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ABSTRACT

Background. Colorectal cancer (CRC) is one of the leading cancers worldwide.
Several studies have performed microarray data analyses for cancer classification and
prognostic analyses. Microarray assays also enable the identification of gene signatures
for molecular characterization and treatment prediction.

Objective. Microarray gene expression data from the online Gene Expression Omnibus
(GEO) database were used to to distinguish colorectal cancer from normal colon tissue
samples.

Methods. We collected microarray data from the GEO database to establish colorectal
cancer microarray gene expression datasets for a combined analysis. Using the
Prediction Analysis for Microarrays (PAM) method and the GSEA MSigDB resource,
we analyzed the 14,698 genes that were identified through an examination of their
expression values between normal and tumor tissues.

Results. Ten genes (ABCG2, AQPS8, SPIB, CA7, CLDN8, SCNN1B, SLC30A10, CD177,
PADI2, and TGFBI) were found to be good indicators of the candidate genes that
correlate with CRC. From these selected genes, an average of six significant genes were
obtained using the PAM method, with an accuracy rate of 95%. The results demonstrate
the potential of utilizing a model with the PAM method for data mining. After a detailed
review of the published reports, the results confirmed that the screened candidate genes
are good indicators for cancer risk analysis using the PAM method.
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Conclusions. Six genes were selected with 95% accuracy to effectively classify normal
and colorectal cancer tissues. We hope that these results will provide the basis for new
research projects in clinical practice that aim to rapidly assess colorectal cancer risk

using microarray gene expression analysis.

Subjects Bioinformatics, Mathematical Biology, Molecular Biology, Oncology, Statistics

Keywords Cancer, Microarray analysis, Gene expression, Gene ontology, Prediction analysis for
microarrays

INTRODUCTION

Bioinformatics is a scientific field that has gained popularity worldwide. In particular,
bioinformatics represents a multidisciplinary field of biology, information technology and
mathematics, and harnesses the power of the Internet. Advancements in molecular biology
technologies have led to the emergence of extremely large datasets, commonly known as
“big data.” Itis increasingly difficult to manage biological and chemical data with traditional
methods because of both the larger size and increasing complexity of these datasets. Novel
computing technologies and perspectives applying effective bioinformatics methods are
required to accurately manage various data sources.

Colorectal cancer (CRC) is one of the leading cancers worldwide (Chu et al., 2014a; Chu
et al., 2014D). Several studies have revealed that CRC screening can detect and reduce its pro-
gression toward an advanced disease stage, which leads to better overall survival. In the past,
traditional CRC screening methods have included fecal blood testing, flexible colonoscopy
and barium enema X-ray (Jemal et al., 2008). However, these tests are conducted in clinical
practice with some limitations, such as variable sensitivity (37-80%) and potential die
t-test interactions (Nannini et al., 2009). Therefore, new biomarkers have been developed
for the detection of CRC to improve the sensitivity and specificity of detection (Chang et
al., 2014a).

Microarray assays can be applied to acquire information on thousands of genes simulta-
neously and provide clear insights into genomic alterations related to the process of colorec-
tal carcinogenesis, tumor growth, and metastasis. The results of microarray assays enable
the identification of gene signatures for diagnosis, molecular characterization, prognostic
analysis, and treatment prediction (Nannini et al., 2009).

Nevertheless, studies have revealed that the application of microarray analysis in clinical
practice still faces certain challenges. First, there is a general lack of concordance between the
results obtained from individual studies because of technique-related variations in sample
collection and different types of platforms and methods (Cardoso et al., 2007). Second, there
is a shortage of large-scale studies because of the relatively small number of available patient
samples, which leads to reduced statistical power (Chan et al., 2008). Third, identifying
data that would be the most informative and useful for the development of reliable clinical
applications has been challenging (Nannini et al., 2009; Chang et al., 2014a; Chang et al.,
2014b; Chu et al., 2014a; Chu et al., 2014b).
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To overcome these challenges, one approach is to use the online Gene Expression
Omnibus (GEO) database, which can help increase the sample size, heterogeneity of a
sample, and statistical power. Several methods can be applied to analyze variations in gene
expression between colorectal tumors and normal mucosa tissues to screen for significant
cancer-related genes (Chou et al., 2013; Chu et al., 2014a; Chu et al., 2014b). In this study,
we followed the Prediction Analysis for Microarrays (PAM) method to screen for significant
CRC-associated genes that could be used as predictive markers for early cancer detection.
Furthermore, Gene Ontology (GO) pathways and Gene Set Enrichment Analysis (GSEA)
were employed to confirm the function and association of the candidate genes with the
risk of CRC.

METHODS

Microarray data sources
Microarray data were collected from the online GEO database between September 2011
and March 2014.

In this study, we searched the GEO database of the National Center for Biotechnology
Information using the keywords “colon cancer,” “human [organism],” and “expression
profiling by array [dataset type].”

The three main inclusion criteria for our data were as follows: (1) frozen tissue sections
collected from primary CRC, normal human colorectal mucosa, or hepatic metastases in
patients with CRC; (2) the microarray platform contained single-color, whole-genome gene
chips from Affymetrix; and (3) the data were presented as the mean gene expression level.
The exclusion criteria were as follows: (1) data collected from cultured cell lines or other
in vitro assays; (2) datasets lacking the original gene expression levels; and (3) sub-datasets
with redundancy (Fig. 1).

Based on these criteria, a total of 401 GEO series (GSE) datasets were excluded; therefore,
11 public microarray datasets were used for the analysis (GSE18088, GSE20916, GSE21510,
GSE23878, GSE29623, GSE31595, GSE32323, GSE33113, GSE35144, GSE37892, and
(GSE49355), which included 717 tumor cases and 134 normal mucosa control samples
(Table 1).

In addition, we included microarray datasets obtained from our laboratory and published
by Chang et al. (2014b) (GSE4107, GSE4183, GSE8671, GSE9348, GSE10961, GSE13067,
GSE13294, GSE13471, GSE14333, GSE15960, GSE17538, and GSE18105), which included

519 adenocarcinoma cases and 88 normal mucosa control cases.

Preprocessing of microarray data

To lower the background noise of the microarray chips related the gene expression levels,
data preprocessing was performed using the standard GC Robust Multi-Array Average
(GCRMA) method. In addition, we also used the R language software package to conduct
our study (Chu et al., 2014a; Chu et al., 2014b). This analysis of gene expression levels used
the median probe expression level based on the skewed distribution of the expression levels
of the probe.
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Figure 1 Process of pooling the 11 microarray gene expression datasets. GEO, Gene Expression Om-
nibus; GSE, GEO series.
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Table 1 GSE datasets included in our study.

GSE Tissue Total Total number of Type of gene chips
numbers genes on chips

Tumor Normal

(n=717) (n=134)
18088 53 53 33727 HG-U133_Plus_2
20916 115 30 145 33727 HG-U133_Plus_2
21510 105 43 148 33727 HG-U133_Plus_2
23878 59 59 33727 HG-U133_Plus_2
29623 65 65 33727 HG-U133_Plus_2
31595 37 37 33727 HG-U133_Plus_2
32323 17 17 34 33727 HG-U133_Plus_2
33113 90 6 96 33727 HG-U133_Plus_2
35144 27 27 33727 HG-U133_Plus_2
37892 130 130 33727 HG-U133_Plus_2
49355 19 38 57 14713 HG-U133A

Bolstad et al. (2003) proposed applying the GCRMA method over the conventional
Robust Multichip Average (RMA) method. RMA analysis is performed to adjust
the affinity among the nucleotides based on the different binding strengths between
GC and AT provided by the Affymetrix Console. The RMA method is designed for
processing Affymetrix chips. The microarrays were first preprocessed for within-study nor-
malization using the GCRMA method, and then the calculated gene levels were estimated
before the different studies were combined, while retaining only the genes that were
available on all the microarrays. Next, the same preprocessing procedure was performed
for between-study normalization (Chu et al., 2014a; Chu et al., 2014b).

The Affymetrix chips used in the datasets were HG-U133A and HG-U133-Plus-2, which
accounted for 14,713 and 33,727 of the corresponding number of genes in our study, respec-
tively. To obtain the expression levels of the 14,698 genes, 11 datasets were merged. Next,
quantile normalization was conducted on all gene expression values (Bolstad et al., 2003).

The PAM model

The PAM method utilizes nearest shrunken centroid methodology. The use of the PAM
method may be of crucial importance for reducing not only signal noise but also the false
discovery rate (FDR), which leads to the selection of the best candidate gene set (Lee et al.,
2005). The PAM method is preferred because it performs better with fewer genes (Lee et al.,
2005; Chu et al., 2014a; Chu et al., 2014b). Tibshirani et al. (2002) reanalyzed the leukemia
microarray data of Golub et al. (1999) and confirmed 43 of the 96 genes in the microarray
data using the PAM method. The results were comparable with the results of Khan et al.
(2001), which were obtained using the ANN method. Furthermore, the FDR was reduced
from 4 to 2 over 34 classifications.
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Table 2 The centroid scores and frequency of the colorectal cancer genes in the 100 repeated samplings using the PAM method.

CRC centroid score NOR centroid score Diff score
Genes Frequency = Mean SD Max Min Mean SD Max Min (Max)
ABCG2 100 —0.023285 0.005258 —0.0121 —0.0406 0.183034 0.041345 0.3191 0.0949 0.3597
AQP8 100 —0.024511 0.005812 —0.0096 —0.0372  0.192729  0.045658  0.2925 0.0754 0.3297
SPIB 100 —0.034727 0.004733 —0.0207 —0.0456 0.273003 0.037222 0.3582 0.1625 0.4038
CA7 99 —0.051488  0.005233 —0.0429 —0.0666  0.404711 0.041172  0.5239 0.3369 0.5905
CLDN8 89 —0.010152 0.004605 —0.0015 —0.026 0.079792 0.036207 0.2044 0.0118 0.2304
SCNNIB 62 —0.004138  0.00235 —0.0098  0.032498  0.018485  0.0771 0.0002 0.0869
SLC30A10 29 —0.004566 0.002946 —0.0003 —0.0102 0.035979 0.023184 0.0804 0.0024 0.0906
CD177 5 —0.00254 0.002319 —0.0004 —0.0051 0.02006 0.018175 0.0403 0.0034 0.0454
PADI2 2 —0.00265 0.001768 —0.0014 —0.0039 0.0208 0.013859 0.0306 0.011 0.0345
TGFBI 2 0.00045 0.000354 0.0007 0.0002 —0.0033 0.002687 —0.0014 —0.0052 0.0059
Notes.

CRC, colorectal cancer tissue; NOR, normal tissue.

Functional pathway analysis

The use of pooled GEO studies was secondary because only the microarray data were
available. Previous studies have proposed that testing 55 genes in any experimental model
is beneficial for colon cancer biology (Chang et al., 2014a; Chang et al., 2014b; Chu et al.,
2014a; Chu et al., 2014b). Therefore, in the present study, functional pathways related to
the tumorigenesis of CRC were evaluated using GSEA software version 2.07. The GSEA
MSigDB resource provides a collection of annotated gene sets based on different sources of
information, including gene ontology, pathways, and motifs (Cardoso et al., 2007). Using
the GSEA MSigDB resource, we analyzed the 14,698 genes that were identified by examining
the expression values between the normal and tumor tissues.

RESULTS

The PAM analysis identified 10 significant candidate genes at least once after 100 repeated
samplings (ABCG2, AQPS8, SPIB, CA7, CLDNS8, SCNN1B, SLC30A10, CD177, PADI2 and
TGFBI) (Table 2). Three of these genes—ABCG2, AQPS, and SPIB—were identified in all
100 repeated samplings. CA7 was identified 99 times, CLDN8 89 times, CNNIB 62 times,
SLC30A10 29 times, CD177 five times, PADI2 two times and TGFBI two times. The more
frequently a gene was identified in this analysis indicates its increased importance in CRC.

Furthermore, genes with a higher absolute centroid value were of greater importance in
the CRC risk analysis because this value indicated a better ability to differentiate between
cancer and normal tissues. CA7 had the highest centroid value (0.5905), followed by SPIB
(0.4038) and ABCG2 (0.3597). TGFBI had the lowest centroid value (0.0059).

The number of genes identified using the PAM method is a good indicator of the
candidate genes that correlate with CRC. The lowest threshold of the misclassification error
rate to distinguish CRC from normal colon tissues was 14 of 100 repeated samples (Fig. 2).
Furthermore, only six genes were required to distinguish CRC from normal colon tissues.
The average accuracy rate of the model was 95% (standard deviation = 0.44), and the
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Figure 2 (A) The lowest threshold between the normal tissue and colorectal tumors tissue is 14; (B)
The number of needed genes is between four and eight genes.

validation accuracy rate of the model was 95.2% (standard deviation = 1.33). The average

number of significant genes obtained from the selection was six (Fig. 3)

The resulting 10 significant genes from the 100 repeated samplings were derived from

Gene Ontology analysis. In the molecular function Gene Ontology category, SLC30A10,
ABCG2, and AQP8 are related to material transportation, SPIB and TGFBI are related to re-
ceptor binding, and the other genes are related to enzyme activities. In the biological process

category, SCNNI1B and TGFBI are specifically related to sensory perception and organ

development. In the cellular component category, only CLDNS localizes to the plasma

membrane, and the remaining genes were not annotated (Table 3).
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Figure 3 PAM model accuracy rates. The average PAM model accuracy rate was 95% (SD = 0.44). The
average validation accuracy rate was 95.2% (SD = 1.33). The average number of significant genes was 5.9.

DISCUSSION

Chang et al. (2014b) verified and compared 3 gene expression profiles for CRC using 12
GEO-online microarray databases. In addition, the authors merged three profiles and
obtained a 4th profile with higher accuracy. The results of dry-lab analyses must be
verified by wet-lab experiments, and conversely, the results of wet-lab experiments must
be explored in dry-lab analyses. We believe that more precise experiments are needed to
investigate the genes selected in the present study as in our previous publications (Chang et
al., 2014a; Chang et al., 2014b; Chu et al., 2014a; Chu et al., 2014b; Ko et al., 2015; Kuan et
al., 2015). The lack of dry-lab analyses may be a limitation but also provides opportunities
for complete external validation in future studies. For example, we were the first to report
that carbonic anhydrase VII (CA7) expression plays an initiating but not progressive role in
CRC (Chu et al., 2014b) Subsequently, two studies (Kalmidr et al., 2015; Yang et al., 2015)
verified the role of CA7 by western blot and immunohistochemistry analyses as well as
gRT-PCR analyses of clinical samples including colorectal paraffin-embedded (FFPE)
tissue. Recent studies have reported that miRNAs often function as tumor suppressors
or oncogenes. miRNAs related to carcinogenesis are regarded not only as diagnostic and
prognostic biomarkers but also as therapeutic targets. The miR-200 family is related to
TGF-f2 and functions in the suppression of metastasis (Kuan et al., 2015).

Furthermore, four genes, ABCG2, PADI2, CA7, and TGFBI, have been verified in
previous studies as potentially correlated with colorectal cancer. Tuy et al. (2016) conducted
astudy of resected primary tumor specimens from 189 patients and evaluated the expression
of the ABCG2 protein and drug sensitivity to SN-38 (an active metabolite of irinotecan).
They also analyzed progression-free survival (PES). Of the tumors, 60% showed higher
ABCG?2 expression and greater resistance to SN-38. In addition, the risk of resistance was
increased by 12-fold in these tumors. PFS was lower in patients with higher expression
of ABCG2. These results demonstrated that ABCG2 is a useful predictive biomarker of
resistance to irinotecan and survival.

Cantarifio et al. (2016) conducted a study of PADI2 expression in 98 cancer patients and
50 donors without cancer as a control group. PADI2 expression was lower or even absent in
CRC. In addition, a low level of PADI2 expression in the colon mucosa was also observed
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Table 3 The GO terms, GO molecular function, GO biological process, GO cellular component of the 10 significant colorectal cancer genes.

Gene GO terms GO molecular function GO biological process GO cellular component
CA7 Carbonic anhydrase 7 Hydro-lyase activity Metabolic process
SCNNI1B Amiloride-sensitive sodium Ion channel activity Sensory perception of taste
channel subunit beta Sensory perception of pain
Cation transport
Regulation of biological
process
SPIB Transcription factor Spi-B Sequence-specific DNA B cell mediated immunity
binding transcription Macrophage activation
factor activity Transcription from RNA
Receptor binding Polymerase II promoter
Cell cycle
Cell communication
Endoderm development
Mesoderm development
Hemopoiesis
Cellular defense response
regulation of transcription
from RNA polymerase II
promoter
CD177 CD177 antigen
SLC30A10 Zinc transporter 10 Transmembrane transporter Cation transport
activity
TGFBI Transforming growth Receptor binding Cell communication
factor-beta-induced Cell-matrix adhesion
protein ig-h3 Visual perception
Sensory perception
Mesoderm development
Skeletal system
development
Muscle organ development
PADI2 Protein-arginine deiminase Hydrolase activity Cellular protein
type-2 modification process
ABCG2 ATP-binding cassette sub- ATPase activity, coupled Lipid metabolic process
family G member 2 to transmembrane Lipid transport
movement of substances
Transmembrane transporter
activity
CLDN8 Claudin-8 Cellular process Plasma membrane
Cell part
AQP8 Aquaporin-8 Transmembrane transporter Transport

activity

in patients with ulcerative colitis. The authors concluded that a lower PADI2 expression

level was associated with poorer prognosis.

Yang et al. (2015) performed real-time PCR, western blot, and immunohistochemistry

analyses to evaluate the level of CA7 expression in CRC samples. Their study included

two groups: a training cohort group of 228 patients to evaluate pathological features and a

validation group of 151 patients from different cities in China. The authors used Kaplan—

Meier and Cox proportional regression analyses to evaluate the relationships between
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CA7 expression and patient survival. The results showed that decreased gene expression
levels of CA7 were related to disease progression. Therefore, CA7 can predict poor prognosis
in patients with CRC and early-stage tumors.

Zhu et al. (2015) conducted a study of TGFBI in 115 patients using immunohistochem-
istry methods. Most of the TGFBI was localized in the cytoplasm in cancer tissues. High
expression levels of TGFBI in the cytoplasm were related to lymph node metastasis and
distant metastasis. In addition, high TGFBI was related to poor prognosis. In other words,
TGFBI can be regarded as an indicator of poor prognosis in patients with CRC. Verification
of our other six candidate genes in future studies is critically important.

Three genes—ABCG2 AQP8 and SPIB—were identified by the PAM model to have
significantly different expression levels between CRC and normal colon mucosa tissues from
100 repeated samplings. ABCG2 is a half-transporter of the G subfamily of ATP-binding cas-
sette transporter (ABC transporter) genes and is known to confer multidrug resistance. The
mechanism of ABCG2-mediated multidrug resistance is related to the JNK1/c-Jun (c-Jun
N-terminal kinase) signaling pathway (Xie ef al., 2014). Andersen et al. (2015) revealed that
the mRNA expression of ABCG2 was decreased in cancer tissues. These findings underscore
the importance of ABC transporters in the early steps of carcinogenesis and suggest that
tumor formation might be related to epithelial barrier dysfunction. In addition, Kang et
al. (2015) proposed that ABCG2 could be utilized as a prognostic biomarker. Their results
indicated that patient survival after operation correlated with the expression of membra-
nous ABCG2 tumors. Therefore, the detection of ABCG2 can not only identify a possible
risk of colorectal cancer risk but also support survival prediction and treatment strategies.

SPIB is an ETS family transcription factor that is associated with the putative
oncogene product PU.1. Furthermore, ETS transcription factors are involved in malignant
transformation of cells and therefore are possible targets for cancer therapy (Ray et al., 1992;
Oikawa, 2004). Takagi et al. (2016) revealed that SPIB expression is a novel indicator of poor
prognosis in patients with diffuse large B-cell lymphoma and mediates apoptosis through
the PI3K-AKT pathway. Furthermore, Ho et al. (2016) reported that high SPIB and KI-67
mRNA expressions levels were associated with poor survival in patients with hepatocellular
carcinoma. Therefore, SPIB may be related to not only carcinogenesis but also prognosis
in colorectal cancer. Nevertheless, further studies are required to validate these findings.

AQP8 is a member of the aquaporin (AQP) family and facilitates water transport across
the cell plasma membrane. Recent studies have revealed that AQP expression in tumors
is related to cell extravasation, invasion and metastases (Yang et al., 2015). However, the
clinical importance of AQP8 in colon cancer remains undetermined. Wang et al. (2012)
reported two phenomena. The first is that AQP8 is not expressed in patients with colorectal
carcinoma. The second is that AQP5 expression is associated with cancer stage, pathology
differentiation, and lymph node metastasis. These findings suggest that decreased AQP8
expression and increased AQP5 expression might be related to oncogenesis.

CA7 is a member of the carbonic anhydrases gene family, which has been proposed
to be related to the pathogenesis of human cancers. Indeed, CA7 is associated with poor
prognosis and disease progression, particularly in the early stages of colon cancer. As a
result, decreased expression of CA7 may be a poor prognostic indicator of CRC. In contrast,
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Bootorabi et al. (2011) reported that upregulation of CA7 expression was indicative of poor
prognosis in patients with astrocytomas (Verkman, Hara-Chikuma ¢ Papadopoulos, 2008).

CLDNS8 is a member of the family of claudins, which play a role in tumorigenesis through
alterations in cell interactions. In CRC tissues, CLDN1 and CLDN2 were upregulated. In
contrast, CLDNS5, 8, 15, and 23 were downregulated in CRC (Grdane et al., 2007; Bujko et
al., 2015).

SLC30A10 is related to the methylation epigenotype and molecular genesis of CRC
(Yagi et al., 2010). In addition, SCNN1B is associated with hypermethylation in CRC.
Mitchell et al. (2014) proposed that tumorigenesis results from epigenetic changes,
including hypermethylation (Kim et al., 2011). Guillaume et al. reported that SCNNI1B is
hypermethylated in renal cell carcinoma and is considered a new epigenetic marker for clear
cell kidney carcinoma, which suggests it is a viable diagnostic test of urine or blood samples.

CD177 has been proposed as a stem cell factor receptor. Collet et al. (2015) reported
that tumor stem cells likely contribute to the metastatic potential of cancers and may be
responsible for chemotherapy resistance and induction of dormancy in tumors. Therefore,
the detection, isolation, and characterization of tumorigenesis remain a challenge in cancer
treatment strategies. In addition, Toyoda et al. (2013) proposed that CD177 regulates tumor
cell adhesion and migration in gastric cancer. In particular, increased expression of CD177
in gastric cancer is a prognostic factor for survival. PADI2 is a member of the PAD family,
which is commonly associated with abnormal pathological properties of inflammation
(Chang et al., 2013). McElwee et al. (2012) reported that dysregulation of PADI activity is
associated with several diseases, such as chronic obstructive pulmonary disease, rheumatoid
arthritis and cancer. Furthermore, the authors revealed that PADI2 might play an important
role in cancer progression and may be a potential biomarker for breast cancer. Transforming
growth factor-beta-induced (TGFBI) has been reported to be a linker protein. Numerous
human cancers exhibit high levels of TGFBI gene expression. Furthermore, high TGFBI
protein expression is an indicator of poor prognosis in patients with CRC (Zhu et al.,
2015). Turtoi et al. (2014) also reported that the expression of TGFBI is characteristic of
liver metastasis in CRC.

The present study identified certain genes associated with CRC from pooled microarray
datasets from several studies. Compared with previous studies, we used a similar method
but found different gene expression profiles associated with CRC. Because our studies
complement each other, the compatibility of the results is more impressive. These genes
were found to be involved in the regulation of upstream, midstream, and downstream
molecular signaling pathways, and their expression could be explained by gene collinearity
because the genes were highly correlated. However, studies have reported that DNA mi-
croarray data might have collinearity problems among the gene expression data (Lee ¢ Zee,
2008; Falgreen et al., 2015). Future studies should confirm the collinearity of these genes.

In a large study of cancer, Andrew et al. analyzed the gene expression signatures of
approximately 18,000 human tumors across 39 malignancies. However, our study was more
specific for colorectal cancer and provided a detailed examination of survival and carcino-
genesis of one cancer type. The prior study provided a wide screening of all types of cancers,
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whereas the latter is more specific and concentrated on the genes associated with colorectal
cancer (Gentles et al., 2015).

Future studies should clarify the reliability of the gene signatures observed in this study
for predicting CRC risk. Furthermore, the characteristics of the candidate genes identified
in this study merit further investigation using molecular biology methods, such as those
involving epigenetics and genetics, DNA methylation, mRNA expression levels, mRNA
interactions, and associated biochemical pathways.

Our method of investigation is not without limitations. The first limitation is that the
datasets were collected from several research studies; this approach has the benefit of an in-
creased sample size but may increase the heterogeneity due to the different types of research
designs. The second limitation is that we did not identify discrepancies in CRC-related
variables or variables influencing the survival of patients with CRC among the different stud-
ies. Our analysis of pooled microarray studies published in recent years revealed that several
international teams have proposed different CRC gene expression profiles covering diverse
candidate and verified genes, with less than 25% similarity, despite intra-observational
analyses performed using various bioinformatics techniques. These discrepancies may be
attributable in part to sampling variations that are not eliminated by bootstrapping,
but statistical collinearity within the same pathway or associated network of gene-gene
interactions is likely a more important factor and requires further study.

CONCLUSIONS

Using the appropriate bioinformatics tools and the PAM method to obtain 100 repeated
samplings, we identified 10 candidate genes that are significantly associated with CRC
(ABCG2 AQPS, SPIB, CA7, CLDNS8, SCNN1B, SLC30A10, CD177, PADI2 and TGFBI). On
average, six genes were selected by the PAM model to effectively classify normal and CRC
tissues, and the average accuracy rate was 95%. We hope that these results will provide the
basis for new research projects in clinical practice to rapidly assess colorectal cancer risk
using microarray gene expression analysis.
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