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Abstract
The extension of quantile regression to count data raises several issues. We compare 
the traditional approach, based on transforming the count variable using jittering, 
with a recently proposed approach in which the coefficients of quantile regression 
are modelled by parametric functions. We exploit both methods to analyse uni-
versity students’ data to evaluate the effect of emergency remote teaching due to 
COVID-19 on the number of credits earned by the students. The coefficients model-
ling approach performs a smoothing that is especially convenient in the tails of the 
distribution, preventing abrupt changes in the point estimates and increasing pre-
cision. Nonetheless, model selection is challenging because of the wide range of 
options and the limited availability of diagnostic tools. Thus the jittering approach 
remains fundamental to guide the choice of the parametric functions.

Keywords COVID-19 · Integrated loss function · Quantile regression coefficients 
modelling (QRCM) · R package qrcm · Remote teaching · University credits

1 Introduction

The statistical modelling of students’ productivity at university is challenging due to 
the nature of the response variable. Indeed, the number of credits earned by a student 
is a count variable with an irregular distribution since exams yield different credits 
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and the sequence of exams varies across students. In this paper, we rely on quan-
tile regression (Koenker and Bassett 1978; Koenker 2005; Kneib 2013; Davino et al. 
2014), which is a methodology to analyse the relationships between the quantiles of 
the response variable and a set of explanatory variables. It is a flexible approach as 
it does not require specifying a parametric distribution for the response. In the tradi-
tional approach to quantile regression, the association between the response variable 
and the covariates is defined by a set of quantile-specific regression equations which 
are fitted separately, allowing to assess the effect of the covariates at each quantile of 
interest.

Quantile regression has been successfully applied to the evaluation of the perfor-
mance of university students, focusing on continuous outcomes (Birch and Miller 
2006; Adelfio et al. 2014). However, analysing a count variable such as the number 
of gained credits is challenging since most of the theoretical developments of quan-
tile regression concern continuous outcomes and the extension to count data raises 
several issues. The main problem stems from the conjunction of a non-differentiable 
sample objective function with a discrete response variable. Such difficulties can be 
overcome by the jittering approach proposed by Machado and Santos Silva (2005): 
the idea is to add a uniform random variable on [0, 1) to the original count variable 
to obtain a continuous working variable whose quantiles have a one-to-one relation-
ship with those of the count variable. This approach has been applied to different 
kinds of data, such as fertility data (Miranda 2008; Booth and Kee 2009), frequency 
of individual doctor visits (Winkelmann 2006; Moreira and Barros 2010), traffic 
accidents (Qin and Reyes 2011) and capacity of a pre-enrollment test to predict stu-
dent performance (Grilli et al. 2016). Lee and Neocleous (2010) developed a Bayes-
ian implementation to analyse respiratory hospital admissions.

Recently, Frumento and Salvati (2021) proposed to analyse count data by extend-
ing the quantile regression coefficients modelling (QRCM) framework of Frumento 
and Bottai (2016). This approach avoids jittering and employs a parametric model to 
describe the quantile regression coefficient functions. The imposed parametric struc-
ture is expected to give advantages in terms of smoothness, interpretation, compu-
tational time and efficiency of the estimators. Furthermore, the QRCM framework 
allows the joint estimation of multiple quantiles (e.g., Kadane and Tokdar 2012; 
Reich 2012; Reich and Smith 2013; Yang and Tokdar 2017; Das and Ghosal 2017; 
Fabrizi et  al. 2020). The idea of simultaneous quantile regression has been advo-
cated as a solution to quantile crossing (e.g., He 1997; Bondell et al. 2010; Liu and 
Wu 2011). The main challenge in applying the QRCM approach is the model selec-
tion because of the inherent complexity and the lack of well-established principles.

In this paper, we exploit the jittering approach of Machado and Santos Silva 
(2005) and the coefficients modelling approach of Frumento and Salvati (2021) 
to analyse the effect on university students’ productivity of the emergency remote 
teaching adopted in the spring of 2020 to face the COVID-19 outbreak. In Italy, 
remote teaching started on 5 March 2020, just a few days after the beginning of 
the second semester. The idea, similar to that of González et al. (2020), Meeter 
et al. (2020) and Iglesias-Pradas et al. (2021), is to compare the productivity of 
different cohorts of students. Specifically, we focus on the performance of first-
year students during the second semester: the cohort 2019 experienced remote 
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teaching, whereas the cohort 2018 attended standard face-to-face lessons. We 
conduct the analysis on first-year students of bachelor’s degrees in Psychology 
and Industrial Design at the University of Florence. These degree programs have 
been chosen because they have the same courses in the two years under compari-
son while being different in discipline and type of access (enrollment in Psychol-
ogy is subject to an admission test, whereas it is free for Industrial Design).

We use data collected in the administrative archive on students’ careers, 
including information on passed exams and background characteristics, such as 
gender, high school type and grade. To evaluate the impact of remote teaching, 
we focus on the number of credits earned in the second semester, namely in the 
exam sessions between June and September. Specifically, we compare the credits 
earned by two cohorts: students enrolled in 2019 (treatment group) versus stu-
dents enrolled in 2018 (control group). To adjust for possible differences in base-
line productivity among the two cohorts, we condition on the number of credits 
obtained in the first semester, when both cohorts attended face-to-face lectures.

The rest of the paper is organised as follows. In Sect. 2 we outline the theory of 
two mentioned approaches to quantile regression for counts, namely jittering and 
parametric coefficients modelling. In Sect. 3 we illustrate the application of the two 
approaches for evaluating the effect of remote teaching on credits earned by the stu-
dents of the degree program in Psychology. Finally, in Sect. 4 we discuss the main 
findings and compare the two approaches from a statistical modelling perspective. 
Appendix 1 reports the results for the degree program in Industrial Design.

2  Methods

2.1  Quantile regression

Standard regression methods aim at modelling the relationship between the con-
ditional mean of the response variable and a set of covariates. Extended frame-
works, such as GAMLSS (Stasinopoulos et al. 2018), consider a few higher order 
moments. On the other hand, quantile regression (Koenker and Bassett 1978; 
Koenker 2005; Kneib 2013; Davino et al. 2014) focuses on conditional quantiles, 
which fully describe the distribution of the response variable. Therefore, quantile 
regression avoids distributional assumptions, though it requires correctly speci-
fying the regression function at all quantiles of interest. The main advantage of 
quantile regression lies in the possibility of investigating the effects of the covari-
ates at different points of the distribution: for example, it may reveal that a covari-
ate has a negligible effect at the 50th percentile (centre of the distribution) and a 
large effect at the 90th percentile (right tail).

We denote by Yi the response variable of interest for observation i, with 
i = 1,… , n ; moreover, we denote by xi a q + 1-dimensional vector with q observed 
covariates and a constant. The standard quantile regression (QR) model assumes 
that
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where p is the quantile order and QT(Yi)
(p|xi) is the conditional quantile function of 

a known, monotone transformation T(⋅) of Yi . A transformed response may be con-
venient in the case of non-negative or bounded outcomes. The estimation of �(p) at 
any fixed p is carried out by minimising the objective function

where yi is a realisation of Yi and �p,i = I(T(yi) ≤ x
�
i
�(p)) . In the rest of the paper, 

we simplify the notation by omitting the index i.

2.2  Quantile regression for counts: the jittering approach

The conventional approach for analysing count data is to employ regression models 
for the conditional mean, that are typically based on the Poisson distribution and its 
generalisations. Quantile regression represents a flexible approach to analyse count 
data, even though most of the theoretical developments and empirical applications 
concern continuous outcomes. In fact, in linear quantile regression the response var-
iable is assumed to be sampled from an absolutely continuous population, which 
is not true if Y is a count. The extension of quantile regression to count data raises 
several issues: when QR is applied to this kind of data a non-standard rate of con-
vergence is obtained as a result of the non-smoothness of the objective function in 
combination with the discreteness of the response variable (Manski 1985). In addi-
tion, this may produce identifiability issues and computational problems (Frumento 
and Salvati 2021).

The solution suggested by Machado and Santos Silva (2005) is to construct a 
continuous random variable whose quantiles have a one-to-one relationship with the 
quantiles of the response variable. In particular, they propose to generate an artificial 
continuous variable Z by adding a uniform random variable U with support [0, 1) 
to the original count variable Y. This procedure, known as jittering (Stevens 1950), 
yields a working variable Z whose conditional quantile function is continuous in p. 
Thus, linear quantile regression can be applied to any monotone transformation T(⋅) 
of the working variable Z = Y + U:

Machado and Santos Silva (2005) propose using the logarithmic transformation, 
specifically

(1)QT(Yi)
(p|xi) = x

�
i
�(p),

(2)L(�(p)) =

n∑

i=1

(p − �p,i)(T(yi) − x
�
i
�(p)),

(3)QT(Z)(p|x) = x
��(p).

(4)T(Z;p) =

{
log(Z − p) if Z > p

log(𝜁 ) if Z ≤ p
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where � is a suitably small positive number introduced to guarantee that the transfor-
mation is feasible also for Z ≤ p . Given the estimate �̂(p) , quantiles of the original 
count Y are consistently estimated by

where ⌈a⌉ denotes the ceiling function, which returns the smallest integer greater 
than or equal to a.

A drawback of the jittering approach is that the estimate �̂(p) depends not only on 
the data, but also on the specific realisation of the noise U. To attenuate this depend-
ence, Machado and Santos Silva (2005) propose to repeat jittering and estimation m 
times and to average the resulting estimates. Denoting with �̂(l)

(p) the QR estimator 
based on the lth “jittered” sample, the “average jittering” estimator is

The “average jittering” estimator (6) is more efficient than the estimator obtained 
with a single sample. Moreover, it is consistent and asymptotically Normal. The 
simulation study of Machado and Santos Silva (2005) shows it has good properties 
in finite samples of size n = 500.

2.3  Quantile regression for counts: the coefficients modelling approach

Recently, Frumento and Salvati (2021) proposed a promising approach to quantile 
regression for counts based on the framework of Quantile Regression Coefficients 
Modelling (QRCM). This framework, introduced by Frumento and Bottai (2016) 
for a continuous response, consists in linking the regression coefficients at differ-
ent quantiles through suitable functions and jointly estimating the parameters by 
minimising an overall objective function. The QRCM paradigm has been applied 
to censored and truncated data (Frumento and Bottai 2017) and to longitudinal data 
(Frumento et al. 2021). The idea of Frumento and Salvati (2021) is to apply QRCM 
also to a discrete response such as a count, thus avoiding jittering. The QRCM 
approach provides numerous advantages, including parsimony, efficiency and ease 
of interpretation.

The idea of Frumento and Bottai (2016) is to specify parametric models for the 
quantile regression coefficient functions. Specifically, they define the regression 
parameters �(p) as a function of p that depends on a finite-dimensional parameter � , 
that is

where b(p) = [b1(p),… , bk(p)]
� is a set of k known basis functions of p and � is a 

(q + 1) × k matrix with entries �cj , where q is the number of covariates (the model 
always includes an intercept). The quantile regression coefficient of the cth covariate 
is

(5)Q̂Y (p�x) = ⌈T−1(x��̂(p)) − 1⌉,

(6)�̂
A

m
(p) =

1

m

m∑

l=1

�̂
(l)
(p).

(7)�(p|�) = �b(p),
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c = 0,… , q . Under the structure of Eq. (7), the conditional quantile function is

To reduce model complexity, some entries of the matrix � may be set to 0 to 
allow the regression coefficients to be specified by subsets of the basis functions 
b(p).

Quantile regression coefficients modelling (QRCM) is implemented in the qrcm 
R package (Frumento 2021). An estimate of � is obtained by minimising the inte-
grated objective function

which is the integral, with respect to the quantile order, of the loss function (2) of 
linear quantile regression.

This estimation approach, referred to as integrated loss minimisation, allows to 
estimate the entire quantile process instead of estimating a discrete set of quantiles. 
The model can be specified for any non-decreasing transformation of the outcome 
variable, though a linear model is the most common choice because of the simplicity 
of interpretation (Frumento and Bottai 2016).

Unlike the standard loss function of quantile regression, the integrated loss func-
tion displayed in (10) is a smooth function of its arguments: this allows to use stand-
ard algorithms, like Newton-Raphson or gradient search (Bottai et al. 2015), to per-
form minimisation, and to employ the standard theory of M-estimation (e.g., Newey 
and McFadden 1994) to investigate the asymptotic properties. Consistency and 
asymptotic normality hold under mild conditions. An advantage of the parametric 
approach is that inference does not require using bootstrap or estimating the sparsity 
function.

Frumento and Bottai (2016) argue that, in many instances, the estimator based on 
the integrated loss function is expected to more efficient than the standard quantile 
regression estimator, which takes one quantile at a time. Indeed, joint estimation 
with a parametric structure is likely to yield some gain in efficiency. Evidence in this 
direction is provided by the simulation results of Frumento and Bottai (2016), but 
this is an open question.

Standard quantile regression can be seen as a non-parametric version of the 
QRCM estimator, thus it can be used to explore the relationships in the data to guide 
the selection of the QRCM model.

The QRCM approach is defined for a continuous response. However, Frumento 
and Salvati (2021) suggest using the QRCM approach also for a count variable 
in order to solve the well-known issues outlined in Sect. 2.2. The idea is to para-
metrically model the conditional quantile function as if the response variable was 
continuous. This entails using a working model which does not reflect the actual 

(8)�c(p|�) = �c1b1(p) +… + �ckbk(p),

(9)QT(Y)(p|x,�) = x
��b(p).

(10)L̄(�) = ∫
1

0

L(�(p|�))dp ,
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distribution of the data, but, in the same spirit of Efron (1992), allows to estimate a 
smooth quantile function by minimising a smooth loss function.

The proposal of Frumento and Salvati (2021) is driven by the empirical evidence 
that the estimators obtained by applying QRCM to the jittered response Z = Y + U 
or directly to Y◦ = Y + E[U] are almost identical. Such result follows from the 
imposed parametric structure, which allows to smooth away the mass points in the 
empirical data distribution. Therefore, after assuming without loss of generality that 
E[U] = 0.5 , model (9) is applied to a transformation T(⋅) of Y◦ = Y + 0.5 , that is

Given that Y◦ is discrete, Eq. (11) should not be viewed as a data generating 
model, but as a convenient approximation. Indeed, Frumento and Salvati (2021) 
argue that “the idea of fitting a continuous quantile function to a discrete outcome 
should be regarded as a computational expedient and can be seen as an implicit way 
of performing jittering”.

Estimation of the parameters in � is carried out by minimising the integrated loss 
function of Eq. (10). Given the estimate �̂ , the quantiles of Y are estimated as

where ⌈⋅⌉ is the ceiling operator.
As for the transformation T(⋅) of the working variable, Frumento and Salvati 

(2021) point out that the identity and the log are natural choices. They prefer the 
identity due to the ease of interpretation, also noting that a log-linear association 
can be approximated by a linear model in which the covariates have been suitably 
transformed. The drawback of the linear specification with count data is that it does 
not ensure non-negative predicted quantiles. Nevertheless, the linear specification 
may still be preferable if the analysis aims at discovering relationships rather than 
making predictions.

The simulation study of Frumento and Salvati (2021) show that, if the “true” 
model is fitted, QRCM estimators are much more efficient than the estimators based 
on jittering. The gain in efficiency reduces as the specification of QRCM becomes 
more flexible, although relevant efficiency gains are still observed in the tails where 
the data are sparser. This suggests that describing �(p|�) by a parsimonious model 
can substantially improve the inference, but overfitting tends to nullify the gain.

In the QRCM approach, model building is challenging since �(p|�) can be speci-
fied in many different ways. Frumento and Salvati (2021) suggest using the struc-
ture with basis functions defined in Eq. (7), namely �(p|�) = �b(p) . Then, the 
main issue is the choice of the basis functions b(p) . In practice, any set of func-
tions such that b(p) induces a well-defined quantile function for some � can be uti-
lised, including polynomials (p, p2, p3,…) , splines, piecewise linear functions, roots 
(p1∕2, (1 − p)1∕2, p1∕3, (1 − p)1∕3,…) , logarithms (log(p) , − log(1 − p)) , trigonomet-
ric functions (cos(�p), sin(�p)) , quantile functions of known distribution (e.g., that 
of a Normal, Beta or Gamma distribution), and combinations of the above. In prac-
tice, it is likely that some of the quantile regression coefficient functions are well 
approximated by simple functions of p, like a linear function or even a constant.

(11)QT(Y◦)(p|x,�) = x
��(p|�) .

(12)QY (p�x, �̂) = ⌈T−1(x��(p��̂)) − 1⌉,
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To carry out model selection, restrictions on � can be evaluated using Wald tests. 
The minimised value of the integrated loss function (10) can be used to monitor 
the fit of competing models, but it does not account for model complexity. Moreo-
ver, the model that provides the best fit from a list of candidates may actually not 
fit the data properly: for instance, some functions in b(p) may be inadequate or the 
effects of the covariates may not be linear at some quantiles. Frumento and Bottai 
(2016) propose a goodness-of-fit test comparing F(yi| xi,�) with a uniform distribu-
tion U(0, 1). Indeed, under the true model, F(yi| xi,�) is uniformly distributed for 
every i = 1,… , n . The distance can be measured by the Kolmogorov-Smirnoff or 
Cramér-von Mises statistics, and a Monte Carlo approach can be used to compute 
the p-values.

3  Case study: effect of remote teaching on student productivity

3.1  Data and preliminary analysis

At the beginning of March 2020, the Italian government, following the increase in 
the number of cases of COVID-19, decided to close all schools and universities, 
which then implemented various forms of remote teaching. We aim to evaluate the 
impact of remote teaching on the productivity of the students of a couple of degree 
programs at the University of Florence. We take data from the administrative records 
of first-year students who enrolled in the bachelor’s degree programs of Psychology 
and Industrial Design in the academic years 2018/2019 and 2019/2020. We consider 
two degree programs to have insights into different fields of study. The idea, similar 
to that of Meeter et al. (2020), is to compare the productivity of first-year students 
in the second semester of 2019/20 who attended remote teaching to that of first-year 
students in the second semester of 2018/19 who attended face-to-face lectures. In 
the academic years under comparison, the study plan remained the same.

We excluded the students who did not earn any credit in the first semester (212 
out of 861 for Psychology and 36 out of 333 for Industrial design). In fact, those stu-
dents have an irregular career since in the second semester mostly take exams of first 
semester courses, which were not affected by remote teaching. In addition, those 
students have low ability or low motivation since they are likely to be unproductive 
also in the second semester (the proportion of students with zero credits also in the 
second semester is 0.495 for Psychology and 0.833 for Industrial design).

The dataset for the analysis consists of 649 first-year students in Psychology and 
297 in Industrial Design. The available characteristics of the students are summa-
rised in Table 1, together with the average and standard deviation of the number of 
credits earned in each semester (the expected number is about 30 per semester). The 
two degree programs have students with different characteristics, which are similar 
in the two cohorts. Students of Psychology have a higher productivity, which is not 
surprising given that they have been selected by a closed-number admission test.
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3.2  Modelling

Students’ productivity is measured by the number of gained credits (ECTS). All 
considered exams provide 6, 9 or 12 credits. The number of credits to obtain, 
based on the study plan, is about 30 per semester. Students can achieve a higher 
number of credits than expected since, in the second semester, they can take 
exams they failed in the first one or exams of the following year. For each student, 
the number of credits earned in the first semester is the sum of the credits asso-
ciated with the exams passed in January and February, whereas for the second 
semester the sum concerns the exams passed in June, July and September. We dis-
card exams taken in other months and didactic activities without a grade. Given 
that the number of credits is always a multiple of 3, the response variable Y used 
in the models is defined as the number of credits earned in the second semester 
divided by 3. It follows that Y takes almost all integer values between 0 and 21. 
As shown in Fig.  1, the response variable has an irregular distribution in both 
degree programs since exams yield different credits and the sequence of exams 
varies across students. Even if the number of gained credits is not originated from 

Table 1  Summary of background characteristics and obtained credits of first-year students by degree 
program and year of enrollment (2018 or 2019), University of Florence

Psychology Industrial design

2018 2019 Total 2018 2019 Total

Nr. observations 313 336 649 139 158 297
Gender (%)
  Female 76.7 82.1 79.5 72.7 62.0 67.0
  Male 23.3 17.2 20.5 27.3 34.0 33.0

Type of high school (%)
  Scientific 37.7 32.7 35.1 32.4 25.3 28.6
  Humanities 16.3 17.0 16.6 5.04 6.96 6.06
  Language 7.35 7.14 7.24 2.88 3.80 3.37
  Human sciences 24.6 19.9 22.2 12.2 9.49 10.8
  Art school 1.28 2.98 2.16 22.3 29.1 25.9
  Technical 9.27 15.2 12.3 19.4 18.4 18.9
  Other 3.51 5.06 4.31 5.76 6.97 6.40

High School grade
  Average 82.1 80.3 81.17 76.9 78.3 77.63
  SD 10.9 11.1 11.00 10.1 11.1 10.79

Credits in the 1st semester
  Average 21.8 21.5 21.6 16.7 17.0 16.9
  SD 6.65 6.63 6.64 7.46 7.64 7.54

Credits in the 2nd semester
  Average 30.1 28.2 29.1 19.8 22.1 21.0
  SD 9.23 9.85 9.59 9.82 9.51 9.70
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a counting process, it has the support of a count variable. The lower bound is 
zero, whereas the upper bound is not fixed in advance since students can take 
extra exams. Also note that the sample distributions of Fig.  1 do not show any 
thickening of frequencies in the right tail. Therefore, the number of gained cred-
its can be modelled as a count variable, and quantile regression is an appealing 
methodology to handle its uneven distribution. In a similar context, Grilli et al. 
(2016) applied quantile regression for counts based on jittering. Here we also 
apply the coefficients modelling approach (QRCM) and make a comparison.

The covariates to be included in the models are:

• X1 : number of credits obtained during the first semester, centred around its 
mean and scaled.

• X2 : dummy variable for cohort 2019 (remote teaching in the second semester) 
vs 2018 (face-to-face teaching in the second semester).

• X3 : dummy variable for male vs female.
• X4 : high school grade, centred around its mean and scaled.
• X5,… ,X10 : dummy variables for the type of high school (except for the base-

line category “Scientific”).

The analysis is performed separately for each degree program. The effect of 
remote teaching on gained credits is summarised by the coefficient of the dummy 
variable X2 for the cohort 2019. For the jittering approach we specify the follow-
ing model:

Fig. 1  Distribution of credits obtained in the second semester for first-year students in Psychology and 
Industrial Design by academic year of enrollment (2018/2019 and 2019/2020), University of Florence
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with T(Z, p) = Z − p . The subtraction of p is motivated by the fact that the quantile 
function of Z is bounded from below by p. Differently from Machado and Santos 
Silva (2005), who adopted the log transformation (4), here the transformation is lin-
ear. The corresponding model in the QRCM approach is

where the coefficients are assumed to be linear combinations of basis functions as in 
Eq. (8), namely �c(p|�) = �c1b1(p) +… + �ckbk(p) . Therefore, model specification 
entails choosing the basis functions and setting some parameters �cj at zero. Indeed, 
to avoid overfitting, for most regression coefficients it is reasonable to use a subset 
of the basis functions.

For the QRCM approach we specified a linear quantile regression model, cor-
responding to an identity function for the transformation of the working variable. 
To ensure comparability, we made the same choice for the jittering approach even 
if Machado and Santos Silva (2005) used the log transformation. As mentioned 
in Sect. 2.3, the linear specification in QRCM is advocated by Frumento and Sal-
vati (2021) since it is easier to fit and interpret. Clearly, a linear model does not 
guarantee non-negative values of the count variable. To evaluate the impact of 
this issue in our application, we computed with Eq. (12) the predicted quantiles 
according to the selected QRCM specification for Psychology (see Model 2 of 
Table 2 further on). At p = 0.05 we obtained −1 with frequency 14 and −2 with 
frequency 1. Overall, the negative values are small in magnitude and rare (15 out 
of 649, i.e. 2.3%), thus we proceed with the linear specification, also considering 
that we are going to exploit the model to infer relationships, rather than making 
predictions.

(13)QT(Z,p)(p|x) = x
��(p) = �0(p) +

10∑

c=1

�c(p) xc,

(14)QY◦(p|x,�) = x
��(p|�) = �0(p|�) +

10∑

c=1

�c(p|�) xc.

Table 2  Alternative QRCM specifications for the number of gained credits: basis functions for the quan-
tile regression coefficients, number of parameters and minimised integrated loss function. Degree pro-
gram in Psychology

poly(p,r) denotes the shifted Legendre polynomials up to degree r; for example, poly(p,2) includes the 
terms 1, 2p − 1, 6p2 − 6p + 1 and gives the same fit as the standard polynomial 1, p, p2

Model Intercept X2 X1,X3,X4 X5,… ,X10 Parameters Loss

0 poly(p, 1) poly(p, 1) poly(p, 1) poly(p, 1) 22 482.350
1 poly(p, 5),− log(1 − p) poly(p, 5) poly(p, 1) 1 25 476.704
2 poly(p, 5),− log(1 − p) poly(p, 5),− log(1 − p) poly(p, 1) 1 26 476.229
3 poly(p, 5),− log(1 − p) poly(p, 5),− log(1 − p) poly(p, 3) 1 32 476.117
4 poly(p, 8),− log(1 − p) poly(p, 8),− log(1 − p) poly(p, 1) 1 32 475.477
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The jittering approach is implemented by the R package quantreg with jit-
tering repeated 100 times (Koenker 2021), whereas the QRCM model is fitted 
using the iqr function of the qrcm package (Frumento 2021).

In the following, we report the results of the analysis concerning the program 
degree in Psychology, while the corresponding results for the program degree in 
Industrial Design are summarised in the Appendix.

3.3  Results for Psychology

To implement the QRCM approach we fitted several models with various types 
of basis functions and different restrictions. Some of the fitted models are sum-
marised in Table 2, showing the basis functions, the number of model parameters 
and the integrated loss function.

Firstly, Table  2 reports a baseline model where all quantile regression coef-
ficients are linear functions of p (Model 0). In the other models, the intercept 
�0(p|�) and the coefficient for the effect of interest �2(p|�) are modelled in a flex-
ible way, whereas the other coefficients are approximated with low-order polyno-
mials or even a constant. Models 1 and 2 only differ for the term −log(1 − p) in 
�2(p|�) . Models 3 and 4 are extensions of Model 2 with finer specification of some 
coefficients. We select Model 2, which is defined by the following equations:

where the matrix � has elements �cj with c denoting the quantile regression coef-
ficient and j denoting the element of the basis function. The formula is written with 
standard polynomials for the sake of clarity. However, estimation is carried out with 
shifted Legendre polynomials, which are polynomials orthogonal on [0, 1] yielding 
the same fit, but improving computation.

Selecting a QRCM model is not straightforward. In fact, a more complex 
model can reduce the integrated loss function, but it is more prone to overfit-
ting, while it does not necessarily improve the inference on the coefficient of X2 
(cohort 2019), measuring the effect of remote teaching. Therefore, we compared 
the models on the basis of the plots of �2(p|�) : each panel of Fig. 2 displays the 
jittering estimates at the percentiles ( p = 0.01, 0.02, ..., 0.99 ) and the QRCM fitted 
quantile function with confidence bands.

We selected Model 2 since it achieves a satisfactory balance between parsi-
mony and accurate interpolation of the non-parametric estimates obtained with 
jittering. We discard Models 3 and 4 despite the lower value of the loss function. 
In fact, Model 3 extends Model 2 with a finer specification for the control vari-
ables X1,X3,X4 , yielding a marked increase in the confidence bands. On the other 
hand, Model 4 extends Model 2 with a finer specification of the intercept and the 
coefficient of cohort X2 , with confidence bands decreasing for some values of p 

�0(p|�) = �00 + �01p + �02p
2 + �03p

3 + �04p
4 + �05p

5 − �06 log(1 − p)

�2(p|�) = �20 + �21p + �22p
2 + �23p

3 + �24p
4 + �25p

5 − �26 log(1 − p)

�c(p|�) = �c0 + �c1p for c ∈ {1, 3, 4}

�c(p|�) = �c0 for c = 5, 6,… , 10,
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and increasing otherwise. It is worth to note that the additional parameters of 
Models 3 and 4 do not improve the interpolation of the jittering estimates for X2 , 
which slightly deteriorates instead. Therefore, we retain Model 2 even if it is not 
fully satisfactory in terms of global fit (Kolmogorov-Smirnov goodness-of-fit sta-
tistic= 0.0634 , bootstrap p-value< 0.001 ). This case study illustrates the difficul-
ties in model selection and the conflict between global fit and local fit.

It is reassuring to note that the choice of a specific model is essentially irrel-
evant for our research question on the effect of remote teaching: in fact, Fig.  2 
shows that all models under consideration lead to the same finding, i.e., the effect 
of remote teaching is essentially null in the centre of the distribution and negative 
in the tails. However, the 95% confidence bands always overlap the zero, thus the 
estimated effect does not reach statistical significance.

An advantage of the QRCM approach is the availability of a global test on the 
effect of a covariate, in addition to quantile-specific tests. The global test is car-
ried out as a Wald test for the null hypothesis that all coefficients associated to 
a covariate are zero. In our application, the cohort effect does not attain signifi-
cance at a 5% level (p-value = 0.86).

Figure  3 shows the quantile functions of the QRCM approach obtained 
from Model 2 of Table  2, alongside with 95% confidence bands. For compari-
son, broken dashed lines are plotted for jittering estimates at the percentiles 

Fig. 2  Estimates of �2(p|�) under Models 1, 2, 3 and 4: QRCM estimates (solid line) with 95% confi-
dence bands (shaded area) and jittering estimates at p = 0.01, 0.02, ..., 0.99 (broken line). Degree pro-
gram in Psychology
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( p = 0.01, 0.02, ..., 0.99 ). Table  3 displays the estimates for the two approaches 
at five quantiles ( p = 0.10, 0.25, 0.50, 0.75, 0.90 ), together with standard errors 
(those of jittering are computed with bootstrap using 100 iterations).

Fig. 3  QRCM estimates of 
�
c
(p|�) under Model 2 (solid 

line) with 95% confidence bands 
(shaded area) and jittering esti-
mates at p = 0.01, 0.02, ..., 0.99 
(broken line). Degree program 
in Psychology
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The coefficients estimated with QRCM (parametric modelling of the coeffi-
cients) are close to those of the jittering approach, especially for the parameters 
with more flexible functions, i.e. the intercept and the coefficient of X2 (cohort). 
The discrepancies are larger in the tails of the distribution of the response vari-
able, where there is higher uncertainty and the smoothing operated by QRCM is 
stronger.

The standard errors are generally higher in the tails. Neither approach guarantees 
more precision for all variables at all considered quantiles. Specifically, QRCM pro-
vides smaller standard errors for most of the estimated coefficients, especially for 
the smallest and highest quantiles. However, QRCM yields larger standard errors for 
the dummy of cohort due to the flexible specification.

Table 4 reports the average standard errors at five quantiles. In both approaches 
the standard errors are larger in the tails. Interestingly, with jittering the stand-
ard errors are markedly larger on the left tail, but this asymmetry is much attenu-
ated with QRCM. The ratios of the average standard errors show that the QRCM 
approach provides more precision at all considered quantiles except the median. The 
gain is higher in the left tail, where the standard errors of the jittering estimates are 
particularly large. Overall, these findings demonstrate that the smoothing operated 
by the QRCM approach leads to an increased precision in the tails of the distribu-
tion, where the local fitting of the jittering approach is worsening.

Appendix 1 reports the results of the analysis concerning the degree program 
in Industrial Design. For the QRCM approach we adopted the selection procedure 
outlined above: even if the selected model is different, the reflections made in this 
Section remain valid. The effect of remote teaching is positive, though not statisti-
cally significant. As compared with Psychology, the confidence bands of QRCM are 
larger because of the smaller sample size, but the gain in efficiency of QRCM over 
jittering is higher.

4  Final remarks

Quantile regression is an appealing methodology for modelling a count variable 
with an irregular distribution, such as the number of credits earned by university 
students. Motivated by the aim of evaluating the impact of remote teaching on stu-
dent productivity, we analysed data from the University of Florence using the tradi-
tional approach based on jittering (Machado and Santos Silva 2005) and the quantile 
regression coefficients modelling (QRCM) approach proposed by Frumento and Sal-
vati (2021).

Table 4  Average standard errors 
at selected quantile orders 
obtained with jittering and 
QRCM under Model 2. Degree 
program in Psychology

p = 0.10 p = 0.25 p = 0.50 p = 0.75 p = 0.90

jittering 0.784 0.499 0.212 0.354 0.366
QRCM 0.428 0.335 0.295 0.328 0.310
Ratio 0.546 0.671 1.392 0.927 0.959
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The QRCM approach provides estimates of the quantile regression coefficients 
that are smooth functions of the quantile order p. The smoothing is especially con-
venient in the tails of the distribution, preventing abrupt changes in the point esti-
mates and increasing precision. We detected this pattern in the analysis of both 
degree programs. Another advantage of the coefficients modelling approach is the 
reduced computational time since optimising a single objective function yields esti-
mates at all quantiles. On the contrary, traditional quantile regression entails fitting 
the model separately at every quantile of interest; moreover, to obtain average-jitter-
ing estimates, the jittering and estimation steps have to be repeated many times.

The main difficulty with the coefficients modelling approach lies in model selec-
tion. Indeed, in addition to the quantile regression function, one has to specify 
parametric functions for all regression coefficients; thus, the range of options is 
extremely wide and the risk of overfitting is serious. The jittering approach is pivotal 
as an exploratory tool to guide the choice of the parametric functions. In our case 
study, model selection was facilitated by the presence of a coefficient of primary 
interest, namely the coefficient of cohort 2019 measuring the effect of remote teach-
ing. Our strategy was to adopt complex functions for the intercept, which represents 
the baseline pattern, and the coefficient for the effect of remote teaching. On the 
other hand, for the coefficients of the control variables, we adopted simple func-
tions which were evaluated not only in terms of global fit but also by monitoring 
the changes in the inferences for the effect of remote teaching. Indeed, we detected 
a bias-variance trade-off since highly flexible specifications of the control variables 
were associated with a loss of precision in estimating the coefficient of primary 
interest.

A difficulty of the coefficients modelling approach is that model selection can-
not rely on standard likelihood-based methods since estimation depends on an inte-
grated loss function. The minimised value of the loss function can be used to choose 
among models with the same number of parameters. Still, there is no criterion to 
compare models of different complexity. Another tool to guide model selection is 
the goodness-of-fit test of Frumento and Bottai (2016), which was derived for con-
tinuous outcomes. Using this test with count data seems reasonable, but its behav-
iour has to be investigated.

The case study assessed the impact of remote teaching after COVID-19 on the 
productivity of university students. Controlling for background characteristics and 
productivity during the previous semester, we found that first-year students of Psy-
chology at the University of Florence were little affected by the switch to remote 
teaching. Indeed, we detected minor negative effects in the tails without reaching 
statistical significance. On the other hand, the analysis with first-year students of 
Industrial Design revealed positive effects of remote teaching at all quantiles. How-
ever, the smaller sample size gives larger confidence bands; thus, the effects are not 
statistically significant. As for interpretation, note that we estimated an overall effect 
of the changes in didactic activities to contrast the COVID-19 pandemic: in fact, 
remote teaching also implied remote examinations, and our data do not allow us to 
disentangle the effect of teaching itself from the effect due to examinations.

As for the methodology, our case study confirm the merits of quantile regres-
sion coefficients modelling, especially for the smoothness of estimates in the tails of 
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the distribution, alongside increased precision. Nonetheless, model selection is chal-
lenging; thus, we recommend using the traditional jittering approach as a reference. 
The spread of the coefficients modelling approach depends critically on developing 
effective tools for model selection.

The topic of flexible modelling of count data is rapidly evolving. Two recent pro-
posals are noteworthy. Peluso et al. (2019) developed a generalised additive model 
with Discrete Weibull distribution. The proposed method is compared with jitter-
ing via simulation, finding a reduction in the RMSE (about 5% for a sample size 
n = 1000 ). Moreover, their application to the number of planned children highlights 
the greater stability of the inferential results in the tails. From a different perspec-
tive, Geraci and Farcomeni (2022) developed a two-step estimator for implementing 
quantile regression with the mid-quantile function. For discrete random variables, 
this amounts to smooth the quantile function. In a simulation study, this method 
returned estimates of the slopes similar to the jittering approach, with a gain in 
efficiency for central quantiles ( 0.2 < p < 0.8 ) and no gain (or loss for n = 100 ) at 
p = 0.2, 0.8 . Future research should comprehensively compare quantile regression 
coefficients modelling with the alternative approaches.

Appendix A: Results for industrial design

We report the results of the analysis concerning the degree program in Industrial 
Design of the University of Florence. The strategy of model building is the same 
adopted for the degree program in Psychology (Sect. 3.3). The selected model for 
the QRCM approach has the following specification:

We imposed a structure similar to the other degree program: the intercept and 
the coefficient of primary interest are specified with flexible functions, whereas the 
other coefficients are approximated with a line or a constant. The main difference 
lies in the selected functional forms for �0(p|�) and �2(p|�).

Figure  4 shows the plots of the estimates obtained with jittering and QRCM, 
corresponding to Fig. 3. Table 5 displays the estimates obtained with jittering and 
QRCM at selected quantiles, corresponding to Table 3.

Finally, Table 6 compares the average standard errors under the two approaches, 
similarly to Table  4. In this case the QRCM approach entails a gain in precision 
at any quantile order. The gain is pretty small at the median and it increases while 
moving towards more extreme quantiles, especially on the left.

�0(p|�) = �00 + �01p + �02p
2 + �03p

3 + �04p
4 − �05 log(1 − p)

�2(p|�) = �20 + �21p + �22p
2 + �23p

3 + �24p
4 − �25 log(1 − p)

�c(p|�) = �c0 + �c1p for c ∈ {1, 3, 4}

�c(p|�) = �c0 for c = 5, 6,… , 10



1 3

Quantile regression for count data: jittering versus regression…

Fig. 4  QRCM estimates of �
c
(p|�) (solid line) with 95% confidence bands (shaded area) and jittering 

estimates at p = 0.01, 0.02, ..., 0.99 (broken line). Degree program in Industrial Design
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