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Abstract

This study proposed a novel ensemble analysis strategy to improve hand, foot and mouth dis-
ease (HFMD) prediction by integrating environmental data. The approach began by establish-
ing a vector autoregressive model (VAR). Then, a dynamic Bayesian networks (DBN) model
was used for variable selection of environmental factors. Finally, a VAR model with con-
straints (CVAR) was established for predicting the incidence of HFMD in Chengdu city
from 2011 to 2017. DBN showed that temperature was related to HFMD at lags 1 and
2. Humidity, wind speed, sunshine, PM10, SO2 and NO2 were related to HFMD at lag
2. Compared with the autoregressive integrated moving average model with external variables
(ARIMAX), the CVAR model had a higher coefficient of determination (R2, average differ-
ence: + 2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower root mean-squared error (−24.88%;
t =−5.2898, P = 0.0007 < 0.05) and a lower mean absolute percentage error (−16.69%;
t =−4.3647, P = 0.0024 < 0.05). The accuracy of predicting the time-series shape was
88.16% for the CVAR model and 86.41% for ARIMAX. The CVAR model performed better
in terms of variable selection, model interpretation and prediction. Therefore, it could be used
by health authorities to identify potential HFMD outbreaks and develop disease control
measures.

Introduction

Prediction provides a better understanding and quantitative assessment for infectious disease
control and risk evaluation. Accurate and explainable predictions also provide useful informa-
tion for health administration and policymakers. Therefore, accuracy and interpretability are
among the most important objectives of prediction research. With the establishment and
development of the biopsychosocial model, most researchers pay attention not only to the
infectious disease itself, but also to the impact of environmental factors, socio-economic fac-
tors, human behaviour and other factors on infectious disease prediction. In the past decade,
due to climate change and environmental pollution, people have become increasingly con-
cerned about the health effects of external environmental factors, such as temperature, relative
humidity and air pollutants. Many of these factors have been found to have health effects and
have become potential predictors in infectious disease prediction [1–3]. Introducing such
external environmental factors into prediction models also improves the performance of the
models. Basile et al. used meteorological data to predict the incidence rate of influenza and
the accuracy of prediction was above 80% [4]. Additionally, Guo et al. used climate data to
predict cases of dengue more accurately [5].

However, most external environmental factors affect infectious disease simultaneously and
are thus usually correlated (e.g. temperature, humidity and rainfall). These correlation factors
can cause multiple collinearities, hide the real relationship between the factors, even generate
confounding correlation paths, thereby jeopardising the performance of the prediction model
[6, 7]. Therefore, when using multiple correlated environmental factors (or multivariate time
series, MTS) for prediction, how to introduce these factors into the model remains a major
challenge.

Traditionally, the autoregressive integrated moving average model with external variables
(ARIMAX) is commonly used to predict MTS data. However, the ARIMAX model often
encounters various problems, such as variable selection and model interpretation. In this
study, we proposed a novel ensemble analysis strategy to solve these problems and establish
a prediction model within a unified framework. The ensemble analysis strategy started by
establishing a vector autoregressive model (VAR) with all the external environment variables.
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Then, the VAR model was equivalently transformed into a
dynamic Bayesian networks (DBN) model [8], and the latter
was used to select the variables, which could be considered as a
constraint condition. Finally, the VAR model with the constraint
condition (CVAR) was established for prediction. Our previous
studies proved that the VAR model can accurately predict MTS
data and can be interpreted by impulse response analysis [9].
Moreover, DBN can identify the correlation among multiple vari-
ables simultaneously [10], while common correlation analysis can
only identify two variables at a time. The variable selection pro-
cess of DBN can simulate the real-world context in which influ-
encing factors impact diseases. Based on these advantages, this
study combined the two models under a unified mathematical
framework to construct CVAR and improve the accuracy and
interpretability of the prediction model.

In this study, hand, foot and mouth disease (HFMD) was used
as an example to illustrate this ensemble analysis strategy, and the
prediction performance was compared with that of a commonly
used prediction model, the ARIMAX model, to evaluate the pre-
diction accuracy and interpretability of the proposed strategy.
HFMD is a major public health problem in China that is caused
mainly by enterovirus 71 (EV71) and coxsackievirus A16
(CVA16) [11]. Many studies have found that environmental fac-
tors are related to HFMD incidence. For example, the relationship
of temperature and relative humidity with HFMD approximated a
positive linear association, while that of air pressure approximated
a negative linear association [12, 13]. In the following section, the
step-by-step application of our proposed ensemble analysis strat-
egy was presented in the context of HFMD incidence prediction.

Material and methods

Study area and data sources

Our previous studies in Chengdu city found that temperature,
diurnal temperature range and particulate matter under 10 μm
(PM10) are related to HFMD [14–16]. Therefore, this study
selected Chengdu city as the study area and included more envir-
onmental factors to conduct prediction research. Chengdu is the
capital city of Sichuan Province, which lies in the west of the
Sichuan Basin and at the centre of the Chengdu Plains. Air pol-
lution in Chengdu is relatively serious because of the basin terrain.
Chengdu lies in the subtropical humid climate subzone under the
eastern-monsoonal region. The annual average temperature is
16.5− 18.0°C, the annual maximum and minimum temperatures
are 35.2− 37.4°C and −5.3∼−1.4°C, respectively, and the annual
average precipitation is 800 − 1400 mm. According to our previ-
ous studies and a meta-analysis, these climatic features could
increase the risk of HFMD [14–17].

This study collected HFMD surveillance data and 10 environ-
mental factors to develop prediction models. Daily HFMD data
among children aged 0–14 years, from 1 January 2011 to 31
December 2017, were obtained from the Sichuan Center for
Disease Control and Prevention (https://www.sccdc.cn/). All
HFMD cases were confirmed by clinical diagnosis and met the
National Guideline on Diagnosis and Treatment of Hand Foot
Mouth Disease.

Environmental factors included meteorological factors and air
pollutants. Daily meteorological data from 2011 to 2017 were
obtained from the China National Weather Data Sharing
System (http://data.cma.cn/). Daily air pollutant data during the
same period were obtained from the Sichuan Environmental

Monitoring Center (http://sthjt.sc.gov.cn/sthjt/c104334/scemc.
shtml). The names and abbreviations of the variables are shown
in Table 1.

Steps of the ensemble analysis strategy

Step 1. Data preparation
Figure 1 shows the process of the novel ensemble analysis strat-
egy. Before fitting the VAR model, the trace statistic of the
Johansen cointegration test was used to test a long-term equilib-
rium relationship of the MTS to avoid spurious regression (i.e.
the random trend of several time series is the same). In addition,
according to the stationary data requirement in time-series
analysis and prediction [18], the augmented Dickey−Fuller
(ADF) test was used to estimate the stationarity of the MTS:
non-stationary MTS should be transformed by differencing to
induce stationarity.

Step 2. The incorporation of environmental variables
The ensemble analysis strategy started by establishing a VAR
model with all the external environment variables as follows:

∇Xt = A1∇Xt−1 + · · · + Ap∇Xt−p + B+ 1t (1)

In equation (1), ∇Xt is the first-order differenced series of
Xt (∇Xt = Xt − Xt−1), which represents environmental factors
and HFMD incidence, and Ap represents the coefficient matrix
of the variables. Maximum likelihood estimation (MLE) was used
to estimate the VAR parameters. B represents the baseline meas-
urement for each variable; εt is the residual series; p (1≤ p < t) is
the maximum lag order, which represents the delayed effects of
factors on HFMD and was determined by the Schwarz criterion
(SC) via the ‘VARselect()’ function in the ‘vars’ package in
R3.6.3. This maximum lag order was also used in the DBN.

Step 3. The selection of variables and the constraints on the VAR
model
The DBN, which was used to select variables, is a directed acyclic
graph that uses nodes and arcs to express the joint probability dis-
tribution function between variables. Nodes represent candidate
variables in this study, and arcs (or arrows) represent the

Table 1. Variable names, abbreviations and units in this study

Names Abbreviations Units

HFMD incidence HFMD 1/1 000 000 day

Mean wind speed WIN km/h

Sunshine duration SUN h

Mean air pressure PRES kPa

Mean temperature TM °C

Precipitation RAIN mm

Diurnal temperature range DTR °C

Relative humidity HUMID %

Particulate matter under 10 μm PM10 μg/m3

Sulphur dioxide SO2 μg/m3

Nitrogen dioxide NO2 μg/m3

Note. All the mean of environmental variables is a daily mean.
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correlation between variables. For example, the correlation
between nodes i and j could be measured by the coefficient aij
in Ap (Eq. 1), where a larger aij indicated a stronger correlation.
Under such circumstances, the aim of variable selection via
DBN is to identify whether aij is non-zero for any two nodes i
and j in the candidate set. In other words, if aij is non-zero,
then the network includes an arc between nodes i and j. The coef-
ficients of DBN can be estimated by the least absolute shrinkage
and selection operator (lasso), which uses a penalty term to con-
strain the sum of absolute parameter coefficients and shrink some

coefficients to zero. In addition, variables selected by DBN usually
have different lag orders, in contrast to Pearson’s correlation ana-
lysis and other variable selection methods. However, the VAR
model requires the same lag order for all variables; therefore, we
propose the constrained VAR model (CVAR). In this model, the
coefficients of unrelated variables in matrix Ap (Eq. 1) were set
to 0 by means of constraints that were obtained from DBN by
the lasso method. The CVAR model is defined as follows:

∇Xt+h|t = A∗
1+h|t∇Xt+h−1|t + · · · + A∗

p+h|t∇Xt+h−p|t + B

+ 1t+h|t (2)

where A∗
p+h|t is the coefficient matrix with DBN constraints and h

is the step of prediction, h≥ 0. The other terms are the same as in
equation (1). We used the ‘VAR()’ function in the ‘var’ package to
fit the VAR models. After fitting the VAR models, we used the
DBN and prior knowledge to impose constraints on the coeffi-
cient matrices and then used MLE to estimate the CVAR models.
The OLS-CUSUM test was used to verify the stability over time of
the coefficients of a linear regression model (i.e., CVAR) [19]. If
the coefficients were within the confidence intervals, the models
were considered effective and could be used for prediction.

Step 4. Model fitting and prediction
To make full use of the daily data, we conducted rolling training
on the time-series data; that is, we took the three-year differenced
data as a sample set (1094 days), analysed them in days and
divided them into an integer training set (985 days) and test set
(109 days) in a ratio of 9:1. Then, we scrolled forward the sample
set in half a year until the end of the data. For example, the data
from 1 January 2011 to 31 December 2013 were the first sample
set. We divided this sample set into a training set and test set at a
ratio of 9:1. The data from 1 July 2011 to 30 June 2014 were the
second sample set and were also divided by a ratio of 9:1. In this
way, we obtained nine sample sets and fitted nine VAR models
(referred to as VAR_①−⑨). The nine sample sets were also used
to fit the DBN, CVAR and ARIMAX models (referred to as
DBN_①−⑨, CVAR_①−⑨ and ARIMAX_①−⑨). The coefficient
of determination (R2) was used to evaluate the proportion of
the variance explained and the goodness of fit for these models.

In addition, we summarised the graphs of the DBN_①−⑨ in
one graph to show the results briefly. Based on the voting prin-
ciple, the arcs of each variable within the DBN_①−⑨ appearing
at least six times (more than half the times) were included in
the summarised DBN graph. The corresponding coefficients
were the average coefficients of these arcs.

The HFMD surveillance data can be updated within 24 h,
thus, a dynamic prediction method was used to predict the inci-
dence of HFMD 1-day ahead [20]. In addition, the results of 2-,
3-, 7-, 10-days ahead dynamic prediction and direct prediction
without updating the data (109-days ahead) can be referred to
Supplementary File, Tables S7 and S8. The dynamic prediction
with 1-day ahead is that after one day of out-of-sample prediction,
the training set was updated with observed data, the prediction
model was re-fitted, and the re-fitted model was used to make
the next 1-day ahead out-of-sample prediction. This process
was repeated until the complete test set was predicted. The root
mean-squared error (RMSE) and mean absolute percentage
error (MAPE), which quantified the error between the actual
and predicted values, were used to evaluate the prediction accur-
acy. A confusion matrix was used to summarise the ability of the

Fig. 1. Process of the novel ensemble analysis strategy.

Table 2. Descriptions of daily HFMD incidence, meteorological and air pollution
variables in Chengdu from 2011 to 2017

Variables Mean S.D. Min. Median Max.

HFMD (1/1 000
000 day)

4.87 10.68 0.00 4.33 20.47

WIN (km/h) 1.22 0.48 0.00 1.15 4.10

SUN (h) 2.73 3.33 0.00 1.00 12.70

PRES (kPa) 951.00 7.43 932.50 950.90 977.00

TM (°C) 16.45 7.40 −1.90 17.40 29.80

HUMID (%) 79.35 8.64 32.00 80.00 98.00

RAIN (mm) 2.65 9.56 0.00 0.00 167.60

DTR (°C) 7.98 3.86 1.00 7.60 20.60

PM10 (μg/m
3) 111.90 71.42 15.00 94.00 862.00

SO2 (μg/m
3) 21.98 13.79 4.00 18.00 96.00

NO2 (μg/m
3) 53.35 17.98 15.00 50.00 144.00
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CVAR model to predict increases and decreases in nine subsets
[21]. Then, we averaged the results of the subsets and estimated
the average accuracy.

Step 5. The enhancement of interpretability
Step 5.1 Sensitivity analysis: The sensitivity analysis was used to
evaluate the importance of related variables selected by the sum-
marised DBN graph in predicting the incidence of HFMD. This
analysis was conducted based on the deletion of an environmental
factor from the full CVAR model, and then the RMSE was calcu-
lated to check whether this factor could affect the prediction of
HFMD incidence.

Step 5.2 Impulse response analysis: After establishing the CVAR
model, the interpretability of the model was enhanced by the
impulse response analysis, which is based on the Wold moving
average function [18], and the model structure is as follows:

Xt = C01t +C11t−1 + · · · +Cp1t−p (3)

where Ψp is the coefficient matrix of the impulse response. The
‘irf()’ function in the ‘var’ package was used to conduct the
impulse response analysis to evaluate the response of a dependent
variable in the next 10 days when an independent variable was
subject to an impulse (changed by a unit). Because the average
incubation period of HFMD is three to seven days, the period
of 10 days could reflect the effects of environmental variables
on HFMD. This analysis helped to explain the dynamic effects
of predictors on response variables; therefore, we used it to
enhance the interpretability of the CVAR model. The impulse
response analysis was performed on each CVAR_①−⑨ model,
and the variables that appeared in the summarised DBN graph
were extracted. The impulse response results of these variables
were averaged to construct a summarised impulse response
analysis.

Step 6. Model comparison
To verify the performance of the CVAR model, we compared it
with the ARIMAX model. The ARIMAX model is a classic
method in prediction research, which provides a general analysis
framework for predicting infectious disease [22]. Since exogenous
variables need to be introduced and ARIMAX is a linear model,
researchers usually use Pearson’s correlation analysis to select
variables and then fit the prediction model [23]. MLE was used
to estimate the parameters of ARIMAX, and the optimal
ARIMAX models were selected based on the Akaike information
criterion (AIC) via the ‘auto.arima()’ function in the ‘forecast’
package in R3.6.3. The Ljung−Box test was used to verify the sta-
bility of ARIMAX models. When PLjung−Box > 0.05, indicating that
the residual is white noise and the model is effective for
prediction.

The R2, RMSE, MAPE and averaged confusion matrix of the
ARIMAX models were estimated and compared with those of
the CVAR models. A two-tailed paired t-test was used to test
whether the R2, RMSE and MAPE of the two models were differ-
ent. The ranges of R2, RMSE and MAPE were calculated to reflect
the stability of the two models.

All the above statistical analyses were performed in R 3.6.3
using packages such as ‘bnlearn’, ‘lars’, ‘vars’, ‘tseries’ and
‘forecast’.

Results

From 1 January 2011 to 31 December 2017, a total of 184 210
cases of HFMD were reported among children aged 0−14 years
in Chengdu. The incidence rates were about 5 cases per 10 00
000-person day in Chengdu. Figure 2 shows the time-series
plots of all the variables and Table 2 shows the statistical
descriptions.

This study included 11 time series, and we conducted the
Johansen cointegration test on the original data first. For all the
r values tested, there were at least 11 cointegration ranks
(Supplementary File, Table S1). Thus, the original data have a
long-term equilibrium relationship and would not undergo spuri-
ous regression. The ADF statistic values showed that TM and
HFMD were non-stationary, which might be related to the long-
term time variation of these variables, thus we performed a first-
order differencing for all the data (Supplementary File, Table S2).
Then, we used the differenced data to establish the VAR, DBN,
CVAR and ARIMAX models. Finally, the data were converted
to the original scale.

The parameter estimates of the DBN and CVAR models

We performed rolling training on the MTS data. According to the
Schwarz criterion (SC) values of the nine different training sets,
the optimal maximum lag orders were two (Supplementary File,
Table S3), and VAR_①−⑨ models were fitted with maximum
lag = 2 (Supplementary File, VAR_①−⑨ Equations). Then,
DBN_①−⑨ models were used to select the variables of the
VAR_①−⑨ models. The parameters of the DBN_①−⑨ models
are shown in the Supplementary File, Table S4 and Figure S1.
In the nine DBN graphs, arcs appearing at least six times (more
than half the times) were included in the summarised DBN
graph (Fig. 3). The corresponding coefficients are shown in the
Supplementary File, Table S5. The factors’ coefficients≠ 0 had
arc connections, indicating correlations to HFMD, while coeffi-
cients = 0 would not show in the summarised DBN graph and
were not related to HFMD. TM was related to HFMD at both
lag 1 and lag 2, indicating that TM was an important factor for
HFMD.

HFMD has no impact on environmental factors. Therefore, in
the VAR models with environmental factors as dependent vari-
ables and HFMD as an independent variable, the coefficient of
HFMD was zero. Combined with the variables selected by
DBN, we imposed two types of constraints on the VAR models
(DBN variable selection and common knowledge). We followed
this approach to fit the CVAR_①−⑨ models. The coefficients of
the CVAR models can be found in the Supplementary File,
CVAR_①−⑨ Equations. The results of the OLS-CUSUM test indi-
cated that all the coefficients were within the confidence intervals,
and the CVAR_①−⑨ models were stable and effective
(Supplementary File, Fig. S2).

The interpretation of the CVAR model

Sensitivity analysis
According to the summarised DBN graph, we deleted a related
factor from the full CVAR model once a time and compared
the increased RMSE of each model (Table 3). The sensitivity ana-
lysis results showed that temperature, wind speed and humidity
had great effects on the HFMD prediction. NO2 and PM10 were
important predictors among the air pollutants.
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Impulse response analysis
After establishing CVAR_①−⑨models, we estimated the effects of
environmental variables on HFMD through the impulse response
analysis. Figure 4 shows a summary of the impulse response ana-
lysis. Wind speed was positively related to HFMD during the first
five days, negatively related to HFMD on days five to seven and
then tended to be zero. Sunshine was negatively related to
HFMD during the first five days, positively related on days five
to seven and finally tended to be zero. Temperature was negatively
related to HFMD during the first three days, positively related to
HFMD on day four and day five and then tended to be zero.
Humidity was negatively related to HFMD during the first four
days, positively related to HFMD on the next several days, and
then tended to be zero. PM10, SO2 and NO2 were negatively
related to HFMD during the first three or four days and then
had a positive impact, eventually tending to zero.

The results of model comparison

On the basis of the Pearson correlation analysis conducted on the
nine training sets (Supplementary File, Table S6), we selected the
relevant environmental variables and used them to fit
ARIMAX_①−⑨ models (Table 4). The Ljung−Box test showed

Fig. 2. Time-series plots of variables in this study.

Fig. 3. Summarised DBN graph of the DBN_①−⑨ models.
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that the residuals of each model were white noise; therefore, the
ARIMAX_①−⑨ models were stable and could be used for
prediction.

In the training sets, the coefficients of determination (R2) were
calculated for CVAR_①−⑨ and ARIMAX_①−⑨ models. In the
test set, the CVAR and ARIMAX models were used to predict

Table 3. The sensitivity analysis of the CVAR_①−⑨ models

Model

RMSE

Full model -WIN -SUN -TM -HUMID -PM10 -SO2 -NO2

① 1.066 1.0751 1.0750 1.0754 1.0719 1.0709 1.0750 1.0799

② 1.072 1.0809 1.0870 1.0804 1.0881 1.0871 1.0710 1.0858

③ 1.145 1.1448 1.1444 1.1438 1.1524 1.1518 1.1440 1.1568

④ 1.147 1.1468 1.1468 1.1453 1.1548 1.1543 1.1464 1.1386

⑤ 1.151 1.1595 1.1501 1.1596 1.1478 1.1475 1.1495 1.1524

⑥ 1.149 1.1480 1.1485 1.1471 1.1464 1.1457 1.1478 1.1395

⑦ 1.148 1.1451 1.1469 1.1467 1.1446 1.1439 1.1463 1.1382

⑧ 1.147 1.1440 1.1460 1.1561 1.1438 1.1431 1.1475 1.1475

⑨ 1.140 1.1438 1.1394 1.1512 1.1374 1.1353 1.1414 1.1410

Average 1.129 1.1320 1.1316 1.1339 1.1319 1.1311 1.1299 1.1311

Icrease(%) \ 0.2416 0.2028 0.4133 0.2331 0.1579 0.0529 0.1588

Note. ‘-’ represents the deletion of this variable from the full model.

Fig. 4. Summarised impulse response analysis of the CVAR_①−⑨ models.
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the incidence of HFMD 1-day ahead (Table 5). The results of 2, 3,
7, 10-days ahead dynamic prediction and direct prediction
(109-days ahead) can be referred to Supplementary File, Tables
S7 and S8. Compared with the ARIMAX model, the CVAR
model showed a significantly higher R2 (average difference:
+2.11%; two-tailed paired t-test: t = 6.2051, P = 0.0003 < 0.05), a
lower RMSE (−24.88%; t =−5.2898, P = 0.0007 < 0.05) and a
lower MAPE (−16.69%; t =−4.3647, P = 0.0024 < 0.05). These
indicated that the CVAR models performed better than the
ARIMAX models. The ranges of R2, RMSE and MAPE of
the CVAR models were always narrower than those of the
ARIMAX models, indicating that the performance of the CVAR
model was more stable. Figures 5 and 6 show the prediction
and fitting plots, respectively. Comparison of the averaged confu-
sion matrices of the two models (Tables 6 and 7) indicated that
the accuracy of the CVAR models was 88.16% ((50.26 + 45.84)/
109) and that of the ARIMAX models was 86.41% ((48.56 +
45.63)/109). Thus, the CVAR models were more accurate in pre-
dicting the time-series shape.

Discussion

Accuracy and interpretability have always been among the most
important objectives of infectious disease prediction. In this
study, data on environmental factors and HFMD incidence in
Chengdu city from 2011 to 2017 were used to establish CVAR
models using an ensemble analysis strategy, and the prediction
accuracy and interpretability of the models were evaluated. In
this ensemble analysis strategy, we first established the VAR
model, then used the DBN model to select variables under the
unified framework and finally established the CVAR model. We
found that the ensemble analysis strategy had advantages in
terms of variable selection, model interpretation and prediction.

The DBN used in this strategy had advantages in variable
selection and results display. The variables selected by the DBN
(Fig. 3) included temperature, which was related to HFMD at
lag 1 and lag 2, as well as relative humidity, wind speed, sunshine,
PM10, SO2 and NO2, which were related to HFMD at lag
2. Previous work in Sichuan province showed that the meteoro-
logical factors, including temperature, humidity, sunshine, air
pressure and wind speed, were related to HFMD [24], which is
consistent with the results of our study. Many other works have

provided several postulations to explain the pathways through
which meteorological factors affect HFMD [25, 26]. One possible
explanation is that meteorological factors could influence the
transmission and the survival of the HFMD virus, as well as
human behaviours, thereby influencing infection transmission.
Several studies have found that air pollutants can increase the
risk of respiratory diseases [27, 28]. One of the infection pathways
of HFMD is the respiratory transmission. This might provide a
possible explanation for why pollutants affect HFMD; however,
more studies are needed to evaluate the mechanisms. A recent
analysis of ours in Chengdu found that PM10 in air pollutants
increased the risk of HFMD [16], and another study in Hefei
found a significant statistical correlation between SO2 and
HFMD [29], which could support the results of our present
study. In addition, this study first found that NO2 had an impact
on HFMD. This impact may be related to the high concentration
of NO2 in Chengdu city and more studies are needed to test this
finding. By contrast, other studies have found that wind speed, air
pressure, SO2 and NO2 were not related to HFMD [30, 31].
Possible explanations for these discrepancies could be the differ-
ent analysis methods and the differences in climatic and geo-
graphic conditions of the study areas.

This ensemble analysis strategy applied sensitivity analysis and
impulse response analysis to enhance the interpretability of CVAR
models. We found that temperature, wind speed and humidity had
great effects on the HFMD prediction. NO2 and PM10 were more
important among the air pollutant predictors. Temperature,
humidity, sunshine, PM10, SO2 and NO2 were negatively related
to HFMD during the first three or four days and then had a posi-
tive impact on the next three days, with the effect eventually tend-
ing to zero. This process is very similar to the clinical course of
HFMD, which has an average incubation period of 3–7 days.
This phenomenon may be attributed to the delayed effect of envir-
onmental factors on health [32]. Other studies found similar effects
of temperature, humidity and air pollutants on HFMD [33, 34].
Wind speed was positively related to HFMD during the first several
days, negatively related during the next few days, then positively
related and finally unrelated, but the general effects were positive.
These findings are supported by previous studies, which indicated
that wind speed could increase the risk of HFMD [33]. However,
our findings differ from other studies, which found that wind
speed and sunshine have no statistically significant effect on
HFMD [30]. Possible explanations for the discrepancies could be
the differences in the environmental and socio-economic profiles
of these study areas.

Compared with that of the VAR model, the structure of the
CVAR model was more reasonable, which further improved the
interpretability of the CVAR model. The VAR model allows all
variables to be either explanatory or response variables, which
often leads to unreasonable relationships in the model. Take the
dengue VAR model established by Goto et al. as an example
[35]. When temperature was taken as a response variable and den-
gue incidence as an explanatory variable, the model indicated that
the incidence of dengue impacted temperature. This result is
clearly not consistent with an epidemiological causal relationship.
In our ensemble analysis strategy, the CVAR model could use
DBN and prior information to adjust unreasonable correlations
between variables and optimise the model structure.

In addition, the ensemble analysis strategy also had advantages
in prediction. We compared the performance of the CVAR model
with that of the ARIMAX model, which is a traditional model for
the prediction of MTS data. The CVAR model had a higher R2

Table 4. Results of the ARIMAX_①−⑨ models

Model Varibles AIC PLjung−Box

① ARIMA(4,0,3) + SUN,PRES,TM,DTR,PM10,SO2 2289.820 0.998

② ARIMA(5,0,2) + PRES,TM,DTR,PM10,SO2,NO2 2415.170 0.947

③ ARIMA(5,0,5) + PRES,TM,HUMID,PM10,SO2 2711.660 0.946

④ ARIMA(3,0,3) + PRES,TM,HUMID,PM10,SO2 2822.610 0.988

⑤ ARIMA(2,0,3) + TM,HUMID,DTR, PM10,SO2,NO2 2905.470 0.981

⑥ ARIMA(5,0,3) + PRES,TM,PM10 2906.230 0.960

⑦ ARIMA(2,0,4) + WIN,PRES,TM,HUMID,PM10,
SO2,NO2

3042.750 0.984

⑧ ARIMA(5,0,4) + WIN,PRES,TM,HUMID,
DTR, PM10

2989.740 0.515

⑨ ARIMA(5,0,4) + WIN,PRES,TM,HUMID 2868.450 0.510
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(+2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower RMSE (−24.88%;
t =−5.2898, P = 0.0007 < 0.05) and a lower MAPE (−16.69%;
t =−4.3647, P = 0.0024 < 0.05). The ranges of R2, RMSE and
MAPE of the CVAR models were always narrower than those of

the ARIMAX models. These results suggested that the CVAR
models could predict HFMD more accurately and stably.
Comparing the confusion matrices of the two type models
(Tables 6 and 7), the accuracy of the CVAR models was

Table 5. Comparisons of R2, RMSE, MAPE, ranges and means between the CVAR_①−⑨ and ARIMAX_①−⑨ models for 1-day ahead dynamic prediction

Model

R2 RMSE MAPE(%)

CVAR ARIMAX CVAR ARIMAX CVAR ARIMAX

① 0.963 0.931 1.066 1.221 100.69 113.40

② 0.958 0.921 1.072 1.852 99.89 140.15

③ 0.969 0.951 1.145 1.699 99.61 140.60

④ 0.972 0.951 1.147 1.357 100.19 124.61

⑤ 0.973 0.951 1.151 1.451 99.28 124.09

⑥ 0.968 0.951 1.149 1.552 100.04 100.70

⑦ 0.969 0.952 1.148 1.690 99.15 112.32

⑧ 0.970 0.962 1.147 1.340 99.81 112.20

⑨ 0.966 0.958 1.140 1.370 100.20 110.86

Range (0.958, 0.973) (0.921, 0.962) (1.066, 1.151) (1.221, 1.825) (99.15, 100.69) (100.7, 140.6)

Mean 0.968 0.948 1.129 1.503 99.87 119.88

Fig. 5. Incidence of HFMD predicted by the CVAR_①−⑨ and ARIMAX_①−⑨ models in the test set.
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88.16%, while the accuracy of the ARIMAX models was 86.41%,
indicating that the CVAR models were more accurate in predict-
ing the time-series shape. Besides, comparing the results of 1-, 2-,
3-, 7-, 10-days ahead dynamic prediction and direct prediction
(109-days ahead), we found that the RMSE increased significantly
after 7-days ahead and then reached a steady state. Therefore, it is
better to set the prediction step within 7-days for HFMD
prediction.

Based on this information, researchers can provide recommen-
dations for health and related authorities to prevent and control
HFMD. For example, according to the relationship between tem-
perature, humidity, wind speed, sunshine, PM10, SO2, NO2 and
HFMD, we recommend that the health sector establish a disease
warning system based on meteorological variables. Furthermore,

the meteorological department should warn of bad weather, espe-
cially when it is hot, stormy or hazy weather. The public should be
reminded to take protective measures to reduce exposure to bad
weather. Moreover, the government can reduce air pollution in
the basin region by increasing green areas, promoting clean
energy vehicles or encouraging citizens to install gas purification
devices.

Under this novel framework, we used the VAR and DBN mod-
els to establish the CVAR models. This ensemble analysis strategy
has some benefits. By using the DBN model to select variables, we
can identify the complex correlation pattern and delayed effect
among MTS data simultaneously, and the DBN can use the net-
work graph to represent the relationship between variables by lag

Fig. 6. Incidence of HFMD fitted by the CVAR_①−⑨ and ARIMAX_①−⑨ models in the training set.

Table 6. The averaged confusion matrix of the CVAR models

Actual

CVAR predicting

TotalUp Down

Up 50.26 5.62 55.88

Down 7.28 45.84 53.12

Total 57.54 51.46 109

Table 7. The averaged confusion matrix of the ARIMAX models

Actual

ARIMAX predicting

TotalUp Down

Up 48.56 8.25 56.81

Down 6.56 45.63 52.19

Total 55.12 53.88 109
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order, which is difficult to achieve in the ordinary correlation ana-
lysis. The characteristics of the DBN model make it applicable not
only to HFMD prediction, but also to the prediction of other
infectious diseases. Besides, common knowledge constraints
made the structures of the CVAR models more reasonable, and
the impulse response analysis enhanced the interpretability of
the CVAR models. Furthermore, the t-tests of the R2, RMSE
and MAPE showed that the CVAR models had a higher predic-
tion accuracy. Additionally, the ranges of R2, RMSE and MAPE
indicated that the CVAR models were more stable, and the aver-
aged confusion matrix indicated that CVAR models could predict
increases and decreases in the time series more accurately. The
results of our study can provide useful recommendations for
HFMD prevention and have a certain application value. Both
the DBN and the ensemble analysis strategy have the potential
to be applied in other infectious disease predictions.

However, some limitations require mentioning. First, our pre-
vious work suggested that at least three years of weekly HFMD
data are required to fit the DBN model, as well as the CVAR
model [10], while the ARIMAX model required four to seven sea-
sonal cycles of data [18]. When the available HFMD surveillance
data are insufficient, the parameters of these models might be
unstable. Second, since the short-term dynamic prediction of a
CVAR model is more accurate, surveillance data and prediction
models must be updated constantly to ensure the accuracy of pre-
diction. Third, the CVAR models analysed only environmental fac-
tors and did not include other field factors, such as socio-economic
factors. Thus, more studies are needed to identify whether other fac-
tors could improve the prediction accuracy of CVAR models.

Conclusion

In conclusion, the ensemble analysis strategy could accurately
select variables and display the correlation pattern via a network
graph. The interpretability and prediction accuracy of the CVAR
models were better than those of the ARIMAX models. Health
authorities can use the ensemble analysis strategy to identify
potential HFMD outbreaks and apply this information to develop
disease prevention and control measures.
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