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Abstract: Time synchronization in wireless sensor networks (WSNs) is a fundamental issue 

for the coordination of distributed entities and events. Nondeterministic latency, which may 

decrease the accuracy and precision of time synchronization can occur at any point in the 

network layers. Specially, random back-off by channel contention leads to a large 

uncertainty. In order to reduce the large nondeterministic uncertainty from channel 

contention, we propose an enhanced precision time synchronization protocol in this paper. 

The proposed method reduces the traffic needed for the synchronization procedure by 

selectively forwarding the packet. Furthermore, the time difference between sensor nodes 

increases as time advances because of the use of a clock source with a cheap crystal 

oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-

assisted time stamp and drift correction. Experiments are conducted to evaluate the 

performance of the proposed method, for which sensor nodes are designed and implemented. 

According to the evaluation results, the performance of the proposed method is better than 

that of a traditional time synchronization protocol. 

Keywords: time synchronization; wireless sensor network; lightweight; hardware assisted 

time stamp; drift correction 
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1. Introduction  

Time values provide the criterion to order events, their causal relationships and correlations, and the 

rate of change of the entities involved [1-3]. The provision and synchronization of times in distributed 

computing elements are common requirements for numerous distributed applications. WSNs consist of 

a number of sensor nodes, which are randomly deployed in the field. Time synchronization in WSNs is 

essential to efficiently monitor or gather sensing data and control sensor nodes [4-6]. Numerous time 

synchronization protocols for WSNs, LR-WPANs and ad hoc networks have been developed,  

e.g., RBS [7], TPSN [8], FTSP [9], etc. [10-19]. Traditional time synchronization protocols have 

struggled to provide precision time synchronization. Their efforts have largely focused on removing 

jitter at the protocol stack, correcting clock drift and considering a poor resource node. The channel 

contention needed for communication or time synchronization also affects the precision and accuracy of 

time synchronization. The random back-off delay for channel access can be a crucial uncertainty that is a 

nondeterministic error factor for the time synchronization procedure [12,13]. This error factor caused 

by the random back-off delay has to be considered for precise time synchronization.  

First, we analyze the uncertainty that occurs at the network protocol stack during the 

synchronization procedure and then propose a novel approach based on the analyzed factors to reduce 

the nondeterministic latency. The main contribution of the proposed method is the reduction of the 

nondeterministic uncertainty by channel contention. To reduce this nondeterministic uncertainty, the 

proposed method reduces the traffic needed for the synchronization procedure by making sensor nodes 

selectively forward the messages needed for synchronization. The time difference between clocks 

increases as time advances because of the use of a clock source with a cheap crystal oscillator, even 

though the sensor nodes’ clocks are set to exactly the same frequency via synchronization. In addition, 

we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift 

correction. Furthermore, we evaluate the performance of the proposed method. We simulated the 

proposed method to examine the effect of the nondeterministic latency caused by channel contention. 

The proposed method not only dramatically reduced the number of messages needed for 

synchronization but also attained a higher precision than the traditional protocol. We also designed and 

implemented a sink node and sensor nodes to determine the performance increase by the precision time 

stamping technique and drift correction. An evaluation of the implemented nodes showed that the 

proposed method had 5-times better performance than a traditional time synchronization protocol in 

terms of precision. 

The remainder of this paper is organized as follows. In Section 2, we classify time synchronization 

protocols into three types and present the traditional time synchronization protocols. In Section 3,  

we describe the proposed time synchronization protocol for distributed sensor nodes for WSNs.  

In Section 4, we present the system implementation and performance evaluation of the proposed 

method. In Section 5, we conclude the paper with plans for future work. 

2. Related Work 

In WSNs, the sensor nodes are usually scattered in a sensor field. Each of these scattered sensor 

nodes has the capability of collecting and routing data back to the sink and end users. Data is routed 
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back to the end user using a multi-hop infrastructure-less architecture through the sink node. The sink 

may communicate with the remote user via the Internet or a satellite [20]. Sensor nodes synchronize 

their time with a reference clock such as the sink node or coordinated universal time (UTC), which is 

the time standard by which the world regulates clocks and time in time synchronization. Time 

synchronization in WSNs refers to the problem of synchronizing clocks across a set of sensor nodes that 

are connected to one another over single-hop or multi-hop wireless networks. Up to now, various 

protocols have been designed to address this problem [7-19]. 

Time synchronization may be classified into three types: (a) simple unidirectional broadcast,  

(b) receiver-receiver synchronization and (c) bidirectional pair-wise synchronization, as shown in 

Figure 1. First, in the unidirectional reference broadcast method, a reference node simply broadcasts a 

reference clock signal to other nodes, which correct their times to match the reference clock. This 

method is the oldest and simplest method for synchronizing the network’s time. The flooding time 

synchronization protocol (FTSP) [9] is the most well-known approach. FTSP uses a fine-grained clock, 

MAC layer time stamping to reduce jitter and clock drift estimation to achieve relatively high precision. 

Figure 1. Classification of time synchronization protocols. 

 

 

Second, receiver-receiver synchronization uses an external beacon node. This beacon node 

periodically sends beacon messages to the sensor nodes. The sensor nodes that receive the beacon 

messages exchange the arrival times of the messages between themselves to compare and correct their 

clock. Reference broadcast synchronization (RBS) [7] and adaptive clock synchronization (ACS) [10] 

are based on the receiver-receiver synchronization protocol. RBS does not utilize an explicit timestamp; 
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instead, receivers use the arrival times as points of reference for comparing their clocks, as shown in 

Figure 1(b). This approach directly removes two of the largest sources of non-determinism involved in 

message transmission: the transmission time and access time in the network protocol stack. ACS, which 

extends RBS, focuses on reducing the number of the messages used to exchange the message arrival 

times. In order to reduce the number of messages, the beacon node is used instead of the sensor node to 

gather and compare the message arrival times. 

Third, bidirectional pair-wise synchronization, which can also be called sender-receiver 

synchronization, uses the round trip time of the message to correct the offset and propagation delay. 

This approach is performed using a handshake protocol between a pair of nodes. That is, in bidirectional 

pair-wise synchronization, sensor nodes achieve clock synchronization with their parent node, while 

receiver-receiver synchronization makes sensor nodes synchronize their clocks with other sensor nodes 

on the same level. In Figure 1(c) depicts an example of the basic operation, which includes three 

sequential phases. First, node A sends its local time at time T1, and node B receives the message at time 

T2 and records its local time. Then, time T2 is calculated as T2 = T1 + d + δ, where δ denotes a clock 

offset between two nodes and d is the propagation delay between them. Next, node B responds with an 

ACK message to node A with times T2 and T3. After receiving the ACK message at time T4, node A 

determines time T4 as T4 = T3 + d – δ. Finally, node A can calculate the clock offset and propagation 

delay between two nodes, as below: 
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Timing-sync protocol for sensor networks (TPSN) [8], lightweight time synchronization  

(Tsync) [12], tiny-sync and mini-sync (TS/MS) [14] and level synchronization by sender, adjuster and 

receiver (LESSAR) [13] are famous bidirectional pair-wise synchronization protocols for WSNs, while 

the network time protocol (NTP) [19] is a wide-spread bidirectional pair-wise synchronization protocol 

used by the Internet. TPSN provides synchronization for an entire network. First, a node is elected as a 

synchronization master, and a spanning tree with the master at the root is constructed by flooding the 

network. In a second phase, nodes synchronize to their parent in the tree by means of round-trip 

synchronization. TSync has a centralized version, and a decentralized version. Both protocols exploit a 

dedicated radio channel for synchronization messages to avoid inaccuracies by packet collisions. 

LESSAR is able to achieve the accuracy limitation while retaining the characteristics of low power 

consumption, affordable storage and small computation complexity by reducing the packet 

transmissions. TS/MS uses multiple pair-wise round-trip measurements and a line-fitting technique to 

obtain the offset and drift of the two nodes, rather than directly calculating the offset. 

Bidirectional pair-wise synchronization has the advantage that uncertainties at the network protocol 

stack and the propagation delay can be mitigated by the exchange messages. However, this approach 

requires additional traffic, and the number of messages increases with the network scale. That is, sensor 

nodes contend among themselves to access the channel. Thus, a busy channel leads to nondeterministic 

latency in the MAC layer and finally diminishes the accuracy and precision of time synchronization. In 

other words, the MAC checks whether the channel is clear before it sends the sync or ACK message. If 

the channel is busy, because of the number of messages, MAC waits for a random back-off period. 
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After waiting for this random back-off period, the node resends the message, including the time stamp 

value. This delay is a serious uncertainty factor. Thus, the number of messages should be reduced and 

collisions between messages must be avoided to increase the accuracy and precision of time 

synchronization. 

3. Enhanced Precision Time Synchronization 

3.1. Precision Time Synchronization 

Tsync [12] and LESSAR [13] are lightweight time synchronization protocols. In this section, we 

briefly introduce light time synchronization protocols. Figure 2 illustrates the concept of these 

synchronization protocols.  

Figure 2. Lightweight time synchronization. 

 
 

The method uses three message types: sync, delay_req and delay_resp. Initially, a sync message is 

sent by the sink node, which is level 0, and acts as a root node providing the reference clock. The sink 

inserts time T1 into the sync message, and each sensor node receives the packet at time T2 and records 

their local clock. Then, the sensor node determines the clock offset as δ = T2 – T1. To calculate the 

delay between the sink and sensor nodes, delay calculations from all child nodes lead to a variety of 

traffic, which results in inaccurate synchronization. Thus, we assume that the uncertainties in the 

propagation speeds are the same in different nodes and the uncertainty by the propagation delay is less 

than other uncertainties such as the send, access, receive time, etc. Under this assumption, in the 

proposed method, only one child node responds to calculate the propagation delay from the sink node 

or parent node. The sink determines which node responds to the sink node to measure the delay by 

consulting its neighbor list. This selection is based on a min-ID selection. Information for the responding 

node is inserted into the sync message. The sensor node receiving the sync message first checks whether 

it itself is target for the message. If so, the sensor node sends the delay_req message, including times T2 

and T3. Otherwise, it will be discarded. Then, the sink receives the delay_req message at time T4 and 
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records the arrival time of the message. Next, the sink determines the propagation delay between its 

one-hop children sensor nodes and itself, as demonstrated in Equation (1), and broadcasts it to its  

one-hop nodes. Finally, the child nodes can correct the propagation delay by receiving the delay_resp 

message from the sink node. 

3.2. Proposed Precision Time Synchronization  

Although two clocks are initially set to the same frequency via the correction of offset and delay, a 

difference between them accumulates as time advances [17]. Assume that the local clocks of two nodes, 

i and k, are ci(t) and ck(t). If ci(t) = ck(t), the two clocks are synchronized at time t. If the algorithm for 

time synchronization could know the relative offset between ci(t) and ck(t) at time t, ck(t) can be 

synchronized to ci(t) at each epoch by correcting the relative offset. Figure 3 represents the 

synchronized clock ck
o(t). Although ck(t) is exactly synchronized to ci(t) via periodic correction, clock 

ck
o(t) pursues the line derived from a variation of clock ck(t), because this synchronization did not 

consider clock drift. Thus, LESSAR assumed that the clock drift quickly changes. Therefore, they 

frequently conduct the synchronization procedure, but this eventually decreases the synchronization 

accuracy because it keeps the channel busy with excessive synchronization messages. 

Figure 3. Clock difference by local clock drift. 

 

However, the clock drift on a real sensor node does not change quickly as time advances. We verify 

this condition on an implemented sensor node in the section on the performance evaluation. In this 

paper, we propose an additional message, follow_up, to minimize the clock drift difference between two 

clocks. As shown in Figure 4, the follow_up message is a subsequent message that follows the sync 

message and includes the event-timestamp marking the transmission by the sink node. The subsequent 

follow_up message helps calculate the drift from the sink node. Equation (2) presents the drift 

compensation correction at the sensor nodes: 
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where Δm is the clock drift of the sink node that applies to clocks between Tm, which is the time stamp 

value in a follow_up message, and T1, which is the time stamp value in the sync message. Δs, the clock 

drift of the sensor node, applies to clocks between the arrival time of the sync message, Ts, and the 

arrival time of the follow_up message, T2. Δdiff indicates the difference between two nodes to be 

corrected. The proposed approach makes it possible to calculate the drift rate by using only one 

synchronization procedure, which dramatically reduces the number of messages needed for 

synchronization. The proposed method should be achieved under assumption that precision time 

stamping is done. 

Figure 4. Synchronization protocol for drift correction. 
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As previously mentioned, the time stamping point is critical because it affects the time 

synchronization accuracy. The time stamping point can be any point in the network layers. However, 

time stamping at an upper layer such as the application layer has the disadvantage that the protocol 

stack can cause delays that may not be deterministic [22]. In this study, time stamps are taken at the 

physical layer using a time stamping unit. Figure 5 shows the method for determining the time of an 

event such as message transmission and reception.  

Figure 5. Time stamping point during synchronization procedure. 
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In Figure 5, the time stamping unit detects and time stamps the start of the frame delimiter (SFD) 

signal from the radio transceiver to minimize the uncertainties occurring at the network protocol stack. 

We have designed and implemented special purpose hardware. Later, we will describe the precision time 

protocol used in the hardware that we developed. The proposed synchronization method is a good 

mechanism in a single hop network. However, a novel approach is needed for the multi-hop pattern  

in a wireless sensor network. Thus, we also proposed a way reduce the number of messages in a  

multi-hop network. 

3.3. Proposed Enhanced Precision Time Synchronization  

Tsync and LESSAR seem to minimize the number of messages needed for synchronization in a single 

hop network. However, they do not include a reduction method for the number of messages in a multi-

hop network. Message delivery, including beacon, time sync messages, etc., in wireless networks is 

usually based on flooding. Flooding-based message delivery can lead to unnecessary, duplicated 

messages in the network. This section proposes a method to eliminate such duplicated messages and 

reduce the messages needed for synchronization. The proposed method can also reduce the uncertainty 

by channel contention because the number of messages needed for packet delivery is fixed in a 

broadcast domain. The proposed method initially creates a network topology from the sink node for 

multi-hop time synchronization. The sink assigned as a root initiates the topology construction 

procedure by broadcasting a level discovery packet, which includes a hierarchical level and a route to 

the sink node. Every sensor node that receives the level discovery packet from the sink is assigned a 

hierarchical level and a path to the sink in this hierarchical topology, and it records the sensor node-sent 

level discovery packet to its parent node. Information on the level and route should be updated when 

the packet undergoes the sensor node. Thus, each node has only one path from the sink. In this case, we 

ensure that the sensor node belonging to level i + 1 can communicate with a device belonging to its 

parent, which has level i.  

Figure 6. Topology construction procedure for multi-hop time synchronization. (a) Level 0 

dissemination; (b) level 1 dissemination; (c) Level 2 dissemination; (d) completed topology. 

   
(a)      (b) 
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Figure 6. Cont. 

   
(c)      (d) 

 

Figure 6 illustrates an example of the topology construction procedure. The sink node sends level 

and route information, and the sensor node receives message updates and maintains its level, route and 

parent information. For example, node IDs 1, 6, and 7 indicate level 1, route to sink [0], where 0 is the 

sink ID, and parent ID 0, respectively. The sink node sends a child discovery packet to let every node 

discover its child nodes in the hierarchical topology, once the network topology is constructed.  

Figure 7 illustrates the procedure for the child discovery phase. In Figure 7(a), the sink broadcasts the 

child discovery packet to the network. Any sensor node receiving the packet responds to the sink or its 

parent node, as shown in Figure 7(b), and the sink or the parent node receives the response message and 

records the child sender to its child list.  

Next, child nodes with level 1 rebroadcast the child discovery packet and then collect their child 

nodes, as shown in Figure 7(c). This process is continued until every node is discovered. This child list 

is utilized in selecting candidate nodes, which are the responding nodes used to send the delay_req 

message for calculating the propagation delay between levels i and i + 1. Time synchronization in the 

hierarchical topology is achieved by flooding; the synchronization procedure is the same as with a 

single-hop synchronization pattern. However, flooding-based synchronization in a multi-hop and 

distributed network produces traffic in proportion to the number of sensor nodes. For instance, in 

Figure 7, a single message can be delivered via only three forwardings, while flooding is performed nine 

times. Excessive traffic from flooding causes duplicated messages, channel contention and message 

collision.  
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Figure 7. Children discovery phase. 

   
(a)      (b) 

 

   
(c)      (d) 

 

We propose a packet delivery process based on the dominant-pruning algorithm [23] to avoid 

excessive messages during topology construction, children discovery, and time synchronization. This 

algorithm determines from the prior sender whether the next node forwards the packet. Assume that 

node Vj receives the packet from node Vi, and Vj is included in the forward list of the packet. N(Vi) is the 

set of one-hop neighbors from Vi, and N(Vj) is the set of one-hop neighbors from Vj. Sensor node Vj 

makes a forward list to cover neighbors within two hops. The set of two-hop neighbors is represented 

as N(N(Vj)). When node Vi sends the packet to node Vj, Vi inserts a set of its one-hop neighbors, N(Vi), 

into the packet. Then, node Vj determines a forward list. The selection of the next node for packet 

delivery is shown in Algorithm 1 and Figure 8. 
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Algorithm 1. Selective forwarding. 

Let F = Ø, Z = Ø, K = {S1, S2, … ,Sn}  

where Sk = N(Vk) ∩ U 

if Vj == sink node 

U = N(N(Vj)) – N(Vj) – Vj 

else  

U = N(N(Vj)) – N(Vj) – N(Vj) 

end if  

while (Z != U) 

Find the set Sk whose size is the maximum within set K 

F = F ∩ {Vk}, Z = Z ∩ {Sk} 

K = K – {Sk}, Sl = Sl – Sk for all Sl ∈ K 

end while 

Figure 8. Selective forwarding. 

 

4. Performance Evaluation  

This section evaluates the enhanced precision time synchronization performance for WSNs. The 

performance evaluation is separated into two phases: a simulation and experiment.  

4.1. Simulation 

The performance evaluation criteria can be classified into accuracy, precision, and the number of 

messages generated for the synchronization procedure. Accuracy denotes the offset from the reference 

clock and can be determined as the average offsets by sensor nodes in the network. Precision is an error 

range and can be derived from a standard deviation or a root mean square (RMS). Finally, the number 

of messages is measured by accumulating the message frequency occurring in the overall network. we 

use the TrueTime simulator [24] based on Matlab/Simulink to compare performances. Table 1 shows 

the simulation setup. The network size is 500 × 500 m, CSMA is used for MAC and the initial offset 

and clock drift are set to 2 s and 20 PPM, respectively. 

First, we evaluate the accuracy and precision of the time synchronization based on the hop distances 

from the sink node, the reference clock. Figure 9 illustrates the accuracy and precision according to hop 

distance from a single hop to a 7-hop distance.  
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Table 1. Experimental setup for evaluation.  

Field area 500 × 500 m 

MAC 802.15.4 (CSMA) 

Data rate 250 kbps 

Sync interval 10 s 

Packet size 28 

Initial offset 2 s 

Clock drift  20 PPM 

Figure 9. Accuracy and precision vs. hop distance. 
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TPSN was used to evaluate the proposed method. We denote the proposed method as “uPTP” to 

easily understand the results. This graph implies that the closer the offset is to zero, the more precise 

and accurate the synchronization is; a zero value indicates perfect synchronization with the sink node. A 

positive value implies that the sensor node runs faster than the sink node used to provide the reference 

clock, whereas a negative value implies that the sensor node runs slower than the sink node. As 

mentioned earlier, the root mean square (RMS) denotes the precision and the average (AVG) is the 

accuracy of the synchronization between the sink and sensor nodes. A comparison of the proposed 

method with TPSN, which is known as the standard for WSNs, does not reveal a large difference in 

terms of precision, and with both protocols experiencing an increase in the precision error when the hop 

distance increases. However, both methods diverge from zero in terms of accuracy. The average 

accuracy of the proposed method depicts negative values, while that of TPSN shows positive values. 

This phenomenon occurs because of the asymmetric communication link when calculating the 

propagation delay between levels i and i + 1. That is, TPSN is initiated by level i + 1, while the 

proposed method is initiated by level i. This results in a difference between the two protocols, as shown 

in the graph. The graph summarizes that when there is a one hop distance in the TPSN, the RMS is 

approximately 507 µs, and the average offset is −24 µs. When there is a 7-hop distance, TPSN shows 

an RMS of 1,431 µs and an average of −364 µs. The proposed method has an RMS of approximately 

431 µs and an average error of 411 µs in a single hop distance. The proposed method shows an RMS of 

1,066 µs and an average of 444 µs when increasing up to a 7-hop distance. Thus, this graph shows that 

the difference between the two protocols in a sparse environment is subtle. 
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Second, we evaluate and analyze the performance according to network scalability. Table 2 

summarizes the system setup for the evaluation to measure the performance based on network density. 

The network size is 500 × 500 m, the number of nodes ranges from 40 to 70, the communication range 

is set to 120 m and the nodes are deployed uniformly in a random pattern. A network partition occurs 

when the number of nodes is below 30 because of the communication range limitation.  

Table 2. Experimental setup for evaluation with number of nodes.  

Field area 500 × 500 m 

Deployment Uniformly random 

# Nodes 40, 50, 60, 70 

Communication range 120 m 

Figure 10 illustrates the accuracy and precision based on network density. When there are 40 nodes, 

TPSN has an average offset of −0.83 ms and a standard deviation of 1.88 ms, while the proposed 

method has an average offset of −0.065 ms and a standard deviation of 0.35 ms. When the number of 

nodes increases to 70, the proposed method has an offset of 1.42 ms, while that of TPSN increases up 

to 3.7 ms. This result was caused by TPSN having numerous random back-off uncertainties from 

excessive messages, while the proposed method reduced the random back-off uncertainties by using 

fewer messages for synchronization. That is, the number of messages in TPSN increases based on the 

number of nodes, which increase the number of retransmissions, whereas the proposed method 

experiences only a small increase in the number of messages, which reduces the uncertainty by 

retransmission. 

Figure 10. Accuracy and precision vs. number of nodes. 
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Finally, this study measured the network traffic for time synchronization as time advanced. We used 

a 70 node topology, topology construction was conducted every 50 s, and the time synchronization 

procedure was performed every 10 s to measure traffic. Figure 11 shows that the proposed method 

generates 1,504 messages, while TPSN generates 2,326 messages after 100 s. The difference between 

the two methods increases as time advances. After 200 s, TPSN has 4,380 messages, while the 
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proposed method results in 2,733 messages. We can easily expect the precision to increase and the 

traffic to decrease in dense environments using the proposed approach. 

Figure 11. Number of messages vs. time advancement. (a) sensor topology; (b) number of 

messages. 
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4.2. System Implementation 

We evaluated the proposed time synchronization protocol via a simulation. However, because this 

simulation did not provide exact information about the time stamping unit, clock drift, etc., we 

implemented the sink and sensor nodes using Commercial-Off-The-Shelf (COTS) technology, as shown 

in Figure 12. Figure 12(a,b) depict the diagrams and prototypes for the sink and sensor nodes, 

respectively. The sink and sensor nodes are each separated into two parts: a 433-MHz subsystem on 

AVR and a ZigBee subsystem on ARM. The ZigBee subsystem used for communication control, 

including time synchronization, and the 433-MHz subsystem is in charge of data exchange and 

aggregation. Communication between the two subsystems is achieved via a serial interface. The  

433-MHz subsystem uses the ATmega128L processor and TI’s CC1100 RF transceiver. This  

433-MHz subsystem is able to operate at a maximum frequency of 8 MHz, providing reasonable 

processing power to explore a wide variety of applications. The Atmega128L processor provides 

sufficient memory resources for a wide range of experiments. The on-chip memory includes 4 KB of 

RAM, 4 KB of EEPROM and 128 KB of flash memory. General purpose I/O pins and serial ports such 

as RS-232 and SPI are provided by the processor. 

The ZigBee subsystem uses an ARM-based microcontroller (AT91SAM7S) and a CC2420 RF 

transceiver. The ZigBee subsystem operates at a maximum frequency of 55 MHz. The processor is 

based on a 32-bit RISC architecture, and it provides 256 KB of flash memory, 64 KB of SRAM, and 

various peripherals such as UART, USB 2.0, and SPI. The hardware prototype consists of a processing 

unit, communication unit and time processing unit. The time synchronization protocol is implemented in 

the processing unit and used for synchronization of the sink node and sensor nodes. The time stamping 

unit time stamps in the physical layer and provides the system clock, which synchronizes the sink node 

and sensor nodes. The time stamps read by the time stamping unit are delivered to the processing unit. 

Figure 13 shows the architecture and prototype of the time stamping unit. 
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Figure 12. Sink node and sensor node. (a) sink node; (b) sensor node. 

  
(a) 

 

  
(b) 

Figure 13. Precision time stamping unit. 
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4.3. Experimental Result  

We compared and analyzed the clock drift rate of the sensor nodes from the sink before performing 

an evaluation of the sensor nodes. A general crystal oscillator with a clock drift of 20 parts per million 

(PPM) was chosen as the clock source of the sensor nodes. The results of an analysis are shown in 

Figure 14(a). The graph shows that five sensor nodes drift from the sink node and have different drift 

rates than the sink node. Sensor nodes A, B, C, D and E drift by approximately −21 µs, −14 µs, −4 µs, 

−8 µs, and −13 µs per second, respectively. The negative values indicate that the sensor nodes run 

slower than the sink node, while a positive value means that a sensor node runs faster than the sink node. 

As shown in the graph, the clock difference increases as time advances. Thus, clock drift correction is 

needed for accurate and precise time synchronization. Figure 14(b) presents the clock offset of the 

proposed method and that of TPSN. 

Figure 14. Analysis of clock drift of sensor nodes from sink node. (a) clock drift rate of 

sensor nodes; (b) clock offset vs. time advance. 
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We performed experiments on the developed sensor node to implement the physical phenomenon. 

Table 3 and Figure 15 show the results for the accuracy and precision using the precision time stamp 

and clock drift correction. The experimental condition was that the synchronization interval was every 

30 s in a single hop network. The performance evaluation is separated into two parts, a responding node 

and non-responding node, because the proposed method exchanges the time stamp with only one child 

node to calculate the propagation in the hierarchical tree. The results show that in TPSN, which has 

precision time stamping but does not correct clock drift, the responding node has an average offset of 

−324 µs and a standard deviation of 179 µs, while the non-responding node has an average offset  

of −186 µs and a standard deviation of 116 µs. However, in the proposed method, which has precision 

time stamping and corrects clock drift, the responding node has an average offset of 118 µs and a 

standard deviation of 2.6 µs, and the non-responding node has an average offset of 202 µs and a 

standard deviation of 23 µs. High precision time synchronization via clock drift correction is achieved 

under the assumption that the node can time stamp the clock and arrival time of the message without 

delay and jitter. 



Sensors 2011, 11 

 

 

7641

Table 3. Synchronization results via clock drift correction. 

 Responding node Non-responding node 

 AVG RMS Std Dev AVG RMS Std Dev 

TPSN −324 370 179 −186 219 116 

uPTP 118 118 2.6 202 204 23 

Unit: microseconds (µs). 

Figure 15. Synchronization results by clock drift correction. (a) responding node;  

(b) non-responding node. 
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5. Conclusions 

In this paper, we have proposed an enhanced precision time synchronization for wireless sensor 

networks. Uncertainty, which has a harmful influence on the accuracy of time synchronization, can 

occur at all layers in a network protocol stack. To provide precision and accurate time synchronization, 

we analyzed the delay and jitter caused at a network protocol stack and minimized delay and jitter. First, 

we proposed a method to scatter time information across the WSN field, minimize jitter by random 

back-off and provide precision time synchronization by dramatically reducing network traffic. Second, 

we showed how sensor nodes could be sourced from a local crystal oscillator that drifts as time 

advances. Thus, the time difference will be increased over time. In the proposed method, sensor nodes 

linearly pursue the line of the reference clock by correcting their clock drift. This study also designed 

and implemented a precision time stamping unit and evaluated its performance. In addition, to 

demonstrate the superiority of the proposed time synchronization method for WSNs, this study 

implemented a special sink node and a sensor node. According to the results of the performance 

evaluation, the proposed method greatly reduced the number of messages used for synchronization and 

had 5-fold better performance than a traditional time synchronization protocol in terms of accuracy. 

The proposed method can be used as a foundation for many applications requiring strict clock 

synchronization. In addition, it can be extended to other radio frequencies, as well as IEEE 802.15.4, 

for accurate clock synchronization. This represents a milestone for precision time synchronization for a 

wide-scale wireless sensor network. We expect the proposed method to have a significant impact on the 

efficiency of many sensor applications, including those used for field surveillance, environment or 
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habitat monitoring, localization, and asset management. Future work will include applications of the 

introduced system to real world scenario. 
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