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INTRODUCTION
The overarching goal of precision oncology to match the 

right treatment with the right patient has prompted clinical 
trials for patients with refractory cancers to evaluate treat-
ments targeting putative genetic tumor drivers (1–7). In 
most cancer cases, however, assessment of an individual’s 
underlying genetic disease drivers has not been efficient 

at predicting therapy effectiveness, likely because of intra-
tumor heterogeneity, dynamic changes, or our incomplete 
understanding of the genotype-to-phenotype relationship 
(8–10). Genomic tumor characterization and treatment 
matching have improved the management of some patients 
with hematologic malignancies, such as BRAF in hairy 
cell leukemia (11, 12), IDH1/2 in acute myeloid leukemia 
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follow-up of 23.9 months, 30 patients (54%) demonstrated a clinical benefit of more than 1.3-fold 
enhanced progression-free survival compared with their previous therapy. Twelve patients (40% of 
responders) experienced exceptional responses lasting three times longer than expected for their 
respective disease. We conclude that therapy matching by scFPM is clinically feasible and effective in 
advanced aggressive hematologic cancers.
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(AML; refs. 13–15), and Philadelphia chromosome in acute  
lymphoblastic leukemia (16, 17). However, most patients 
do not currently benefit from therapy selection based on 
molecular target identification. This is particularly true for 
patients with relapsed or refractory aggressive disease who 
still face a dire prognosis (18–20).

Genomically driven drug matching and targeted immu-
notherapies may be complemented by functional precision 
medicine strategies, such as high-throughput drug screen-
ing approaches, which are agnostic with respect to disease 
mechanisms and rely on direct measurements of cellular 
functions (21–24). Single-cell functional precision medicine 
(scFPM) integrates methods to assess differential cell fates 
in mixed cell populations derived from patients’ real-time 
biopsy specimens after drug exposure (23). We conducted a 
prospective trial [Extended Analysis for Leukemia and Lym-
phoma Treatment (EXALT); NCT03096821] to determine 
clinical feasibility and the efficacy of scFPM to guide therapy 
choices for patients with aggressive hematologic cancers who 
exceeded all standard therapy lines (Fig.  1A). More specifi-
cally, we profiled the ex vivo efficacy of 139 drugs using high-
content microscopy and image analysis on primary patient 
material to identify resistance-breaking treatments by using 
a progression-free survival (PFS) ratio of ≥1.3 as an outcome 
measure (Fig.  1B; Supplementary Table  S1; Supplementary 
Fig. S1). An interim analysis reported results on the first 17 
evaluable patients (23). Here, the final results of the com-
pleted EXALT study are presented.

RESULTS
Patients

From 2015 to 2019, a total of 193 patients were screened, 
of whom 143 (74.1%) were eligible, enrolled, and could be 
tested by scFPM (study population). Seventy-six (53% of 

study population; Supplementary Table S2) patients could be 
evaluated according to study protocol, and 56 (39% of study 
population, primary analysis set) patients received treatment 
according to scFPM. Twenty patients received treatment 
based on physician’s choice and thus served as an observa-
tional cohort (Fig. 2; Supplementary Table S2).

Fifty-six patients represented the primary analysis data 
set after having received tumor board–recommended ther-
apy guided by scFPM, and their clinical characteristics are 
detailed in Table  1. The median age of the patient cohort 
was 64 years (range, 23–86 years), and the median number 
of treatment lines before study entry was 3 (1–8). Seventeen 
patients (30%) had an Eastern Cooperative Oncology Group 
(ECOG) performance status of 2 or above. The median time 
was 5 (1–33) days from sampling to scFPM report, with 
longer times accounting for restaining due to updated immu-
nophenotyping data, and 21 (4–77) days to treatment. The 
median follow-up was 718 days calculated by the reverse 
Kaplan–Meier method. Patients had diverse hematologic 
cancers, both common and rare, such as AML (14/56, 25%), 
aggressive B-cell non-Hodgkin lymphoma (B-NHL; 26/56, 
46%), and T-cell non-Hodgkin lymphoma (T-NHL; 16/56, 
28%; Table 1; Supplementary Table S2). Their unifying clini-
cal feature was an aggressive disease, according to the World 
Health Organization (WHO) classification (25), that lacked 
standard treatment options.

Efficacy
Thirty of 56 patients (54%; 95% confidence interval, 

40%–67%) from the primary analysis set reached a PFS ratio 
(PFS on scFPM-guided therapy compared with PFS on prior 
therapy) of ≥1.3 with a median PFS ratio of 3.4 [interquartile 
range (IQR), 2.2–5.7]. This indicates that their individual PFS 
on scFPM-guided treatment more than tripled compared 
with their most recent individualized response time. These 

A B

LN

BM

Tumor (EXALT) board
treatment

recommendation

Image-based scFPM
DAPI

Previous treatment
d0

Previous treatment EXALT
procedure scFPM treatment

> 1.3
PFS(scFPM treatment)

PFS(Previous treatment)

Previous treatment
progression

scFPM treatment
d0 scFPM treatment

progression

Cell B
Cell A

Marker-
specific
fluorescent
antibodies

High-content
single-cell imaging

P
os

iti
ve

cl
in

ic
al

 e
ffe

ct

N
eg

at
iv

e/
no

cl
in

ic
al

 e
ffe

ct

Differential cytotoxicity

Tested drugs

Malignant cell Nonmalignant cell

PB

Figure 1.  EXALT procedure and primary outcome measure. A, Viable cells from lymph node (LN), BM, or PB of patients with late-stage hematologic 
cancer were subjected to image-based scFPM. Target cells are identified by staining with fluorescent antibodies. Reports, automatically generated by the 
analysis pipeline, are discussed in a dedicated tumor board with patients treated accordingly. B, Our primary outcome measure was PFS ratio, defined as 
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findings led to the rejection of the null hypothesis of less 
than 15% of patients benefiting from scFPM-guided treat-
ment (P  <  0.0001, one-sided binomial test; Fig.  3A). The 
PFS on scFPM-guided treatment was significantly increased 
(HR, 0.58; P = 0.0093; Supplementary Fig. S2A). Notably, 13 
of 56 patients (23%) were progression-free after 12 months 
on scFPM-guided therapy compared with 3 of 56 patients 
(5%) on their previous treatment. The objective response 
rate (ORR) was 55% for patients treated according to scFPM 
results, 60% for the lymphoid subgroup, and 41% for patients 
with myeloid neoplasms (Supplementary Fig.  S2B). Eleven 
patients (∼20%) had an ongoing response at the censoring 
date (Fig. 3A) with a median PFS of 718 days. Moreover, 12 
of 56 (21%) scFPM-guided patients experienced exceptional 
responses, defined as tripled PFS duration compared with 
expected response duration of the respective disease entity, 
based on criteria outlined by Wheeler and colleagues (Fig. 3B; 
ref. 26). Exceptional responders demonstrated better perfor-
mance status (ECOG ≤1), response [complete response (CR) 
or partial response (PR)] to prior therapy, and an overrepre-
sentation of a T-NHL diagnosis (7/12; Table 2). For the entire 
primary analysis cohort, the median PFS ratio was 1.47 (IQR, 
0.5–3.51). Eight of 56 (14%) patients received an allogenous 
hematopoietic stem cell transplantation (HSCT) or donor 
lymphocyte infusion (DLI) as a consolidation after reaching 

CR on scFPM-guided treatment. This did not translate into a 
PFS benefit compared with patients in CR who did not receive 
consolidation with HSCT or DLI (Supplementary Fig. S2C).

Pretreatment performance status influenced benefit from 
scFPM-guided treatment, with a PFS ratio of  ≥1.3 being 
reached by 62% of patients with ECOG  ≤1 and by 35% of 
patients with ECOG >1 (Fig.  3C; Supplementary Fig.  S2D). 
Median PFS was 207 days for patients with ECOG ≤1 com-
pared with 29 days for patients with ECOG  >1 (Fig.  3D). 
Patients who had an objective response (OR) consisting of 
CR or PR to their previous treatment had a longer PFS 
on scFPM-guided treatment (Fig.  3E and F). Furthermore, 
patients with T-NHL had an increased median PFS (235 days) 
on scFPM-optimized treatment in comparison to patients 
with B-NHL (60 days) and showed exceptional response in 
44% of cases (Supplementary Fig. S2E and S2F; Supplemen-
tary Table S2). Somatic TP53 status was not included in the 
study protocol but was available for 28 patients. Patients 
whose cancer harbored a TP53 variant experienced signifi-
cantly shorter PFS than those without TP53 variants (Sup-
plementary Fig.  S2G and S2H). The proportion of patients 
achieving a PFS ratio  ≥1.3 was not significantly influenced 
by the ECOG performance status, OR to last treatment, 
lymphoid subgroup, or TP53 variant status (Supplementary  
Fig. S3A–S3D).

193 screened patients

143 tested patients

76 evaluated patients

56 scFPM-guided patients Post hoc analysis

20 physician’s choice patients

67 nonevaluable patients
21 patients received limited or no treatment
20 patients with insufficient material
9 patients died early
9 patients lost to follow-up
8 patients without therapy response evaluation

50 noneligible patients
24 patients with primary endpoint post–censoring date
11 patients with secondary malignancy
7 patients with other treatment available
5 patients with PFS last treatment missing
3 patients with chronic viral infection

Figure 2.  CONSORT diagram of study patients.
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Age (≤60 vs.  >60 years), sex, lineage (myeloid vs. lym-
phoid), number of previous treatment lines (≤2 vs. >2), dis-
ease subgroup (leukemia vs. lymphoma), and time from 
sampling to treatment start did not have an impact on 
PFS duration on scFPM-guided treatment (Supplementary 
Fig.  S4A–S4H). We included a physician’s choice cohort 
of 20 non–scFPM-treated patients who underwent scFPM 
analysis but, in consultation with their treating physician, 
decided on alternative treatment. Here, we observed that the 
PFS prolongation significantly improved in scFPM-treated 
patients but not in physician’s choice patients (Fig.  3G; 
Supplementary Table S2). Patients treated based on scFPM 

Figure 3.  scFPM-guided treatment enhances PFS ratio in patients with advanced hematologic cancers and provides a survival benefit. A, Bar plot show-
ing the PFS for all included, scFPM-guided patients: blue bars denote PFS in days for scFPM-guided treatment, red bars indicate last previous treatment, 
and asterisks denote ongoing response for scFPM treatment at the censoring date. PFS ratio is the following ratio: PFS(scFPM treatment)/PFS(previous treatment).  
Patient characteristics are color coded and stratified (leukemia vs. lymphoma, exceptional response vs. nonexceptional response, ECOG >1 vs. ECOG ≤1). 
B, Kaplan–Meier plot comparing PFS on scFPM-guided treatment with previous treatment in exceptional responders (n = 12). C, Bar plot showing PFS for 
all patients with an ECOG ≤1 (n = 39). Asterisks denote ongoing response for scFPM treatment at censoring date. D, Kaplan–Meier plot comparing PFS 
on scFPM treatment between patients with ECOG ≤1 (n = 39) versus ECOG>1 (n = 17). E, Bar plot showing PFS for all patients with OR on previous treat-
ment. Asterisks denote ongoing response for scFPM treatment at censoring date. F, Kaplan–Meier plot comparing PFS on scFPM treatment stratified 
according to OR on last treatment (CR/PR: n = 27, SD/PD: n = 29). G, Scatter plot comparing PFS on last treatment to current treatment, for scFPM-
guided versus physician’s choice patients (paired Wilcoxon test). H, Kaplan–Meier plot comparing overall survival stratified according to scFPM-guided 
patients (n = 56) versus physician’s choice patients (n = 20).

Table 1. Characteristics of scFPM-guided patients

Characteristics Count %
All 56 100
Sex
 Male 35  63
 Female 21  37
Age, median (range), y          64 (23–86)
Disease group
 Lymphoma 38  68
 Leukemia 18  32
 B-NHL 22  39
 AML 14  25
 T-NHL 15  27
 ALL/LBL  5   9
Number of previous treatments, median 

(range)
 3 (1–8)

Response—last treatment
 CR 15  27
 PR 12  21
 SD  6  11
 PD 23  41
Sampling—treatment in days (range)     21 (4–77)
ECOG at treatment start
 ECOG 0 17  30
 ECOG 1 22  39
 ECOG 2 11  12
 ECOG 3  6  11
Sample blast fraction
 High (>50%) 34  61
 Medium (10%–50%) 13  23
 Low (<10%)  8  14
 NA  1   2

Abbreviation: ALL, acute lymphoblastic leukemia; LBL, lymphoblastic 
lymphoma; NA, information not available; PD, progressive disease; SD, 
stable disease.

had a significant overall survival benefit compared with the 
observational cohort (Fig.  3H, P  =  0.035). Although this 
study was designed without a controlled comparator arm, 
the physician’s choice cohort was comparable with regard to 
age, ECOG at treatment start, sample blast fraction, number 
of previous treatments, and response to previous treatment 
(Supplementary Fig. S5A–S5E).

Post Hoc Analysis
To investigate how well the actual received treatment 

matched the scFPM results by assessment of a matching 
score, we reanalyzed scFPM image data in a post hoc analysis. 
Updated image analysis pipelines and quality control criteria 
were used, resulting in the post hoc exclusion of 10 patients, 
with an analysis set of 66 patients consisting of 49 patients 
from the primary analysis cohort and 17 patients from the 
physician’s choice set. The scFPM results were integrated  
across evaluated markers and given drugs per patient, lead-
ing to an integrated scFPM that was calculated in an auto-
mated fashion, blinded to patient outcome. Treatments 
with positive (>0) integrated scores, denoting overall post 
hoc support for the patient treatment, were considered as 
matching according to the individual drug-profiling report. 
Fifty-two patients (78%) obtained such positive scores and 
were therefore considered as having received scFPM-matched 
treatment (Supplementary Fig. S6A). Twenty-six of these 52 
matched patients (50%) demonstrated an OR to treatment 
received, and 30 patients had a PFS improvement on scFPM-
matched treatment (Supplementary Fig.  S6B). Patients 
receiving matched treatment in the post hoc analysis exhibited 
an increase of PFS. After 12 months, 13 of 52 patients (28%) 
on matched treatment were progression-free compared with 
only 4 of 52 patients (8%) on previous treatment (Fig.  4A). 
Patients receiving non–scFPM-matched treatments did not 
demonstrate an improved PFS compared with their previous 
treatment (Fig.  4B). A positively scFPM-matched therapy 
resulted in a mean PFS of 276 days compared with 121 
days on their previous treatment (P = 0.0039), whereas non-
matched therapy led to a mean PFS of 96 days with a mean 
previous PFS of 121 days (P = 0.51; Fig. 4C).

Influencing factors for PFS were comparable for post hoc 
scFPM-matched treatment and scFPM-guided treatment: 
ECOG ≤1, OR to previous treatment, and lymphoid subtype 
positively influenced PFS on scFPM-matched treatment. In 
addition, matched patients with lymphomatous disease had 
a longer PFS than patients with leukemic disease (Fig.  4D 
and E; Supplementary Fig. S6C–S6F). We also observed that 
the relative cancer cell fraction in the sample influenced PFS 
on scFPM-matched treatment. In particular, patients with 
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medium cancer cell percentages exhibited longer PFS on 
scFPM-matched treatment in comparison to patients with 
either low or high cancer cell percentages (Fig. 4F).

DISCUSSION
The EXALT trial aimed to offer individualized treatment 

for patients with aggressive hematologic cancers beyond cura-
tive options based on real-time ex vivo functional evaluation 
of drug responses. This single-arm open-label study demon-
strates clinical feasibility of integrating an image-based scFPM 
approach into clinical routine. The primary endpoint of the 
study was clearly reached. In 54% of cases, scFPM-guided treat-
ments led to a PFS prolongation of ≥1.3-fold of the patients’ 
previous individual treatment response time as well as to 
an enhanced overall survival when comparing scFPM-guided 
patients with a physician’s choice cohort. We found that 21% 
of patients showed disease-specific exceptional responses, 

defined by a threefold extension of absolute PFS duration 
compared with the expected median PFS duration. This defi-
nition was introduced in a study by Wheeler and colleagues 
(26), which investigated the underlying molecular mechanisms 
of exceptional responders and identified four broad catego-
ries accounting for favorable clinical outcomes: DNA damage 
response, intracellular signaling, immune engagement, and 
genetic characteristics of a favorable response. In our study, an 
ECOG score of 0 or 1 and response to previous treatment were 
the strongest predictors for a benefit of scFPM-guided treatment. 
Several clinical parameters such as age, sex, disease lineage, and 
number of prior treatments did not appear to predict response 
to scFPM-guided treatment.

Precision medicine trials that aim to match targeted thera-
pies to molecular tumor profiles or gene variants have been 
emerging in recent years (Table  3; refs. 3, 27–31). Thus far, 
only few studies could indicate an improved outcome for 
patients receiving a genetically matched treatment (28, 30, 
32). Functional precision medicine trials tailoring treatment 
strategies based on functional data, such as drug profiling, 
represent a complementary or alternative strategy and rely 
on the employed technological platform. Appreciation of the 
full potential of functional screening technologies, such as 
the image-based scFPM described here, for their capacity to 
improve clinical outcome is only now beginning (23). The 
results of the EXALT study presented here show that scFPM 
can be an effective tool for clinical decision-making and 
therapy optimization based on the functional characteristics 
of each patient’s tumor.

Several advantages in comparison to classic sequencing-
based approaches can be considered. First, scFPM results 
were available within days for most patients. We could pro-
vide reports for 51 of 76 (67.1%) patients within 7 days. 
In contrast, a major setback uniformly described in other 
personalized medicine trials is patient deterioration or 
death during time of analysis (4, 33). Even in a proof-of-
principle, nonoptimized setting, median turnover time for 
scFPM (5  days) surpassed the limit of current optimized 
protocols such as the BEAT AML, in which it was possible 
to deliver genomic analysis within 7 days for 95% of patients 
(30). In well-optimized settings, scFPM or similar functional 
approaches can offer reports between 36 and 96 hours post-
sampling. Second, no indirect inference from genomic data 
is needed to design treatment strategies. Matching treatment 
to genetic mutations may work for only a fraction of cancers 
in which strong, uniform driver mutations are clearly disease- 
initiating and disease-maintaining, such as in Philadelphia 
chromosome–dependent chronic myeloid leukemia. Most of 
the time, the molecular makeup is complex and intertwined 
with epigenetic and metabolic states that make correlation 
to therapeutic outcome impossible at our current state of 
knowledge (3). Progressive, personalized medicine trials 
approach this by more general matching scores incorporating 
common markers for immuno-oncology (e.g., tumor muta-
tional burden, mismatch repair). This strategy could raise the 
limited matching numbers but has not yet been validated in 
a prospective fashion (28). In contrast, scFPM provides more 
accessible readouts, which also take nononcogenic vulner-
abilities into account (34). Third, functional drug testing 
may offer treatment options for a higher number of patients, 

Table 2. Characteristics of exceptional responders

Characteristics Count % of all
Exceptional responders 12 21
Sex
 Male  6 50
 Female  6 50
Age, median (range), y          60 (29–86)
Disease group
 Lymphoma  9 75
 Leukemia  3 25
 B-NHL  2 17
 AML  3 25
 T-NHL  7 58
 ALL/LBL  0  0
Number of previous treatments, median 

(range)
2 (2–9)

Response—last treatment
 CR  7 58
 PR  3 25
 SD  1  8
 PD  1  8
Sampling—treatment in days (range) 28 (4–56)
ECOG at treatment start
 ECOG 0  8 67
 ECOG 1  4 33
 ECOG 2  0  0
 ECOG 3  0  0
Sample blast fraction
 High (>50%)  4 33
 Medium (10%–50%)  6 50
 Low (<10%)  1  8
 NA  1  8
Sample type
 Bone marrow  2 17
 Lymph node  6 50
 Peripheral blood  2 17
 Skin  1  8
 Spleen  1  8
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Figure 4.  Post hoc analysis. A, Kaplan–Meier plot comparing scFPM-matched treatment with previous treatment. Dotted line denotes 1-year follow-
up. B, Kaplan–Meier plot comparing non–scFPM-matched treatment with previous treatment. C, Paired scatter plot comparing nonmatched versus 
matched patients with regard to PFS ratio. Paired Wilcoxon test comparing PFS of previous treatment versus scFPM-matched/nonmatched treatment 
[H0: rank PFS(previous) = rank PFS(current)]. D, Kaplan–Meier plot of scFPM-matched treatment stratified according to ECOG <1 versus ECOG ≥1. E, Kaplan–
Meier plot of scFPM-matched treatment stratified according to response on previous treatment. F, Kaplan–Meier plots comparing PFS for scFPM-
matched patients stratified according to tumor cell content in the sample (high ≥50%, medium >10%, low ≥10%).

given that clinically validated, approved therapies matched to 
mutations are available for less than 10% of patients (32, 35, 
36), whereas in personalized medicine trials, matched treat-
ment can be allocated to between 4% and 77% (median 24%), 
dependent on the stringency of matching criteria (Table  3, 
column 5). Fourth, scFPM-guided therapy can serve as an 

effective strategy for rapid remission induction to bridge to 
stem cell transplantation, which still remains a valid and 
potentially curative treatment for many hematologic cancers. 
Fifth, the scFPM platform can systematically identify drug-
repurposing opportunities with clinical relevance. In addi-
tion, although not done in this work, scFPM can be used for 
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combinatorial drug testing. As most effective cancer therapies 
rely on a combination of agents, means to easily test combi-
natorial efficacy of drugs are urgently needed.

Despite the advantages, there are limitations to this 
approach. For instance, scFPM is based on the collection of 
viable cells, the procurement of which requires an intimate 
interplay between different hospital departments, such as 
surgery, pathology, and laboratory. However, as the concept 
of temporal tumor evolution is more and more recognized 
and thus real-time biopsy becomes common for personalized 
approaches, this hurdle can be expected to vanish gradually. 
Furthermore, we acknowledge the diversity of our patients 
with regard to disease histology, as a heterogeneous patient 
population was analyzed with many different neoplasms. 
To circumvent this, we used a PFS ratio as the primary end-
point, based on considerations of Von Hoff and colleagues 
(27) and Bailey and colleagues (37) and accepted by regu-
latory bodies (https://www.ema.europa.eu/en/documents/
scientific-guideline/draft-guideline-evaluation-anticancer-
medicinal-products-man-revision-6_en.pdf). The use of each 
patient as his or her own control allows us to evaluate the 
individual benefit, and it became common in precision medi-
cine trials, such as the WINTHER and MASTER trials includ-
ing heterogenous cancer entities (29, 38). Another limitation 
of the study is that most patients were heavily pretreated, 
which may have limited their ability to respond. Given the 
trial’s nonrandomized design, we cannot exclude that prog-
nostic or other aspects may have confounded the findings. 
We did not directly assess the activity of drug combinations 
ex vivo but could still successfully design drug combination 
treatment strategies that had a positive effect on the PFS 
in vivo. We focused on cell death as our assay readout and 
thus might have missed compounds that exhibit anticancer 
effects by other mechanisms. Moreover, the entire surface of 
each well in the plate was not imaged, and we tested a limited 
concentration range, but initial optimization experiments 
indicated that the obtained data were representative of the 
entire well. The wider applicability and scalability of the 
approach are currently being evaluated in additional stud-
ies. We envision a future deployment of the technology to 
centralized laboratories. Last, multiple-testing adjustments 
were not performed, and thus these data would need to be 
confirmed by future studies.

The EXALT trial shows that functional testing can be 
integrated into clinical workflows and provide individual 
benefit for patients with late-stage hematologic cancer. 
These platforms appear especially suited for hematologic 
malignancies, as primary patient material is more readily 
accessible as intact viable cells. Thus, it makes it possible 
to introduce a class of assays traditionally related to drug 
discovery and translational research to personalized medi-
cine. Complementation of classic histology and molecular 
-omics data with functional assays such as scFPM could lead 
to a comprehensive way of cancer diagnosis and ultimately 
to improved patient care and outcome in an increasingly 
predictive manner. In particular, matching phenotypic char-
acterization to molecular profiles may lead to a constantly 
improving molecular–mechanistic understanding. Perhaps 
an integrative approach combining molecular and func-
tional profiles may represent an ideal precision medicine 

approach, and this remains to be explored in future studies 
and trials.

An important aspect for success of these approaches is a 
well-functioning multidisciplinary tumor board, which was 
implemented in this study and served as a key instrument 
to optimize individualized treatment strategies. Data inte-
gration of a post hoc analysis could confirm the matching 
of the guiding scFPM test results with the treatment actu-
ally received (Fig.  4A and B). This work is the basis for the 
recently initiated prospective randomized trial comparing 
scFPM with comprehensive genomic profiling and physi-
cians’ choice (EXALT-2, NCT04470947).

METHODS
Patients

In this open-label, one-arm study, we enrolled patients with con-
firmed aggressive hematologic cancers according to the WHO classifica-
tion who had received at least two lines of treatment or had no standard 
therapy options. All patients provided written informed consent. Real-
time biopsy specimens were obtained from every enrolled patient.

Study Oversight and Conduct
The study was approved by the independent ethics committee 

at the Medical University of Vienna (institutional review board 
votes: EK 1830/2015, 2008/2015, 1895/2015) and was conducted in 
accordance with the Declaration of Helsinki and the International 
Conference on Harmonization Guidelines for Good Clinical Practice. 
The study was designed by one author (P.B. Staber) and the sponsor 
(Medical University of Vienna, Vienna, Austria). The first and last 
authors wrote all manuscript drafts. All authors vouch for the com-
pleteness and accuracy of the data and the adherence of the study to 
the protocol.

Image-Based scFPM
Cancer cell–containing tissue was procured by biopsy, bone mar-

row aspirate, or peripheral blood draws (Fig. 1A). Single-cell suspen-
sions of biopsy material containing tumor cells were suspended in 
RPMI containing 10% FBS and 1% penicillin–streptomycin, and 
20,000 cells per well were plated on 384-well CellCarrier ultra- 
imaging plates (PerkinElmer) containing 136 to 139 drugs prespot-
ted with an Echo (Labcyte; Supplementary Fig.  S1; Supplementary 
Table  S1) and incubated overnight (18–24 hours) at 37°C and 5% 
CO2. The drugs were tested in two different concentrations (1,000 
nmol/L and 10,000 nmol/L) in duplicate or triplicate, respectively. 
After the incubation period, the cells were fixed with 0.5% formal-
dehyde and 1:1,000 Triton X in PBS, stained with 4′,6-diamidino-
2-phenylindole (Thermo Fisher Scientific) for nuclear identification, 
and stained with antibodies to identify if the cell was malignant or 
healthy. The antibodies used to detect the target cancer cell popula-
tion were based on established antigens for a given indication, as 
well as on pathology or laboratory medicine reports for each indi-
vidual patient. Immunofluorescence staining, imaging by automated 
microscopy (Opera Phenix; Perkin Elmer), image analysis (CellPro-
filer; Broad Institute), data analysis (MATLAB), and quality control 
were done as described previously (23, 39). In short, each cell in the 
images was identified using single-cell image analysis and subjugated 
to machine learning–based single-cell quality control. Based on the 
marker expression levels, cells were scored as being either cancer 
(marker positive) or healthy. The fraction of cancer cells upon ex vivo 
drug treatment was subsequently compared with the cancer fraction 
in DMSO controls [leading to a relative cancer fraction (RCF)]. The 
RCFs were averaged across concentrations and replicates per drug 
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and subsequently transformed to 1-RCF, such that positive scores 
denote on-target reduction of cancer cells induced by the ex vivo 
drug treatment.

Treatment Allocation
The results of the scFPM platform were presented at a formal mul-

tidisciplinary tumor board consisting of hematologists, pathologists, 
specialists from laboratory medicine, biologists, and pharmacists. 
The board then issued written treatment recommendations directly 
to the case manager and the treating physician (Fig.  1A). For the 
observational cohort, patients were treated according to physician’s 
choice based on individual diagnosis and biomarkers (genetic, IHC, 
and FACS). Treatment was given according to European Union and 
Austrian legislation as an individual healing attempt within the 
named patient program and under the responsibility and supervision 
of the treating physician.

Assessments and Endpoints
Individual patient benefit was measured by the PFS ratio, defined 

as PFS achieved on scFPM-guided therapy to PFS observed on pre-

vious therapy �
�

�
�

�

�
�

PFS scFPM treatment
PFS previous treatment

( )
( )

.  A PFS ratio of  ≥1.3 

was considered beneficial based on considerations of Bailey and  
colleagues (37) and Von Hoff and colleagues (27), thereby using each 
patient as his or her individual control, which is a study endpoint for 
precision medicine studies as recommended by health agencies such 
as the European Medicines Agency and others. Our null hypothesis 
was that less than 15% of patients meet the primary endpoint, a com-
mon level of benefit for personalized medicine trials (1, 40). PFS was 
computed as the time from the first day of treatment to the date of first 
reported evidence of disease progression or relapse, initiation of new 
(unplanned) anticancer treatment, or death as a result of any cause. 
Commonly used and predefined sequential treatments (e.g., 3 + 7 fol-
lowed by high-dose cytarabine followed by HSCT in AML) were con-
sidered as one line, and the PFS durations were summed. Patients not 
being able to reach the primary endpoint by the censoring date (Janu-
ary 30, 2020) were excluded regardless of response state. For the post hoc 
analysis, patients were assessed in terms of their actual received treat-
ment and its matching level to the scFPM results. The scFPM imaging 
data from all evaluated patients were reanalyzed with upgraded image 
analysis pipelines and quality control criteria, which resulted in the 
exclusion of 10 patients. Therefore, the final post hoc set comprised 49 
patients from the primary analysis cohort and 17 patients from the phy-
sician’s choice set. The matching score of the post hoc analysis was cal-
culated in an automated fashion, blinded to patient outcome. Sample  
blast fraction was determined histologically or from flow cytometry 
data using a three-tiered scale (≤10%, low; ≤50%, medium; >50%, high).

Response Evaluation
Response evaluation was based on response evaluation criteria in 

lymphoma (RECIL) and European LeukemiaNet (ELN) criteria for 
leukemia (41, 42). As patients with leukemia were not consistently 
followed up with bone marrow (BM) biopsy or aspirate, changes in 
peripheral blood (PB) were used equivalently: CR could not be stated 
with presence of blasts in PB. Analogous to ELN–morphologic leuke-
mia-free state, absence of blasts in the peripheral blood without BM 
available was considered a hematologic leukemia-free state (HLFS) 
and classified as an OR. Comparable to morphologic criteria with 
ELN-PR, reduction of blasts in PB by at least 50% was regarded as 
PR [hematologic partial remission (HPR) = PR]. The white blood cell 
count had to be above 1 G/L for HLFS and HPR. ECOG performance 
status was extracted from patient charts and referral reports where 
available, or a median score of four independent reviewers blinded 

to outcome was used, based on chart notes, nursing reports, and 
discharge letters.

Exceptional response was defined as tripled PFS duration com-
pared with median PFS for a given diagnosis. For T-NHL, 9 months 
of PFS was considered exceptional, and for aggressive B-NHL and 
myeloid disease, 18 months was considered exceptional based on the 
definition by Wheeler and colleagues (26) and others (18, 43, 44).

Response assessment was reviewed by an internal study committee 
consisting of three hematologists (P.B. Staber, K. Miura, U. Jaeger), 
a radiologist (M.E. Mayerhoefer), and a pathologist (C. Kornauth). 
Somatic mutation TP53 status was obtained from reports for routine 
diagnostics produced using certified tests in laboratories of either 
clinical or surgical pathology.

Statistical Analysis
The primary endpoint of this study was the percentage of patients 

reaching a PFS ratio of ≥1.3 with an H0 hypothesis of <15% patients 
meeting the primary endpoint. To test this hypothesis, a one-sided 
binomial test was applied with an  α  of 0.025. The null hypothesis 
could be rejected when at least 14 of 50 patients showed a PFS of ≥1.3. 
The predefined secondary endpoints were ORR, disease control rate, 
and PFS, including subgroup analysis (diagnostic group, performance 
status, age, sex, number of prior therapies, relative blast fraction). The 
analysis for exceptional responders was not preplanned. A detailed 
description of the analysis plan can be found in the supplementary 
materials. All statistical analyses were performed using the R statisti-
cal environment (R Core Team; R Foundation for Statistical Comput-
ing) and MATLAB (MathWorks). Survival times were compared using 
the Kaplan–Maier estimator, log-rank tests, and Cox proportional 
hazard models. Continuous variables were compared with Wilcoxon 
rank-sum tests. A P value of <0.05 was considered significant.
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