Pusan National University, Geumjeong-gu,

Busan 609-735, Korea; E-Mail: marine@pnu.edu
2 Department of Computer Engineering, Pusan National University, Geumjeong-gu,

Busan 609-735, Korea; E-Mail: kimjd@pnu.edu

* Author to whom correspondence should be addressed; E-Mail: yunju@pnu.edu;

Tel.: +82-51-510-2873; Fax: +82-51-583-2873.

Received: 4 July 2011; in revised form: 27 July 2011 / Accepted: 1 August 2011 /

Published: 2 August 2011

Abstract: Time synchronization in wireless sensor networks (WSNs) is a fundamental issue

for the coordination of distributed entities and events. Nondeterministic latency, which may

decrease the accuracy and precision of time synchronization can occur at any point in the

network layers. Specially, random back-off by channel contention leads to a large

uncertainty. In order to reduce the large nondeterministic uncertainty from channel

contention, we propose an enhanced precision time synchronization protocol in this paper.

The proposed method reduces the traffic needed for the synchronization procedure by

selectively forwarding the packet. Furthermore, the time difference between sensor nodes

increases as time advances because of the use of a clock source with a cheap crystal

oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-

assisted time stamp and drift correction. Experiments are conducted to evaluate the

performance of the proposed method, for which sensor nodes are designed and implemented.

According to the evaluation results, the performance of the proposed method is better than

that of a traditional time synchronization protocol.

Keywords: time synchronization; wireless sensor network; lightweight; hardware assisted

time stamp; drift correction

OPEN ACCESS

Sensors 2011, 11

7626

1. Introduction

Time values provide the criterion to order events, their causal relationships and correlations, and the

rate of change of the entities involved [1-3]. The provision and synchronization of times in distributed

computing elements are common requirements for numerous distributed applications. WSNs consist of

a number of sensor nodes, which are randomly deployed in the field. Time synchronization in WSNs is

essential to efficiently monitor or gather sensing data and control sensor nodes [4-6]. Numerous time

synchronization protocols for WSNs, LR-WPANs and ad hoc networks have been developed,

e.g., RBS [7], TPSN [8], FTSP [9], etc. [10-19]. Traditional time synchronization protocols have

struggled to provide precision time synchronization. Their efforts have largely focused on removing

jitter at the protocol stack, correcting clock drift and considering a poor resource node. The channel

contention needed for communication or time synchronization also affects the precision and accuracy of

time synchronization. The random back-off delay for channel access can be a crucial uncertainty that is a

nondeterministic error factor for the time synchronization procedure [12,13]. This error factor caused

by the random back-off delay has to be considered for precise time synchronization.

First, we analyze the uncertainty that occurs at the network protocol stack during the

synchronization procedure and then propose a novel approach based on the analyzed factors to reduce

the nondeterministic latency. The main contribution of the proposed method is the reduction of the

nondeterministic uncertainty by channel contention. To reduce this nondeterministic uncertainty, the

proposed method reduces the traffic needed for the synchronization procedure by making sensor nodes

selectively forward the messages needed for synchronization. The time difference between clocks

increases as time advances because of the use of a clock source with a cheap crystal oscillator, even

though the sensor nodes’ clocks are set to exactly the same frequency via synchronization. In addition,

we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift

correction. Furthermore, we evaluate the performance of the proposed method. We simulated the

proposed method to examine the effect of the nondeterministic latency caused by channel contention.

The proposed method not only dramatically reduced the number of messages needed for

synchronization but also attained a higher precision than the traditional protocol. We also designed and

implemented a sink node and sensor nodes to determine the performance increase by the precision time

stamping technique and drift correction. An evaluation of the implemented nodes showed that the

proposed method had 5-times better performance than a traditional time synchronization protocol in

terms of precision.

The remainder of this paper is organized as follows. In Section 2, we classify time synchronization

protocols into three types and present the traditional time synchronization protocols. In Section 3,

we describe the proposed time synchronization protocol for distributed sensor nodes for WSNs.

In Section 4, we present the system implementation and performance evaluation of the proposed

method. In Section 5, we conclude the paper with plans for future work.

2. Related Work

In WSNs, the sensor nodes are usually scattered in a sensor field. Each of these scattered sensor

nodes has the capability of collecting and routing data back to the sink and end users. Data is routed

Sensors 2011, 11

7627

back to the end user using a multi-hop infrastructure-less architecture through the sink node. The sink

may communicate with the remote user via the Internet or a satellite [20]. Sensor nodes synchronize

their time with a reference clock such as the sink node or coordinated universal time (UTC), which is

the time standard by which the world regulates clocks and time in time synchronization. Time

synchronization in WSNs refers to the problem of synchronizing clocks across a set of sensor nodes that

are connected to one another over single-hop or multi-hop wireless networks. Up to now, various

protocols have been designed to address this problem [7-19].

Time synchronization may be classified into three types: (a) simple unidirectional broadcast,

(b) receiver-receiver synchronization and (c) bidirectional pair-wise synchronization, as shown in

Figure 1. First, in the unidirectional reference broadcast method, a reference node simply broadcasts a

reference clock signal to other nodes, which correct their times to match the reference clock. This

method is the oldest and simplest method for synchronizing the network’s time. The flooding time

synchronization protocol (FTSP) [9] is the most well-known approach. FTSP uses a fine-grained clock,

MAC layer time stamping to reduce jitter and clock drift estimation to achieve relatively high precision.

Figure 1. Classification of time synchronization protocols.

Second, receiver-receiver synchronization uses an external beacon node. This beacon node

periodically sends beacon messages to the sensor nodes. The sensor nodes that receive the beacon

messages exchange the arrival times of the messages between themselves to compare and correct their

clock. Reference broadcast synchronization (RBS) [7] and adaptive clock synchronization (ACS) [10]

are based on the receiver-receiver synchronization protocol. RBS does not utilize an explicit timestamp;

Sensors 2011, 11

7628

instead, receivers use the arrival times as points of reference for comparing their clocks, as shown in

Figure 1(b). This approach directly removes two of the largest sources of non-determinism involved in

message transmission: the transmission time and access time in the network protocol stack. ACS, which

extends RBS, focuses on reducing the number of the messages used to exchange the message arrival

times. In order to reduce the number of messages, the beacon node is used instead of the sensor node to

gather and compare the message arrival times.

Third, bidirectional pair-wise synchronization, which can also be called sender-receiver

synchronization, uses the round trip time of the message to correct the offset and propagation delay.

This approach is performed using a handshake protocol between a pair of nodes. That is, in bidirectional

pair-wise synchronization, sensor nodes achieve clock synchronization with their parent node, while

receiver-receiver synchronization makes sensor nodes synchronize their clocks with other sensor nodes

on the same level. In Figure 1(c) depicts an example of the basic operation, which includes three

sequential phases. First, node A sends its local time at time T1, and node B receives the message at time

T2 and records its local time. Then, time T2 is calculated as T2 = T1 + d + δ, where δ denotes a clock

offset between two nodes and d is the propagation delay between them. Next, node B responds with an

ACK message to node A with times T2 and T3. After receiving the ACK message at time T4, node A

determines time T4 as T4 = T3 + d – δ. Finally, node A can calculate the clock offset and propagation

delay between two nodes, as below:

2

)]34()12[(

2

)]34()12[(

TTTT

TTTT
d

 (1)

Timing-sync protocol for sensor networks (TPSN) [8], lightweight time synchronization

(Tsync) [12], tiny-sync and mini-sync (TS/MS) [14] and level synchronization by sender, adjuster and

receiver (LESSAR) [13] are famous bidirectional pair-wise synchronization protocols for WSNs, while

the network time protocol (NTP) [19] is a wide-spread bidirectional pair-wise synchronization protocol

used by the Internet. TPSN provides synchronization for an entire network. First, a node is elected as a

synchronization master, and a spanning tree with the master at the root is constructed by flooding the

network. In a second phase, nodes synchronize to their parent in the tree by means of round-trip

synchronization. TSync has a centralized version, and a decentralized version. Both protocols exploit a

dedicated radio channel for synchronization messages to avoid inaccuracies by packet collisions.

LESSAR is able to achieve the accuracy limitation while retaining the characteristics of low power

consumption, affordable storage and small computation complexity by reducing the packet

transmissions. TS/MS uses multiple pair-wise round-trip measurements and a line-fitting technique to

obtain the offset and drift of the two nodes, rather than directly calculating the offset.

Bidirectional pair-wise synchronization has the advantage that uncertainties at the network protocol

stack and the propagation delay can be mitigated by the exchange messages. However, this approach

requires additional traffic, and the number of messages increases with the network scale. That is, sensor

nodes contend among themselves to access the channel. Thus, a busy channel leads to nondeterministic

latency in the MAC layer and finally diminishes the accuracy and precision of time synchronization. In

other words, the MAC checks whether the channel is clear before it sends the sync or ACK message. If

the channel is busy, because of the number of messages, MAC waits for a random back-off period.

Sensors 2011, 11

7629

After waiting for this random back-off period, the node resends the message, including the time stamp

value. This delay is a serious uncertainty factor. Thus, the number of messages should be reduced and

collisions between messages must be avoided to increase the accuracy and precision of time

synchronization.

3. Enhanced Precision Time Synchronization

3.1. Precision Time Synchronization

Tsync [12] and LESSAR [13] are lightweight time synchronization protocols. In this section, we

briefly introduce light time synchronization protocols. Figure 2 illustrates the concept of these

synchronization protocols.

Figure 2. Lightweight time synchronization.

The method uses three message types: sync, delay_req and delay_resp. Initially, a sync message is

sent by the sink node, which is level 0, and acts as a root node providing the reference clock. The sink

inserts time T1 into the sync message, and each sensor node receives the packet at time T2 and records

their local clock. Then, the sensor node determines the clock offset as δ = T2 – T1. To calculate the

delay between the sink and sensor nodes, delay calculations from all child nodes lead to a variety of

traffic, which results in inaccurate synchronization. Thus, we assume that the uncertainties in the

propagation speeds are the same in different nodes and the uncertainty by the propagation delay is less

than other uncertainties such as the send, access, receive time, etc. Under this assumption, in the

proposed method, only one child node responds to calculate the propagation delay from the sink node

or parent node. The sink determines which node responds to the sink node to measure the delay by

consulting its neighbor list. This selection is based on a min-ID selection. Information for the responding

node is inserted into the sync message. The sensor node receiving the sync message first checks whether

it itself is target for the message. If so, the sensor node sends the delay_req message, including times T2

and T3. Otherwise, it will be discarded. Then, the sink receives the delay_req message at time T4 and

Sensors 2011, 11

7630

records the arrival time of the message. Next, the sink determines the propagation delay between its

one-hop children sensor nodes and itself, as demonstrated in Equation (1), and broadcasts it to its

one-hop nodes. Finally, the child nodes can correct the propagation delay by receiving the delay_resp

message from the sink node.

3.2. Proposed Precision Time Synchronization

Although two clocks are initially set to the same frequency via the correction of offset and delay, a

difference between them accumulates as time advances [17]. Assume that the local clocks of two nodes,

i and k, are ci(t) and ck(t). If ci(t) = ck(t), the two clocks are synchronized at time t. If the algorithm for

time synchronization could know the relative offset between ci(t) and ck(t) at time t, ck(t) can be

synchronized to ci(t) at each epoch by correcting the relative offset. Figure 3 represents the

synchronized clock ck
o(t). Although ck(t) is exactly synchronized to ci(t) via periodic correction, clock

ck
o(t) pursues the line derived from a variation of clock ck(t), because this synchronization did not

consider clock drift. Thus, LESSAR assumed that the clock drift quickly changes. Therefore, they

frequently conduct the synchronization procedure, but this eventually decreases the synchronization

accuracy because it keeps the channel busy with excessive synchronization messages.

Figure 3. Clock difference by local clock drift.

However, the clock drift on a real sensor node does not change quickly as time advances. We verify

this condition on an implemented sensor node in the section on the performance evaluation. In this

paper, we propose an additional message, follow_up, to minimize the clock drift difference between two

clocks. As shown in Figure 4, the follow_up message is a subsequent message that follows the sync

message and includes the event-timestamp marking the transmission by the sink node. The subsequent

follow_up message helps calculate the drift from the sink node. Equation (2) presents the drift

compensation correction at the sensor nodes:

2

1

TT

TT

ss

mm

,

m

ms
diff

 (2)

Sensors 2011, 11

7631

where Δm is the clock drift of the sink node that applies to clocks between Tm, which is the time stamp

value in a follow_up message, and T1, which is the time stamp value in the sync message. Δs, the clock

drift of the sensor node, applies to clocks between the arrival time of the sync message, Ts, and the

arrival time of the follow_up message, T2. Δdiff indicates the difference between two nodes to be

corrected. The proposed approach makes it possible to calculate the drift rate by using only one

synchronization procedure, which dramatically reduces the number of messages needed for

synchronization. The proposed method should be achieved under assumption that precision time

stamping is done.

Figure 4. Synchronization protocol for drift correction.

Level i

B

T2

T4

Level i+1

C

A

T2

T2

T3

sync(T1, B)

delay_req(T2,T3)

delay_resp(delay)

Ts

Ts

Ts

follow_up(Tm, B)

delay = {(T2-T1)+(T4-T3)}/2

Non-responding node

Responding node

Non-responding node

As previously mentioned, the time stamping point is critical because it affects the time

synchronization accuracy. The time stamping point can be any point in the network layers. However,

time stamping at an upper layer such as the application layer has the disadvantage that the protocol

stack can cause delays that may not be deterministic [22]. In this study, time stamps are taken at the

physical layer using a time stamping unit. Figure 5 shows the method for determining the time of an

event such as message transmission and reception.

Figure 5. Time stamping point during synchronization procedure.

Sensors 2011, 11

7632

In Figure 5, the time stamping unit detects and time stamps the start of the frame delimiter (SFD)

signal from the radio transceiver to minimize the uncertainties occurring at the network protocol stack.

We have designed and implemented special purpose hardware. Later, we will describe the precision time

protocol used in the hardware that we developed. The proposed synchronization method is a good

mechanism in a single hop network. However, a novel approach is needed for the multi-hop pattern

in a wireless sensor network. Thus, we also proposed a way reduce the number of messages in a

multi-hop network.

3.3. Proposed Enhanced Precision Time Synchronization

Tsync and LESSAR seem to minimize the number of messages needed for synchronization in a single

hop network. However, they do not include a reduction method for the number of messages in a multi-

hop network. Message delivery, including beacon, time sync messages, etc., in wireless networks is

usually based on flooding. Flooding-based message delivery can lead to unnecessary, duplicated

messages in the network. This section proposes a method to eliminate such duplicated messages and

reduce the messages needed for synchronization. The proposed method can also reduce the uncertainty

by channel contention because the number of messages needed for packet delivery is fixed in a

broadcast domain. The proposed method initially creates a network topology from the sink node for

multi-hop time synchronization. The sink assigned as a root initiates the topology construction

procedure by broadcasting a level discovery packet, which includes a hierarchical level and a route to

the sink node. Every sensor node that receives the level discovery packet from the sink is assigned a

hierarchical level and a path to the sink in this hierarchical topology, and it records the sensor node-sent

level discovery packet to its parent node. Information on the level and route should be updated when

the packet undergoes the sensor node. Thus, each node has only one path from the sink. In this case, we

ensure that the sensor node belonging to level i + 1 can communicate with a device belonging to its

parent, which has level i.

Figure 6. Topology construction procedure for multi-hop time synchronization. (a) Level 0

dissemination; (b) level 1 dissemination; (c) Level 2 dissemination; (d) completed topology.

(a) (b)

Sensors 2011, 11

7633

Figure 6. Cont.

(c) (d)

Figure 6 illustrates an example of the topology construction procedure. The sink node sends level

and route information, and the sensor node receives message updates and maintains its level, route and

parent information. For example, node IDs 1, 6, and 7 indicate level 1, route to sink [0], where 0 is the

sink ID, and parent ID 0, respectively. The sink node sends a child discovery packet to let every node

discover its child nodes in the hierarchical topology, once the network topology is constructed.

Figure 7 illustrates the procedure for the child discovery phase. In Figure 7(a), the sink broadcasts the

child discovery packet to the network. Any sensor node receiving the packet responds to the sink or its

parent node, as shown in Figure 7(b), and the sink or the parent node receives the response message and

records the child sender to its child list.

Next, child nodes with level 1 rebroadcast the child discovery packet and then collect their child

nodes, as shown in Figure 7(c). This process is continued until every node is discovered. This child list

is utilized in selecting candidate nodes, which are the responding nodes used to send the delay_req

message for calculating the propagation delay between levels i and i + 1. Time synchronization in the

hierarchical topology is achieved by flooding; the synchronization procedure is the same as with a

single-hop synchronization pattern. However, flooding-based synchronization in a multi-hop and

distributed network produces traffic in proportion to the number of sensor nodes. For instance, in

Figure 7, a single message can be delivered via only three forwardings, while flooding is performed nine

times. Excessive traffic from flooding causes duplicated messages, channel contention and message

collision.

Sensors 2011, 11

7634

Figure 7. Children discovery phase.

(a) (b)

(c) (d)

We propose a packet delivery process based on the dominant-pruning algorithm [23] to avoid

excessive messages during topology construction, children discovery, and time synchronization. This

algorithm determines from the prior sender whether the next node forwards the packet. Assume that

node Vj receives the packet from node Vi, and Vj is included in the forward list of the packet. N(Vi) is the

set of one-hop neighbors from Vi, and N(Vj) is the set of one-hop neighbors from Vj. Sensor node Vj

makes a forward list to cover neighbors within two hops. The set of two-hop neighbors is represented

as N(N(Vj)). When node Vi sends the packet to node Vj, Vi inserts a set of its one-hop neighbors, N(Vi),

into the packet. Then, node Vj determines a forward list. The selection of the next node for packet

delivery is shown in Algorithm 1 and Figure 8.

Sensors 2011, 11

7635

Algorithm 1. Selective forwarding.

Let F = Ø, Z = Ø, K = {S1, S2, … ,Sn}

where Sk = N(Vk) ∩ U

if Vj == sink node

U = N(N(Vj)) – N(Vj) – Vj

else

U = N(N(Vj)) – N(Vj) – N(Vj)

end if

while (Z != U)

Find the set Sk whose size is the maximum within set K

F = F ∩ {Vk}, Z = Z ∩ {Sk}

K = K – {Sk}, Sl = Sl – Sk for all Sl ∈ K

end while

Figure 8. Selective forwarding.

4. Performance Evaluation

This section evaluates the enhanced precision time synchronization performance for WSNs. The

performance evaluation is separated into two phases: a simulation and experiment.

4.1. Simulation

The performance evaluation criteria can be classified into accuracy, precision, and the number of

messages generated for the synchronization procedure. Accuracy denotes the offset from the reference

clock and can be determined as the average offsets by sensor nodes in the network. Precision is an error

range and can be derived from a standard deviation or a root mean square (RMS). Finally, the number

of messages is measured by accumulating the message frequency occurring in the overall network. we

use the TrueTime simulator [24] based on Matlab/Simulink to compare performances. Table 1 shows

the simulation setup. The network size is 500 × 500 m, CSMA is used for MAC and the initial offset

and clock drift are set to 2 s and 20 PPM, respectively.

First, we evaluate the accuracy and precision of the time synchronization based on the hop distances

from the sink node, the reference clock. Figure 9 illustrates the accuracy and precision according to hop

distance from a single hop to a 7-hop distance.

Sensors 2011, 11

7636

Table 1. Experimental setup for evaluation.

Field area 500 × 500 m

MAC 802.15.4 (CSMA)

Data rate 250 kbps

Sync interval 10 s

Packet size 28

Initial offset 2 s

Clock drift 20 PPM

Figure 9. Accuracy and precision vs. hop distance.

1 2 3 4 5 6 7
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Hop count

o
ff
s
e

t
fr

o
m

 t
h

e
 r

e
fe

re
n

c
e

 c
lo

c
k
 (
m

ill
i-
s
e
c
o
n

d
)

TPSN RMS

uPTP RMS
TPSN AVG

uPTP AVG

TPSN was used to evaluate the proposed method. We denote the proposed method as “uPTP” to

easily understand the results. This graph implies that the closer the offset is to zero, the more precise

and accurate the synchronization is; a zero value indicates perfect synchronization with the sink node. A

positive value implies that the sensor node runs faster than the sink node used to provide the reference

clock, whereas a negative value implies that the sensor node runs slower than the sink node. As

mentioned earlier, the root mean square (RMS) denotes the precision and the average (AVG) is the

accuracy of the synchronization between the sink and sensor nodes. A comparison of the proposed

method with TPSN, which is known as the standard for WSNs, does not reveal a large difference in

terms of precision, and with both protocols experiencing an increase in the precision error when the hop

distance increases. However, both methods diverge from zero in terms of accuracy. The average

accuracy of the proposed method depicts negative values, while that of TPSN shows positive values.

This phenomenon occurs because of the asymmetric communication link when calculating the

propagation delay between levels i and i + 1. That is, TPSN is initiated by level i + 1, while the

proposed method is initiated by level i. This results in a difference between the two protocols, as shown

in the graph. The graph summarizes that when there is a one hop distance in the TPSN, the RMS is

approximately 507 µs, and the average offset is −24 µs. When there is a 7-hop distance, TPSN shows

an RMS of 1,431 µs and an average of −364 µs. The proposed method has an RMS of approximately

431 µs and an average error of 411 µs in a single hop distance. The proposed method shows an RMS of

1,066 µs and an average of 444 µs when increasing up to a 7-hop distance. Thus, this graph shows that

the difference between the two protocols in a sparse environment is subtle.

Sensors 2011, 11

7637

Second, we evaluate and analyze the performance according to network scalability. Table 2

summarizes the system setup for the evaluation to measure the performance based on network density.

The network size is 500 × 500 m, the number of nodes ranges from 40 to 70, the communication range

is set to 120 m and the nodes are deployed uniformly in a random pattern. A network partition occurs

when the number of nodes is below 30 because of the communication range limitation.

Table 2. Experimental setup for evaluation with number of nodes.

Field area 500 × 500 m

Deployment Uniformly random

Nodes 40, 50, 60, 70

Communication range 120 m

Figure 10 illustrates the accuracy and precision based on network density. When there are 40 nodes,

TPSN has an average offset of −0.83 ms and a standard deviation of 1.88 ms, while the proposed

method has an average offset of −0.065 ms and a standard deviation of 0.35 ms. When the number of

nodes increases to 70, the proposed method has an offset of 1.42 ms, while that of TPSN increases up

to 3.7 ms. This result was caused by TPSN having numerous random back-off uncertainties from

excessive messages, while the proposed method reduced the random back-off uncertainties by using

fewer messages for synchronization. That is, the number of messages in TPSN increases based on the

number of nodes, which increase the number of retransmissions, whereas the proposed method

experiences only a small increase in the number of messages, which reduces the uncertainty by

retransmission.

Figure 10. Accuracy and precision vs. number of nodes.

40 50 60 70
-5

-2.5

0

2.5

5

7.5

10

nodes

o
ff
se

t f
ro

m
 t
h
e
 r

e
fe

re
n

c
e
 c

lo
c
k
 (

m
ill

i-s
e

co
n
d

)

TPSN STD DEV

uPTP STD DEV

TPSN AVG

uPTP AVG

Finally, this study measured the network traffic for time synchronization as time advanced. We used

a 70 node topology, topology construction was conducted every 50 s, and the time synchronization

procedure was performed every 10 s to measure traffic. Figure 11 shows that the proposed method

generates 1,504 messages, while TPSN generates 2,326 messages after 100 s. The difference between

the two methods increases as time advances. After 200 s, TPSN has 4,380 messages, while the

Sensors 2011, 11

7638

proposed method results in 2,733 messages. We can easily expect the precision to increase and the

traffic to decrease in dense environments using the proposed approach.

Figure 11. Number of messages vs. time advancement. (a) sensor topology; (b) number of

messages.

0 100 200 300 400 500
0

100

200

300

400

500

Distance (m)

D
is

ta
n

c
e

 (
m

)

sensor node

0 50 100 150 200

0

1000

2000

3000

4000

5000

6000

Time (sec)

#
 M

e
s
s
a

g
e

s

TPSN

uPTP (dominant flooding)

(a) (b)

4.2. System Implementation

We evaluated the proposed time synchronization protocol via a simulation. However, because this

simulation did not provide exact information about the time stamping unit, clock drift, etc., we

implemented the sink and sensor nodes using Commercial-Off-The-Shelf (COTS) technology, as shown

in Figure 12. Figure 12(a,b) depict the diagrams and prototypes for the sink and sensor nodes,

respectively. The sink and sensor nodes are each separated into two parts: a 433-MHz subsystem on

AVR and a ZigBee subsystem on ARM. The ZigBee subsystem used for communication control,

including time synchronization, and the 433-MHz subsystem is in charge of data exchange and

aggregation. Communication between the two subsystems is achieved via a serial interface. The

433-MHz subsystem uses the ATmega128L processor and TI’s CC1100 RF transceiver. This

433-MHz subsystem is able to operate at a maximum frequency of 8 MHz, providing reasonable

processing power to explore a wide variety of applications. The Atmega128L processor provides

sufficient memory resources for a wide range of experiments. The on-chip memory includes 4 KB of

RAM, 4 KB of EEPROM and 128 KB of flash memory. General purpose I/O pins and serial ports such

as RS-232 and SPI are provided by the processor.

The ZigBee subsystem uses an ARM-based microcontroller (AT91SAM7S) and a CC2420 RF

transceiver. The ZigBee subsystem operates at a maximum frequency of 55 MHz. The processor is

based on a 32-bit RISC architecture, and it provides 256 KB of flash memory, 64 KB of SRAM, and

various peripherals such as UART, USB 2.0, and SPI. The hardware prototype consists of a processing

unit, communication unit and time processing unit. The time synchronization protocol is implemented in

the processing unit and used for synchronization of the sink node and sensor nodes. The time stamping

unit time stamps in the physical layer and provides the system clock, which synchronizes the sink node

and sensor nodes. The time stamps read by the time stamping unit are delivered to the processing unit.

Figure 13 shows the architecture and prototype of the time stamping unit.

Sensors 2011, 11

7639

Figure 12. Sink node and sensor node. (a) sink node; (b) sensor node.

(a)

(b)

Figure 13. Precision time stamping unit.

Sensors 2011, 11

7640

4.3. Experimental Result

We compared and analyzed the clock drift rate of the sensor nodes from the sink before performing

an evaluation of the sensor nodes. A general crystal oscillator with a clock drift of 20 parts per million

(PPM) was chosen as the clock source of the sensor nodes. The results of an analysis are shown in

Figure 14(a). The graph shows that five sensor nodes drift from the sink node and have different drift

rates than the sink node. Sensor nodes A, B, C, D and E drift by approximately −21 µs, −14 µs, −4 µs,

−8 µs, and −13 µs per second, respectively. The negative values indicate that the sensor nodes run

slower than the sink node, while a positive value means that a sensor node runs faster than the sink node.

As shown in the graph, the clock difference increases as time advances. Thus, clock drift correction is

needed for accurate and precise time synchronization. Figure 14(b) presents the clock offset of the

proposed method and that of TPSN.

Figure 14. Analysis of clock drift of sensor nodes from sink node. (a) clock drift rate of

sensor nodes; (b) clock offset vs. time advance.

0 100 200 300 400 500 600
-14

-12

-10

-8

-6

-4

-2

0

Time (sec)

D
ri
ft
 t
im

e
 (

M
ill

i-
se

co
n
d

s)

node A(-21us)

node B(-14us)
node C(-4us)

node D(-8us)

node E(-13us)

0 50 100 150 200

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

Consequent external event

T
im

e
 (

m
ill

i-
s
e

c
o

n
d

)

TPSN

uPTP with drift correction

(a) (b)

We performed experiments on the developed sensor node to implement the physical phenomenon.

Table 3 and Figure 15 show the results for the accuracy and precision using the precision time stamp

and clock drift correction. The experimental condition was that the synchronization interval was every

30 s in a single hop network. The performance evaluation is separated into two parts, a responding node

and non-responding node, because the proposed method exchanges the time stamp with only one child

node to calculate the propagation in the hierarchical tree. The results show that in TPSN, which has

precision time stamping but does not correct clock drift, the responding node has an average offset of

−324 µs and a standard deviation of 179 µs, while the non-responding node has an average offset

of −186 µs and a standard deviation of 116 µs. However, in the proposed method, which has precision

time stamping and corrects clock drift, the responding node has an average offset of 118 µs and a

standard deviation of 2.6 µs, and the non-responding node has an average offset of 202 µs and a

standard deviation of 23 µs. High precision time synchronization via clock drift correction is achieved

under the assumption that the node can time stamp the clock and arrival time of the message without

delay and jitter.

Sensors 2011, 11

7641

Table 3. Synchronization results via clock drift correction.

 Responding node Non-responding node

 AVG RMS Std Dev AVG RMS Std Dev

TPSN −324 370 179 −186 219 116

uPTP 118 118 2.6 202 204 23

Unit: microseconds (µs).

Figure 15. Synchronization results by clock drift correction. (a) responding node;

(b) non-responding node.

Average RMS STD DEV
-400

-300

-200

-100

0

100

200

300

400

Measurement factor

O
ff
se

t
fr

o
m

 t
h
e

 r
e
fe

re
n

c
e
 c

lo
c
k

 (
m

ic
ro

-s
e

c
o
n

d
s
)

uPTP

TPSN

118

-324

370

118

2.6

179

Average RMS STD DEV

-400

-300

-200

-100

0

100

200

300

400

Measurement factor

O
ff
se

t
fr

o
m

 t
h

e
 r

e
fe

re
n

c
e

 c
lo

c
k

 (
m

ic
ro

-s
e

c
o

n
d

s
)

uPTP

TPSN

202

-186

219 204

23

116

(a) (b)

5. Conclusions

In this paper, we have proposed an enhanced precision time synchronization for wireless sensor

networks. Uncertainty, which has a harmful influence on the accuracy of time synchronization, can

occur at all layers in a network protocol stack. To provide precision and accurate time synchronization,

we analyzed the delay and jitter caused at a network protocol stack and minimized delay and jitter. First,

we proposed a method to scatter time information across the WSN field, minimize jitter by random

back-off and provide precision time synchronization by dramatically reducing network traffic. Second,

we showed how sensor nodes could be sourced from a local crystal oscillator that drifts as time

advances. Thus, the time difference will be increased over time. In the proposed method, sensor nodes

linearly pursue the line of the reference clock by correcting their clock drift. This study also designed

and implemented a precision time stamping unit and evaluated its performance. In addition, to

demonstrate the superiority of the proposed time synchronization method for WSNs, this study

implemented a special sink node and a sensor node. According to the results of the performance

evaluation, the proposed method greatly reduced the number of messages used for synchronization and

had 5-fold better performance than a traditional time synchronization protocol in terms of accuracy.

The proposed method can be used as a foundation for many applications requiring strict clock

synchronization. In addition, it can be extended to other radio frequencies, as well as IEEE 802.15.4,

for accurate clock synchronization. This represents a milestone for precision time synchronization for a

wide-scale wireless sensor network. We expect the proposed method to have a significant impact on the

efficiency of many sensor applications, including those used for field surveillance, environment or

Sensors 2011, 11

7642

habitat monitoring, localization, and asset management. Future work will include applications of the

introduced system to real world scenario.

Acknowledgments

This work was supported by the Grant of the Korean Ministry of Education, Science and

Technology (The Regional Core Research Program/Institute of Logistics Information Technology).

References

1. Yicka, J.; Mukherjeea, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52,

2292-2330.

2. Gill, K.; Yang, S.H.; Yao, F.; Lu, X. A ZigBee-based home automation system. IEEE Trans.

Consum. Electron. 2009, 55, 422-430.

3. Dong, J.; Gu, L.; Zheng, C. Research on Fault-Tolerant Strategy of Time Synchronization for

Industrial Wireless Sensor Network. In Proceedings of the 3rd International Conference on

Measuring Technology and Mechatronics Automation, Shanghai, China, 6–7 January 2011;

pp. 1146-1149.

4. Rhee, I.K.; Lee, J.; Kim, J.; Serpedin, E.; Wu, Y.C. Clock synchronization in wireless sensor

networks: An overview. Sensors 2009, 9, 56-85.

5. Elson, J.; Romer, K. Wireless sensor networks: A new regime for time synchronization. ACM

Comput. Commun. Rev. 2003, 33, 149-154.

6. Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor

networks: A survey. Ad Hoc Netw. 2005, 3, 281-323.

7. Elson, J.; Girod, L.; Estrin, D. Fine-Grained Network Time Synchronization Using Reference

Broadcasts. In Proceedings of the Fifth Symposium on Operating Systems Design and

Implementation (OSDI), Boston, MA, USA, 9–11 December 2002; pp. 147-163.

8. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-Sync Protocol for Sensor Networks. In

Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys

2003, Los Angeles, CA, USA, 5–7 November 2003; pp. 138-149.

9. Maroti, M.; Kusy, B.; Simon, G.; Ledeczi, A. The Flooding Time Synchronization Protocol. In

Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,

SenSys 2004, Baltimore, MD, USA, 3–5 November 2004; pp. 39-49.

10. Palchaudhuri, S.; Saha, A.K.; Johnsin, D.B. Adaptive Clock Synchronization in Sensor Networks.

In Proceedings of the International Symposium on Information Processing in Sensor Networks,

Berkeley, CA, USA, 26–27 April 2004.

11. Greunen, J.; Rabaey, J. Lightweight Time Synchronization for Sensor Networks. In Proceedings of

the Second ACM International Conference on Wireless Sensor Networks and Applications, WSNA

2003, San Diego, CA, USA, 19 September 2003; pp. 11-19.

12. Dai, H.; Han, R. Tsync: A lightweight bidirectional time synchronization service for wireless sensor

networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 2004, 8, 125-139.

13. Ye, Q.; Zhang, Y.; Cheng, L. A study on the optimal time synchronization accuracy in wireless

sensor networks. J. Comput. Netw. 2005, 48, 549-566.

Sensors 2011, 11

7643

14. Sichitiu, M.L.; Veerarittiphan, C. Simple, Accurate Time Synchronization for Wireless Sensor

Networks. In Proceedings of the 2003 IEEE Wireless Communications and Networking, New

Orleans, LA, USA, 20 March 2003.

15. Cox, D.; Jovanov, E.; Milenkovic, A. Time Synchronization for Zigbee Networks. In Proceedings

of the 37th Annual Southeastern Symposium on System Theory, Tuskegee, AL, USA, March 2005;

pp. 135-138.

16. Song, P.; Shan, X.; Li, K.; Qi, G. Highly Precise Time Synchronization Protocol for ZigBee

networks. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent

Mechatronics 2009 (AIM2009), Singapore, 14–17 July 2009.

17. Ren, F.; Lin, C.; Liu, F.; Self-correcting time synchronization using reference broadcast in wireless

sensor network. IEEE Wireless Commun. 2008, 15, 79-85.

18. Cho, H.; Jung, J.; Cho, B.; Jin, Y.; Lee, S.W.; Baek, Y. Precision Time Synchronization Using

IEEE 1588 for Wireless Sensor Networks. In Proceedings of the IEEE International Conference

on Computational Science and Engineering, Vancouver, BC, Canada, 29–31 August 2009;

pp. 579-586.

19. Noh, K.; Serpedin, E.; Qaraqe, K. A new approach for time synchronization in wireless sensor

networks: Pairwise broadcast synchronization. IEEE Trans. Wirel. Commun. 2008, 7, 3318-3322.

20. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey.

Comput. Netw. 2002, 38, 393-422.

21. Mills, D.L. Network Time Protocol (Version 3) Specification, Impl. RCF 1992, RFC 1305.

22. Weibel, H.; Bechaz, D. Implementation and Performance of Time Stamping Techniques.

In Proceedings of the 2004 Conference on IEEE 1588, Gaithersburg, MD, USA, 27–29

September 2004.

23. Lim, H.; Kim, C. Flooding in wireless ad hoc networks. Comput. Commun. 2001, 24, 353-363.

24. Cervin, A.; Henriksson, D.; Ohlin, M. TrueTime 2.0 Manual; Lund University: Lund, Sweden,

2010. Available online: http://www3.control.lth.se/truetime/report-2.0-beta5.pdf (accessed on

26 July 2011).

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

