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Abstract

Background: Although criticisms regarding the dichotomisation of continuous variables are well known, applying
logit model to dichotomised outcomes is the convention because the odds ratios are easily obtained and they
approximate the relative risks (RRs) for rare events.

Methods: To avoid dichotomisation when estimating RR, the marginal standardisation method that transforms
estimates from logit or probit model to RR estimate is extended to include estimates from linear model in the
transformation. We conducted a simulation study to compare the statistical properties of the estimates from: (i)
marginal standardisation method between models for continuous (i.e., linear model) and dichotomised outcomes
(i.e., logit or probit model), and (ii) marginal standardisation method and distributional approach (i.e., marginal
mean method) applied to linear model. We also compared the diagnostic test for probit, logit and linear models.
For the real dataset analysis, we applied these analytical approaches to assess the management of inpatient
hyperglycaemia in a pilot intervention study.

Results: Although the RR estimates from the marginal standardisation method were generally unbiased for all
models in the simulation study, the marginal standardisation method for linear model provided estimates with
higher precision and power than logit or probit model, especially when the baseline risks were at the extremes.
When comparing approaches that avoid dichotomisation, RR estimates from these approaches had comparable
performance. Assessing the assumption of error distribution was less powerful for logit or probit model via link test
when compared with diagnostic test for linear model. After accounting for multiple thresholds representing varying
levels of severity in hyperglycaemia, marginal standardisation method for linear model provided stronger evidence
of reduced hyperglycaemia risk after intervention in the real dataset analysis although the RR estimates were similar
across various approaches.

Conclusions: When compared with approaches that do not avoid dichotomisation, the RR estimated from linear
model is more precise and powerful, and the diagnostic test from linear model is more powerful in detecting mis-
specified error distributional assumption than the diagnostic test from logit or probit model. Our work describes
and assesses the methods available to analyse data involving studies of continuous outcomes with binary
representations.

Keywords: Relative risk, Linear models, Logistic models, Dichotomisation, Odds ratio, Hyperglycaemia

* Correspondence: ephtcs@nus.edu.sg

'Saw Swee Hock School of Public Health, National University of Singapore,
Singapore, Singapore

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-019-0778-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ephtcs@nus.edu.sg

Chen et al. BMC Medical Research Methodology (2019) 19:165

Background

Dichotomisation of continuous outcomes is common in
epidemiology. For example, certain conditions of interest
are defined by a continuous variable over or below some
threshold, such as, hyperglycaemia is determined by ei-
ther pre-meal blood glucose (BG) exceeding 7.78 mmol/
L or random BG exceeding 10 mmol/L [1, 2]. The nature
of the outcome determines the statistical approach taken
to analyse the data. For example, linear model and logit
model (or logistic regression model) are commonly per-
formed on continuous and binary outcomes respectively.
Hence, for a continuous outcome where its binary repre-
sentation is also widely used, studies have reported find-
ings from both linear and logit models for outcomes
with dual representations [3-5].

However, estimates from dichotomised outcomes have
large variances [6, 7] and low power [6—10]. Despite of
these disadvantages, there are practical reasons for justi-
fying dichotomisation, such as: (a) following practices
used in previous research, (b) simplifying analyses or
presentation of results, (c) addressing skewed variable,
and (d) using clinically significant thresholds [9, 10]. To
address the problems associated with dichotomising
continuous outcomes, approaches that use the analytical
results from continuous outcomes to infer the associ-
ation between an exposure and the dichotomised out-
come have been proposed.

The proposed approaches transform the estimates ob-
tained from continuous outcomes into familiar measures of
association for binary outcomes, such as, risk differences,
odds ratios (ORs), and relative risks (RRs). The estimates
are obtained from applying least squares [11], method of
moments [12-14], maximum likelihood [15, 16], or Bayes-
ian [17, 18] estimation method to continuous outcomes.
The simplest transformation multiplies a scaling factor to
the estimates from the linear model to obtain log-OR [11]
but it assumes the errors have a logistic distribution. The
Bayesian method allows the distribution of the error to be
unspecified [18]. An alternative approach uses the dichoto-
mised marginal means from the linear model for continu-
ous outcomes [12, 13, 15] to obtain the measures of
association for binary outcomes and the skew normal dis-
tribution [14] has been considered to address potential
skewness in the continuous outcomes.

The marginal mean approach estimates probabilities of
different exposure levels by assuming an individual hav-
ing a confounding profiling that corresponds to the
mean values of the confounders [19]. When one of the
confounders is binary, an individual having a binary con-
founder that equals to its mean value does not exist in
the real world setting. However, when the outcome is
continuous, the marginal mean is equivalent to the over-
all mean of the population in the linear regression model
because the model has an identity link. Given that the
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computation of probabilities for binary outcomes involve
non-linear link function (e.g., logit link), marginal stand-
ardisation is commonly used to generate probabilities
and RRs from the logit model for making inference on
the overall study population [19]. Interestingly, when the
study of continuous outcomes does not require adjust-
ment for confounders with regression model, for ex-
ample, in randomised controlled trials, the marginal
mean method for estimating one-sample risk and RR
from two-sample [12, 15] could be equivalent to the
marginal standardisation method under certain assump-
tions (see Additional file 1 Section 1 for the details).

In this paper, we leverage on the marginal standardisa-
tion method for binary outcomes to estimate the RR of
dichotomised outcomes using the linear regression
model with adjustment for confounders. Extending the
marginal standardisation method from binary to dichot-
omised outcomes becomes apparent when we realise
that the logit (or probit) model assumes an underlying
latent variable that corresponds to a linear model with
standard logistic (or normal) error [20-22], and when
the latent variable exceeds some threshold (i.e., dichoto-
mised latent variable) it can be modelled using the logit
(or probit) model. As both the logit and probit models
are commonly used to model binary outcomes, we ex-
tend the marginal standardisation method to linear
model to make inference on dichotomised outcomes in
two scenarios: logistic and normal error distributions.
We compare the marginal standardisation method be-
tween regression models for continuous (i.e., linear model)
and dichotomised (i.e., logit or probit model) outcomes by
comparing the estimates generated from these regression
models. Among approaches that avoid dichotomisation,
we compare RR estimates that used the marginal stand-
ardisation approach for linear model with those from the
distributional approach proposed by Sauzet et al. [16] that
estimates RR from the marginal mean obtained from the
same linear model. We assess the statistical properties of
the estimates and diagnostic tests using simulated data.
We also apply the various approaches to evaluate the ef-
fect of an intervention that aims to improve inpatient
management of hyperglycaemia in a pilot study where
multiple thresholds were used to represent varying levels
of severity in hyperglycaemia.

Methods

Statistical models

The commonly used linear model for a continuous out-
come has the following structure:

)2
Yi=a0+aE; + Z W12k + & (1)
k=1

where Y, E; and Zy;, k=1, ..., p, are the observed
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outcome, exposure and confounders for the i-th individual
respectively; o is the intercept and ay, -+, ap ., are the
slopes; and the error terms, g;s, are assumed to be inde-
pendent and identically distributed from a normal distri-
bution with mean being 0 and standard deviation (SD)
being A. We call this the normal linear model from
henceforth.

Suppose the dichotomised outcome is defined by the
continuous outcome exceeding a known threshold, i.e.,

Y! =1(Y; > 1), where T denotes the threshold and I(-) is
the indicator function, the dichotomised outcome would
correspond to a probit model where the linear predictor
of the probit model (LP) is:

p
LP; = By + B, Ei + Zﬁk+1zki (2)
k=1

where the link function is the inverse cumulative density
function of a standard normal distribution (i.e., probit
link) and Y} has a Bernoulli distribution. The parame-
ters from the normal linear model for the continuous
outcome in equation 1 and the parameters from the pro-
bit model in equation 2 have the following relationship
(see Additional file 1 Section 2 for the details):

ado—T

050:
a;
B= for j=1,p 1

When the dichotomised outcome is defined by the
continuous outcome being below a known threshold,

ie, flz =I(Y; < 1), the relationship of the parameters
between the normal linear and probit models is:

h=()

The parameters of the two dichotomised outcomes

(ie, Y} and Y?) differ only in the sign. Hence, for ex-
ample, we can use the estimates of the normal linear
model for random BG to obtain estimates of the probit
model for hyperglycaemia that corresponds to random
BG exceeding some threshold.

When we assumed the error terms in equation 1 are
independently and identically distributed from a logistic
distribution with location parameter being 0 and scale
parameter being A\, we call this the logistic linear model

from henceforth. The dichotomised outcomes (i.e., Y}

and 1;12) from the logistic linear model corresponds to
the logit model, and its linear predictor is represented by
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equation 2 and its link function is the inverse cumulative
density function of a standard logistic distribution (i.e.,
logit link). The relationship of the parameters between
the logistic linear and logit models is the same as the
scenario where the error terms are normal. In summary,
the scaled parameters from the normal (or logistic) lin-
ear model would correspond to the parameters from the
probit (or logit) model. In particular, the scaled slope
parameter of the logistic linear model will also have a
log-OR interpretation. However, this interpretation does
not apply to the scenario where the errors are normally
distributed. Therefore, we propose to use RR to quantify
the measure of association for dichotomised outcome.

Estimation of RR

In epidemiology, effect measures for binary outcomes
are usually quantified by risk difference or RR, as these
measures are more intuitive and understandable [23]. In
the presence of confounders, we propose to use marginal
standardisation method that contrasts the risks between
all individuals who are assumed to be exposed and unex-
posed [19]. Specifically, the risk corresponds to the mar-
ginal probability is:

n
PI’(Y = 1|E = ]) = Z P[‘(Y = 1|E,: j,Zli = Z1i, ...,Zp,‘ = Zpi>W,‘

7 3)

where j takes values zero or one that corresponds to un-
exposed or exposed, and subscript i refers to the i-th in-
dividual in the study population. The marginal
probability in equation 3 is a weighted average of prob-
abilities over a target population, taking into consider-
ation of confounders [19, 24]. Hence, using the marginal
probabilities, the estimated RR is:

ﬁ%?:uE:Q

RR=—
P%Y:HE:@

Z?:l/P\r(Yi =1E =12y =2z, " Zp = Zpi)wi

Z:;l/P\r(Yi =1E;=0,Zy =21, 2Zp = Zpi) w;
(4)
and w; = % when the target population of the standard-
isation is the study population [19, 24]. The quantity, Pr

(Yi=1|E; = j, Zy; = z1;, -+
as follows :

Lpi = zpi), can be estimated

—~ o~ p —_—
@ </30 +BEi+ Z/’)kﬂzki) (5)
k=1

where ®() is the cumulative distribution function of
standard normal (or logistic) distribution and j3;, for j =0,
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-+, p+1, are estimates from the probit (or logit) model.
We can replace the estimates from probit (or logit) model
with those from the normal (or logistic) linear model (i.e.,

—~ — 3 7 -~ ap—T
@0, ..., ap11,1). Hence, when Y} =1(Y; > 1), B, = =

A
and/:?j :%forjzl, .-+, p+ 1, and when 1;12 =1(Y; < 1),

/;’; = _<aoj_r> and/)/)\i = —(%) forj: 1, "',p+1. Ap'

plying the delta method [19, 24-27] to RR in equation 4,
the estimated standard error (SE) of RR is:

se(ﬁf{) = (if;) @(if;) (6)

T

where 6 = (c?o, very o@,i) if RR is estimated from lin-

N ~ T —~
ear model, and 0 = (/30,..., /:a’p +1) if RR is estimated

from probit or logit model (see Additional file 1 Section
3 for the details). The variance estimation procedure can
be easily implemented in R [28].

Simulation study

Given that the logit and probit models are two com-
monly used models to analyse binary outcomes, we sim-
ulated continuous outcomes data under two scenarios:
logistic and normal error distributions respectively, and
generated dichotomised outcomes from these data. To
investigate the performance of estimates from models
that are correctly specified for the continuous and
dichotomised outcomes, we compared the performance
of estimates from logit model applied to dichotomised
outcomes with those from logistic linear model applied
to continuous outcomes where the outcomes are from
data with logistic error distribution. To compare esti-
mates from probit and normal linear models when the
models are correctly specified, these models are applied
to data with normal error distribution. We also com-

pared RRs from these correctly specified models where

RRs were computed using the marginal standardisation
method. To investigate performance of approaches that

avoided dichotomisation, we compared RRs from mar-
ginal standardisation method that used estimates from
linear model with those from the distributional approach
proposed by Sauzet et al. [16]. Given that the distribu-
tional approach estimates RR by evaluating the risks at
the marginal means of the linear model, it could be seen
as a marginal mean method. We only considered the
scenario when the data had normal error distribution in
this comparison because both methods have been devel-
oped for this scenario. We called the approach proposed
by Sauzet et al. [16] as distdicho from henceforth
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because it corresponded to the name of the STATA
module that the authors had implemented their ap-
proach. To compute the bias and coverage probability
quantities for distdicho, we have used the true RR value
based on its definition of RR (i.e., risk of an exposed in-
dividual to an unexposed individual where both individ-
uals have confounding profiling corresponding to the
mean values of the confounders).

To investigate the robustness of the models when they
are applied to data with the wrong error distribution
(i.e., model misspecification), we compared the perform-
ance of estimates from logit model applied to dichoto-
mised outcomes with those from logistic linear model
applied to continuous outcomes where the outcomes are
from data with normal error distribution. Likewise, we
compared estimates from probit and normal linear
models that are applied to data with logistic error distri-

bution. We also compared RRs from these mis-specified

models where RRs were computed using the marginal
standardisation method. To identify potential model
misspecification in the data analysis in the real world
setting, we could perform model diagnostics by testing
the distribution of residuals against the assumed error
distribution from the linear model and testing the ap-
propriateness of link function from the logit or probit
model with Pregibon link test [29]. To assess the distri-
bution of residuals from the logistic linear model, the 2-
sided Kolmogorov-Smirnov (KS) test is used. As KS test
tends to be extremely conservative when distribution pa-
rameters are estimated from the sample, we used the Lil-
liefors corrected KS test [30], which is only available for
normal linear model. To visualise the distribution of the
residuals, we plotted the quantile-quantile plot (QQ-
plot). Details of the simulation set-up are provided in
the next paragraph.

We simulated a continuous outcome as a function of a
binary exposure variable, E, and two binary confounders,
Z, and Z,. We first simulated Z; and Z, from Bernoulli
trials with success probabilities being 0.4 and 0.6 re-
spectively, and then simulated E from a Bernoulli trial
with success probability Pr(E = 1|Z;,Z;) = 0.34 x exp
{ In(v2)Z1 + In(v/2)Z,}. We simulated the continu-
ous outcome based on the following:

Y,‘ = Qo + alEi + (Xz(le'—O.‘l') + 0(3(22;‘—0.6) + & (7)

where & had a normal (or logistic) distribution with sample
size set to 1000. We set oy = 0.4 and oy = a3 = 0.5, and con-
sidered the following a; values that reflected increasing
negative exposure effect on the outcome: 0, -0.15 and - 0.3.
We also considered the following A values: 1, 2 and 0.5. We
considered the dichotomised outcome corresponding to Y; s
exceeding a pre-specified threshold, Y; =I1(Y; > 7). To
vary the baseline risk, we used threshold values
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corresponding to the 7.5-th, 15-th, 30-th, 50-th, 70-th, 85-
th, and 92.5-th percentiles of Y; =« + g which represents
the outcome of an individual with the mean outcome corre-
sponding to the marginal mean where all subjects in the
population are assumed to be unexposed. We conducted
1000 simulation iterations to assess the bias, SE, coverage
probability (ie., the probability that the constructed 95%
confidence interval contains the true value of the param-

eter), type 1 error, and power of both ﬁ/\l and RR from nor-
mal linear, logistic linear, probit and logit models. We also
assessed the performance of the KS test, Lilliefors corrected
KS test and Pregibon link test for model misspecification
with the type 1 error and power of these tests.

Empirical example

The real dataset consists of the BG readings from index
inpatient admissions of patients with type 2 diabetes
mellitus admitted within the pre- and post- 60 days of a
pilot intervention program designed to improve in-
patient management of hyperglycaemia in selected wards
of a tertiary hospital in Singapore in 2013. Each inpatient
admission has BG readings at multiple time-points. To
assess whether the intervention program could reduce
the proportion of admissions with at least one hypergly-
caemia event, we performed the normal and logistic lin-
ear models on the log-transformed maximum BG levels
within an admission, with adjustment for age, gender,
ethnicity, and emergency admission status. We used the
same plots and tests in the simulation study to assess
the distributional assumption of the error term in the
linear model. Four common thresholds in inpatient
management of hyperglycaemia with increasing severity:
10, 14, 16, and 20 mmol/L [31-33], were used in the
analyses. We also performed the probit and logit models
on the dichotomised outcomes at each threshold and
assessed the appropriateness of the links using Pregibon
link test. We reported 2-sided P values for the associ-
ation between intervention and hyperglycaemia risk.

We used R version 3.3.2 (Vienna, Austria) to perform
the simulation and analyse the real dataset [28]. To per-
form the normal and logistic linear models, we used the
R package, gamlss (Generalised Additive Models for Lo-

cation Scale and Shape) [34]. To obtain RR from the dis-
tributional approach [16] (distdicho), we implemented
their method in R.

Results

Simulation results

B; estimate ([37) from simulation

By is the slope parameter associated with exposure for
probit and logit model, and it corresponds to the scaled
slope parameter associated with exposure from the lin-
ear models. Regardless of the threshold values and
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exposure effect sizes, we found, in general, /;)\15 from nor-
mal linear and probit models had biases close to 0 and
coverage probabilities close to 95%, which suggests com-
parable performance between these two models in terms
of unbiasedness and coverage probabilities, when out-
comes had standard normal errors (see Fig. 1a). Similar
findings were observed for logistic linear and logit
models when outcomes had standard logistic errors (see
Fig. 1b). Model misspecification from applying logistic
(or normal) linear model to continuous outcomes with
standard normal (or logistic) errors gave unbiased esti-
mates with coverage probabilities close to 95% across
different threshold values. However, the mis-specified
binary models produced biased estimates especially
when the effect size was large (f; = - 0.3).

The SEs of ﬁ/\l from the normal and logistic linear
models were comparable but consistently smaller when
compared to probit and logit models where the differ-
ences were more pronounced when threshold values de-
viated from 50-th percentile threshold value, regardless
of exposure effect sizes and error distributions. Empir-

ical and mean SEs of ﬁ: for each model were compar-
able, regardless of exposure effect sizes, threshold values

and error distributions. Although the type 1 errors of ﬁAl
were close to 0.05 for all models, normal and logistic lin-
ear models had higher power than probit and logit
models respectively with differences being more pro-
nounced when threshold values were at 7.5-th and 92.5-
th percentiles (see Fig. 2a and c). Similar findings were
observed when A = 0.5, 2 (see Additional file 1 Section 4,
Additional file 1: Figures S1 to S4).

Relative risk estimate (I/?T?) from simulation

Similar to /)?ls, in general, we found RRs from all four
models unbiased with coverage probabilities close to
95% across exposure effect sizes and threshold values
when outcomes had standard normal (or logistic) error
distribution (see Fig. 1c and d). Except when threshold
values were at 92.5-th percentile, the estimates from
mis-specified linear models had somewhat pronounced

biases, but within 10% of the true value. Similar to /)?1s,
the SEs of RR from the normal and logistic linear models
were smaller than the probit and logit models. However,
the differences increased as threshold values increased
from 7.5-th to 92.5-th percentile. RR had similar findings
as /3A1 for ratio between empirical and mean SEs, type 1
error and power. Similar findings for RR were observed
when A=0.5, 2 (see Additional file 1 Section 4,
Additional file 1: Figures S1 to S4). When comparing ap-
proaches that avoided dichotomisation, we found RR
from the marginal standardisation method, in general,
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(See figure on previous page.)

Fig. 1 Simulations results for bias, coverage probability and standard error for both @ and RR. Panel (@) and (b) plot the simulation results for BA]

and panel (c) and (d) plot the simulation results for ﬁﬁ, when errors are normally (or logistically) distributed with mean (or location) 0 and
standard deviation (or scale) 1, and a; = 0,~0.15, and —0.3. Dashed lines are 0, 0.95 and 1 for Bias, Coverage probability and Ratio: Mean/Empirical
standard error (SE) respectively, which correspond to no bias, 95% coverage probability and mean and empirical SEs are the same. Normal and
logistic linear models mean linear model with the error terms assumed to have normal and logistic distribution respectively

had comparable performance as the distributional ap-
proach (distdicho) in terms of bias, coverage, empir-
ical SE over mean SE, type 1 error and power (see
Additional file 1 Section 4, Additional file 1: Figures
S5 to S7) where the bias and coverage quantities were
based on the true RR value as defined by the mar-
ginal mean method. The mean SEs of distdicho were
only slightly larger than the SE of the marginal

standardisation method when the threshold values
and exposure effect sizes were large.

Model diagnostics

Model diagnostics could alleviate the bias due to model
misspecification in the error distribution as observed in
the previous simulation findings. When the effect size
and scale parameter were zero and one respectively, the
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Fig. 2 Simulation results for type 1 error and power when a; = —0.15 and a; = —0.3. Panel (a) and (c) plot the simulation results for [SA1 and
panel (b) and (d) plot the simulation results for RR. Dashed lines are plotted at 0.05 and 1 for Type 1 error and Power, corresponding to 0.05 type
1 error and 100% power respectively. Normal and logistic linear model means linear model with the error terms assumed to have normal and
logistic distribution respectively
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QQ plot of residuals from linear models followed the
45-degree line when applied appropriately (see Fig. 3a
and d). Pregibon link tests applied on binary models had
type 1 errors close to 0.05 with power lower than 5%.
However, KS test for logistic linear model and Lilliefors
corrected KS test for normal linear model had type 1 error

much lower than 0.05 with power close to 5% and type 1
error close to 0.05 with power close to 80% respectively
(see Table 1). Hence, the diagnostic test for linear model is
more powerful than the one for probit and logit models.
Similar findings were observed across different effect sizes
and scale values (results not presented).
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Table 1 Simulation results for model diagnostics when a; =0
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e~Normal(0, 1)

e~Logistic(0, 1)

Model Percentiles

Normal Linear Model * NA € 0.053

Probit Model ° 0075 0037
0.15 0.039
0.3 0.041
0.5 0.033
0.7 0.028
0.85 0.04
0.925 0.038

Logistic Linear Model * NA € 0.052

Logit Model ° 0075 0.039
0.15 0.036
03 0.036
0.5 0.038
0.7 0.034
0.85 0.042
0.925 0.028

Proportion of rejection at 5% significance level

Proportion of rejection at 5% significance level
0.822
0.043
0.032
0.042
0.038
0.039
0.044
0.029
0
0.032
0.039
0.038
0.034
0.034
0.052
0.041

“Lilliefors corrected Kolmogorov-Smirnov test were used to test whether residuals from normal linear model had a normal distribution, and Kolmogorov-Smirnov
test was used to test whether residuals from logistic linear models had a logistic distribution. ®Pregibon link test was used to test whether probit or logit link was
appropriate. cThe same normal (or logistic) linear model is applied across different threshold values.

Empirical results

We obtained the index inpatient admissions of 317 pa-
tients with type 2 diabetes mellitus, where 175 and 142
admissions occurred before and after intervention re-
spectively. The patients were generally elderly where the
mean age before intervention is 70 (SD = 14) years and
the mean age after intervention is 67 (SD =16) years.
Majority of the patients were females (before: 55% vs
after: 61%), and the majority were Chinese (before: 60%
vs after: 56%), followed by Malay (before: 21% vs after:
21%), Indian (before: 13% vs after: 19%), and Others (be-
fore: 6% vs after: 4%). The average of maximum BG
within an admission is 15.9 (SD = 6) mmol/L after inter-
vention and it was significantly lower when compared
with the average of maximum BG before intervention
(i.e., mean of maximum BG = 17.3; SD = 6 mmol/L) with-
out adjustment for confounders. To assess whether the
proportion of admissions with at least one hypergly-
caemia event was reduced after the intervention and to
avoid dichotomisation, we performed the normal and lo-
gistic linear models on the log-transformed maximum BG
within an admission with adjustment for confounders. For
an admission to have at least one hypoglycaemia event
within an admission, its maximum BG has to exceed a
threshold value, such as: 10 mmol/L (before: 91% vs after:
92%), 14 mmol/L (before: 67% vs after: 57%), 16 mmol/L
(before: 51% vs after: 41%), and 20 mmol/L (before: 29%

vs after: 20%). Figure 4a compares the adjusted ﬁAls which

were associated with intervention indicator in the linear
predictor of the linear, probit and logit models. For all
thresholds except 10 mmol/L, we found estimates from
normal linear and probit models similar, and estimates
from logistic linear and logit models similar. The 95%

confidence intervals of /)?ls from linear models were
narrower than probit and logit models, while the con-
fidence intervals among probit and logit models were
wider when threshold values corresponded to baseline
risks further from 50-th percentile (i.e., 29 and 91%).

The linear models indicated that /3?1 was significantly
different from zero, but the probit and logit models
had the same conclusion only when the threshold
value was 20 mmol/L.

Although RRs were similar across all approaches
within each threshold except at 10mmol/L, the

confidence intervals of RRs computed from normal and
logistic linear models by using marginal standardisation
method, and normal linear model by using marginal
mean method (distdicho) were narrower than those
computed from probit and logit models by using
marginal standardisation method (see Fig. 4b). The
confidence intervals of RRs from all approaches were in-
creasing as the baseline risks decreased. Probit and logit
models indicated that RRs were significantly different
from one for all thresholds except 10 mmol/L, whereas
marginal standardisation and mean methods applied to
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Fig. 4 Effect of intervention on risk of hyperglycaemia with respect to different degree of severity. Panel (a) and (b) plot @ s and RR s with their
corresponding 95% confidence intervals (i.e,, vertical lines) for linear, probit and logit models respectively. * indicates a P-value less than 0.05
without adjustment for multiple testing. + indicates a P-value less than 0.05 after adjustment for multiple testing

linear models also indicated significant difference from
one when the threshold value was 10 mmol/L. To ac-
count for multiple testing because four thresholds
were used to define hyperglycaemia, we adjusted the

P values for RR using Bonferroni correction [35].
After correction, the marginal standardisation method
suggested significant difference in risks for all four
thresholds with the logistic linear model and 16 and
20 mmol/L with the normal linear model where the

remaining two thresholds had borderline significance
(i.e., adjusted P values between 0.05 and 0.1). All
thresholds except 10 mmol/L had borderline signifi-
cance for the marginal mean method applied to nor-
mal linear model (distdicho) with adjusted P values
ranging from 0.088 to 0.108. Significant difference in
risk was observed for only one threshold (i.e., 20 mmol/L)
with no borderline significance for the remaining three
thresholds when marginal standardisation method was



Chen et al. BMC Medical Research Methodology (2019) 19:165

Page 11 of 14

A)
o
"590000
0.5
3
=
§ o+
T
g
S
7
i
-0.5
ad’
o
1o

T T T T

Theoretical quantiles(Normal)

-1 -0.5 0 0.5 1
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applied to probit and logit models. Similarly, after multiple

testing adjustment for /)?1 from probit and logit models,
the results were insignificant with no borderline signifi-

cance for all thresholds.
The QQ plot of residuals from normal and logistic lin-

ear models suggested that the distributional assumptions
were reasonable (see Fig. 5), with Lilliefors corrected KS
test and KS test P values being 0.91 and 0.80 for normal
and logistic linear models respectively. Similar findings
were observed with binary models, where the Pregibon
link test results showed insignificant results for all thresh-
olds except 20 mmol/L for Probit only (P value =0.04),
which became insignificant after Bonferroni correction.

Discussion

Dichotomisation of continuous outcome is a common
and appealing analytical approach especially when the
dichotomisation process is also practiced in the clinical
setting. However, the use of dichotomisation has been
greatly criticised for non-negligible loss of power and in-
creased variability in the estimate [6—10]. In particular,
the magnitude of loss in power is greater when the
threshold value is distant from the mean or median [7,
9], which corresponds to the scenario where OR approx-
imates RR. To avoid the drawbacks of dichotomisation
and facilitate the interpretation of binary representations
of continuous outcomes from linear models, we pro-
posed to transform estimates from linear models to RR
through marginal standardisation. We evaluated the

performance of our proposed approach, and compared it
with the dichotomized and distributional approaches
using both simulated and real datasets.

When comparing marginal standardisation method
that avoided and did not avoid dichotomisation, our
simulation results suggested ; and RR estimates from
linear, probit and logit models were generally unbiased
when applied appropriately, but probit and logit models
had larger SEs and smaller power than those estimates
from linear models. The improvement in precision and
power of estimates from continuous outcomes were also
reported in other studies [11, 12, 16, 36]. Although B,
estimates from mis-specified binary models had somewhat
pronounced biases when effect size was large, past studies
have found that small sample size or extremely common
(or rare) binary outcomes could lead to biased estimates
from logit model, which were negligible when compared
to the magnitude of the SEs [37]. The OR approximates to
the RR when baseline risk is low (i.e., threshold at 92.5-th
percentile), however, the reduction in precision and power
of OR estimates from logistic linear model to logit model
was also more pronounced when baseline risk is low.

Often, model diagnostics are performed to assess model
misspecification [38]. Our simulation results suggested
that the Lilliefors corrected KS test and KS test had better
power in assessing the distributional assumptions of the
error terms for linear models when compared to Pregibon
link tests for binary models. Our findings were consistent
with a previous study that reported low power when dif-
ferentiating probit and logit links in binary models [39].
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These findings were expected as probit and logit links are
known to be similar [40].

From the real data analyses, in general, we found the esti-
mates from normal linear and probit models to be similar,
and this phenomenon was also observed in estimates from
logistic linear and logit models. However, estimates from
probit and logit models had wider confidence intervals and
fewer significant findings than those from linear models.
These observations were consistent with findings from our
simulation and the literature [11, 12, 15]. Although we had
used the log-transformed outcome in the real dataset ana-

lyses, RRs obtained from this transformation is equivalent
to that obtained from the original outcome without trans-
formation, which corresponds to a multiplicative regression
model with log-normal [41] or log-logistic error distribu-
tion [42]. When comparing approaches that avoided
dichotomisation within normal linear model in the real data
analysis, we found the marginal standardisation and mar-

ginal mean methods had similar RRs. From the Jensen’s in-
equality [43], the estimated probability obtained via
marginal mean method could differ from that obtained via
marginal standardisation method because the link function
is not linear. However, if the range of the linear predictor
values is in a neighbourhood where a linear function can be

used to approximate the link function, RRs from the two
methods can be similar. Although these two methods gave
similar results in our real data analysis, the marginal stand-
ardisation method is more commonly used in epidemiology
studies [19, 25-27, 44] when compared with the marginal
means method, and can be viewed as a special case of G-
computation method in the causal inference literature [19],
and can be generalised to binomial models with other link
functions [26].

When faced with multiple threshold values to dichot-
omise the continuous outcome, the conventional ap-
proach would apply probit or logit model to the
dichotomised outcome at each threshold value resulting
in a multiple testing problem when assessing whether 3;
(or RR) equals to 0 (or 1). In the real dataset analyses,
after applying Bonferroni correction to account for the
multiple testing problem with binary models, only RR
defined at threshold value corresponding to 20 mmol/L
was significant while ;s for all threshold values were
not significant. However, with linear models, we avoided
the multiple testing problem for P;. We first assessed
whether B, returned a significant finding before proceed-
ing to identify the threshold value where RR # 1. Linear
models in the real dataset analyses returned significant
findings for B; and the follow-up analyses for RR, in
general, returned significant results at various threshold
values after accounting for multiple testing. In particular,
applying marginal standardisation method to normal lin-

ear model to obtain RRs provided stronger evidence of

Page 12 of 14

reduction in hyperglycaemia risk after intervention al-

though RRs were similar across methods. For future
studies involving multiple thresholds, one could mimic
the ANOVA testing procedure by starting with a test for
B1 from the linear model before proceeding to perform
post-hoc tests for RR at each threshold value with mar-
ginal standardisation or mean method.

Our proposed method has some limitations. We did
not consider dichotomisation based on two thresholds,
e.g, It <Y;<1y) or I(Y;< 1y, Y;>T1y), but our proposed
approach can be extended to this scenario and it is be-
yond the scope of this paper. Although we have pre-
sented an application to binary exposure, our approach
can be applied to categorical or continuous exposure as
well [11, 16, 36, 45]. The marginal standardisation and
mean methods in this paper were used to estimate RR
only, but both methods can also be used to estimate ab-
solute risk reduction, RR reduction and number needed
to treat pending on the research question [44, 46].

Conclusions

In conclusion, we have extended the marginal standar-
dised method that estimated RR using estimates from
the linear model when the continuous outcome has a
binary representation corresponding to the outcome ex-
ceeding or being below some pre-specified threshold
value. By avoiding the application of probit or logit
model on the dichotomised outcome, we obtained an
unbiased RR estimate that was more precise and power-
ful with marginal standardisation and mean methods,
and a more powerful model diagnostic test that could
potentially alleviate potential issues associated with
model misspecification in the error distribution. We
provided guidance for future analyses involving dichoto-
mised outcomes to facilitate interpretation, including
settings involving multiple thresholds for the same con-
tinuous outcome.
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Additional file 1: Additional theoretical proofs and additional simulation
results. The file consists of four sections. Section 1. Comparison of
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simulation results (DOCX 2100 kb)
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