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Abstract: Microorganisms inhabiting saline environments are an interesting ecological model for the
study of the adaptation of organisms to extreme living conditions and constitute a precious resource of
enzymes and bioproducts for biotechnological applications. We analyzed the microbial communities
in nine ponds with increasing salt concentrations (salinity range 4.9–36.0%) of the Saltern of Margherita
di Savoia (Italy), the largest thalassohaline saltern in Europe. A deep-metabarcoding NGS procedure
addressing separately the V5-V6 and V3-V4 hypervariable regions of the 16S rRNA gene of Bacteria
and Archaea, respectively, and a CARD-FISH (catalyzed reporter deposition fluorescence in situ
hybridization) analysis allowed us to profile the dynamics of microbial populations at the different
salt concentrations. Both the domains were detected throughout the saltern, even if the low relative
abundance of Archaea in the three ponds with the lowest salinities prevented the construction of
the relative amplicon libraries. The highest cell counts were recorded at 14.5% salinity for Bacteria
and at 24.1% salinity for Archaea. While Bacteria showed the greatest number of genera in the first
ponds (salinity range 4.9–14.5%), archaeal genera were more numerous in the last ponds of the
saltern (salinity 24.1–36.0%). Among prokaryotes, Salinibacter was the genus with the maximum
abundance (~49% at 34.6% salinity). Other genera detected at high abundance were the archaeal
Haloquadratum (~43% at 36.0% salinity) and Natronomonas (~18% at 13.1% salinity) and the bacterial
“Candidatus Aquiluna” (~19% at 14.5% salinity). Interestingly, “Candidatus Aquiluna” had not been
identified before in thalassohaline waters.

Keywords: halophiles; extremophiles; microbiota; saltern

1. Introduction

Marine solar salterns are excellent systems to study the influence of salinity on microbial
populations. They consist of a series of connected ponds containing water with increasing saline
concentrations. The first ponds, from those directly connected with the sea up to those containing water
with a saline concentration around 20%, are generally indicated as evaporation ponds. Ponds at higher
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salt concentrations—up to the NaCl saturation point—are known as crystallizer ponds. As salinity
increases, changes in the microbial halophiles’ population occur. Generally, microbial halophiles are
classified as “slight halophiles”, which grow optimally in media with low salinity values (1–5%);
“moderate halophiles”, which require salt concentrations from 3 to 25% and “extreme halophiles”
which grow best in media containing salt concentrations in the 20−30% range [1,2]. Both Bacteria and
Archaea have been identified among halophiles [3–7].

Studies aimed at the identification of prokaryotes living in the waters with different salt
concentrations of salterns have been carried out for a long time by using different approaches,
including classic culturing methods and advanced molecular techniques [8–10]. Even if some
general trends are evident, such as the decrease in bacterial diversity with the increase in salinity
or the relative increase in archaeal diversity at high salt concentrations [6], a clear view of the
dynamicity of prokaryotic taxonomic profiles in relation to the increase in salinity in the different
ponds is difficult to obtain. Indeed, some noteworthy differences have been reported. For example,
the haloarchaeal genus Haloquadratum, which is considered to be present worldwide [6,11], was not
detected in the crystallizer ponds of two salterns of the Adriatic sea (Secovlje in Slovenia and Ston
in Croatia). These salterns are instead particularly rich in members of the haloarchaeal Halorubrum
genus (66 and 87% of 16S rDNA gene amplicons, respectively) [12]. The absence of the Haloquadratum
genus was also reported in the salterns located in San Diego (California), where the Halobacterium
prevails [13]. A recent study regarding the archaeal population in a crystallizer pond from the salterns
of Pomorie (Bulgary) also highlighted the very scarcity of the genus Haloquadratum, and the prevailing
of the genera Halanaeroarchaeum, Halorubrum, Halonotius, Halobellus and Halovenus, plus other less
abundant archaeal genera [14]. As for Bacteria, in crystallizer ponds, they can be completely absent
or in some cases, they reach relatively high levels of abundance (25–27%) largely due to the genus
Salinibacter [15]. Specific geographic and environmental conditions can be the basis of these results [16].
Therefore, further studies on the microbial composition in hypersaline environments are required
to get a more detailed representation of their distribution, their adaptability and their evolution.
From an applicative point of view, marine salterns are also a valuable resource for the exploitation of
extremophiles living at high saline concentrations, since they can be the source of unique enzymes
with potential biotechnological applications [17–21].

In this work, we studied by a deep metabarcoding approach the prokaryotic community of the
saltern of Margherita di Savoia (MdS), located on the Adriatic Sea, Apulian coast (Italy). It is the
largest and most important hypersaline habitat for the production of salt in Europe and represents a
still unexplored site of microbial biodiversity. In particular, the waters from nine ponds at increasing
salt concentrations were studied by using two distinct metabarcoding experiments, addressing
respectively the bacterial and archaeal populations. DAPI and CARD-FISH (catalyzed reporter
deposition fluorescence in situ hybridization) cell count data from the same waters also contributed to
obtain the overall representation of the microbial distribution at different salinities. The presence in
wide ranges of salinities of specific lineages, such as Natronomonas and “Candidatus Aquiluna”, is an
unexpected finding that deserves additional investigations.

2. Materials and Methods

2.1. Sampling

Water was collected from nine different ponds with increasing salinities of the MdS saltern.
Sampling was carried out on 22 June 2017, during the activity period of the saltern (April–September).
All the samples were constituted by the water collected into one-liter bottles, filled by horizontal
circular movement of the operator’s arm at about 30 cm below the water surface of each pond.
Water temperature was measured directly at the sampling site; water salinity and pH were measured
in the laboratories of the MdS saltern using a conventional refractometer and pH meter (Table 1).
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Table 1. Names and properties of collected water samples.

Pond Name Salinity
(% w/v) T (◦C) pH

Alma Dannata 4.9 24 8.55
Polmone 5.2 26 8.62

Zero 8.4 27 8.07
Fine 13.1 25 7.77

Paradiso 14.5 27 7.73
Inizio 24.1 29 7.59

Armellina 30.6 30 7.46
Cappella 34.6 30 7.27

Imperatrice 36.0 30 7.20

2.2. CARD-FISH Analyses

The abundance and the distribution of archaeal and bacterial populations inhabiting the MdS
saltern ponds were analyzed by CARD-FISH [22]. In total, 10 mL of water samples from the nine
ponds with increasing salinities were fixed for 1 h at room temperature with 2% vol/vol pre-filtered
formaldehyde and filtered through 0.22 µm (Ø25 mm) polycarbonate membranes (Sartorius, Gottingen,
Germany). Cells were further permeabilized by incubation for 1 h with lysozyme (10 mg/mL in TE
buffer, pH 8.0) followed by incubation with achromo-peptidase (5 mg/mL) for 30 min. Both steps were
performed at 37 ◦C. Intracellular peroxidase was inhibited by treatment with 10 mM HCl at room
temperature for 20 min. Following this, the filters were washed with 0.22 µm filtered MilliQ water,
dipped in 95% ethanol and air-dried. Filters were further cut into sections and cells were hybridized
with universal horseradish peroxidase (HRP)-labeled oligonucleotide probes for Bacteria (EUB338 I, II,
III probe mix) [23,24]. The presence and quantity of archaeal cells were monitored with an (HRP)-labeled
oligonucleotide probe for Archaea (Arch915) [25] (see Table S1 in Supplementary Material). For signal
amplification, tyramide-Alexa488 and tyramide-Alexa594 were used [26]. The filter sections were
counter-stained with 2 µg mL−1 of 4′,6-diamidino-2-phenylindole (DAPI) in a four-to-one ratio of
Citifluor (Citifluor Ltd., Leicester, UK) and Vectashield (Linaris GmbH, Wertheim-Bettingen, Germany).
At least 200 DAPI-stained and Alexa-positive cells were counted in a minimum of 10 fields under an
AXIOPLAN 2 Imaging microscope (Zeiss, Jena, Germany).

2.3. DNA Extraction

In total, 30 mL of water samples were pre-filtered with a system that constituted a 50 mL
syringe connected to 5 µm pore size polyethersulfone membrane filters (Stericup, Merck-Millipore,
Burlington, MA, USA). Pre-filtered water samples were subsequently filtered through 0.22 µm pore size
polyethersulfone membrane filters. Three distinct filters were produced for each pond. Filters were
stored at −20 ◦C until DNA extraction. Total DNA was extracted from filters by using the FastDNA
SPIN Kit for Soil (MP Biomedicals, CA, USA), according to the manufacturer’s instructions. A 40 sec
bead-beating step at speed 6 was applied using the FastPrep Instrument (BIO 101, Carlsbad, Canada).
DNA was eluted in 100 µL and stored at −20 ◦C until further analysis. The quality and concentration of
the DNA extracts were determined by 1% agarose gel electrophoretic analysis and by spectrophotometric
measurements at 260, 280, and 230 nm using a NanoDrop®ND-1000 Spectrophotometer (Thermo Fisher
Scientific Inc., MI, Italy), according to consolidated procedures [27]. DNA samples were stored at
−20 ◦C until further analyses.

2.4. Amplicon Library Preparation and Illumina-Based Sequencing

Amplicon libraries for Bacteria and Archaea were prepared and sequenced separately. For Bacteria,
the V5-V6 hypervariable region of the 16S rRNA gene was amplified using the primers B-V5 and
A-V6 [28,29] (Table S1).
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For Archaea, the V3-V4 hypervariable regions of the 16S rRNA gene was amplified using the
primers Arch_349F and Arch_806R [30] (Table S1).

Amounts of 5 and 10 ng of DNA extracted from each water sample were used for the preparation
of the Bacteria and Archaea amplicon libraries, respectively. The strategy used to prepare the bacterial
libraries was as already described in detail for the analysis of other microbiomes [31,32]. For the
preparation of the archaeal libraries, the annealing temperature of the first amplification was set to
54 ◦C. Purified amplicons were pooled in equimolar ratio and subjected to a 2 × 250 bp paired-end
sequencing on the Illumina MiSeq platform. To increase genetic diversity, as required by the MiSeq
platform, 30% of phage PhiX genomic DNA library was added to the mix and co-sequenced.

2.5. Bioinformatic Analysis

The obtained Illumina MiSeq reads were analyzed by using a bioinformatic procedure including
two main steps: denoising and taxonomical classification. The first one relies on the inference of
the Amplicon Sequence Variants (ASVs, i.e., an estimation of the actual amplicons) and the latter
to taxonomically annotate the inferred ASVs. In particular, raw Paired End (PE) reads were treated
with Cutadapt [33] to remove Illumina adaptors and PCR primers. Following this, the resulting
trimmed reads were denoised by applying the DADA2 (Divisive Amplicon Denoising Algorithm)
workflow [34]. The procedure also removed chimera and PhiX sequences. The obtained ASVs were
taxonomically annotated using the QIIME2 (Quantitative Insights Into Microbial Ecology) [35] plugin
fit-classifier-sklearn [36] by using the release 138 of the SILVA database [37] as the 16S rRNA reference
collection and taxonomy.

A phylogenetic tree was inferred by using the QIIME2 align-to-tree-mafft-fasttree plugin: a multiple
sequence alignment of ASVs sequences was obtained by using MAFFT (Multiple sequence Alignment
based on Fast Fourier Transform [38] and the phylogenetic tree was inferred by applying the
maximum-likelihood procedure implemented in Fasttree 2 [39]. The ASVs table was normalized by
using rarefaction [40] for diversity analysis.

The Shannon index (α diversity) was inferred on rarefied ASVs for all samples, including both
biological and technical replicates, by applying the R-package phyloseq [41] and statistically relevant
differences between the inferred measures were evaluated by using the Kruskal–Wallis test followed
by the Dunn Test for pairwise comparisons.

The principal coordinates analysis (PCoA) describing the diversity between the samples
(i.e., ß-diversity) based on the weighted and unweighted UNIFRAC [42] metrics, were inferred
by using the ape-R package [43] and evaluated by using PERMANOVA (Permutational Multivariate
Analysis Of Variance) with the vegan-R package [44].

Correlation between rarefied ASVs and salinity was measured by using Pearson’s product moment
correlation coefficient. In particular, for each ASV, the mean value has been considered per pond.

Graphical representations of the inferred taxonomy were obtained by GraPhlAn (Graphical Phylogenetic
Analysis) [45].

3. Results and Discussion

3.1. DAPI and CARD-FISH Analyses

Overall microbial abundance was measured by DAPI staining, while the presence of metabolically
active (ribosome-containing) cells was quantitatively assessed by CARD-FISH using Bacteria and
Archaea specific probes (Figure 1). Interestingly, CARD-FISH analysis revealed the presence of Archaea
throughout the salinity range, even if with a low abundance in the first three ponds. This well correlates
with the reported impossibility to produce pure archaea 16S rRNA gene amplicons from the DNA
isolated from these ponds. Relevant also was the low presence of living bacterial cells in the Alma
Dannata pond (4.9% salinity). This was probably the effect on the bacterial community of the osmotic
change following the passage from seawater (3.9% salinity). CARD-FISH pictures showing archaeal
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Haloquadratum and bacterial Salinibacter cells in the Imperatrice pond (36.0% salinity) are shown in
Figure S1.
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Figure 1. DAPI and CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization)
analyses. Cell count values and relative abundances are reported in Table S2. Salinity is reported as salt
percentage (w/v).

As a general trend, with the exception of the first pond, the DAPI and CARD-FISH analyses
indicate a possible association between microbiota composition and salinity. In particular, in the
low salinity range (up to 8.4%), Bacteria prevailed on Archaea (with an average ratio of about 10:1).
The average ratio was about 2:1 in the medium salinity range (13.1–14.5%) and 1:1 in the ponds with
the highest salinity (24.1–36.0%). Only in the last pond at 36.0% salinity, archaeal cells exceed twice the
bacterial cells.

3.2. Preparation and Sequencing of 16S rRNA Gene Metabarcoding Libraries

To analyze the prokaryotic population of the ponds, we performed a deep metabarcoding analysis
addressing the 16S rRNA gene and using specific pairs of primers targeting the V5-V6 hypervariable
regions for Bacteria [28,32] and the V3-V4 hypervariable regions for Archaea [30]. DNA was purified
from microbes collected on 0.22 micron filters after filtration of 30 mL of water from the different ponds
and subjected to PCR amplifications (not shown). Three distinct samples were used for each pond.
Bacterial amplicons were obtained using 5 ng of DNA. Archaeal amplicons could not be obtained from
the DNA purified from the waters at the lowest saline concentrations (4.9, 5.2 and 8.4%) using up
to 10 ng of DNA. Using higher amounts of DNA (20 ng), amplicons were not yet obtained from the
DNA of the first two ponds and non-specific amplicons were produced from the 8.4% salinity pond.
Therefore, archaeal amplicon libraries were prepared only from the six ponds with salinity from 13.1 to
36.0%, using 10 ng of DNA.

Amplicon libraries from each pond were sequenced by a 2 × 250 bp paired-end approach on an
Illumina MiSeq platform. Bacterial amplicons produced about 475,287 PE reads in average per sample
(SD 103,916). About 98% of them passed the trimming of adaptors and PCR primers step. For archaeal
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amplicons, about 168,804 PE reads were obtained on average per sample (SD 32,909), with 93% of
them passing the trimming of adaptors and PCR primers step. The forty-five distinct sequencing raw
data (corresponding to nine ponds in triplicate for bacterial amplicons and six pond in triplicate for
archaeal amplicons) are available in the SRA (Short Read Archive) repository (PRJNA408245).

The denoising step allowed inferring of the ASVs (amplicon sequence variant) and their absolute
counts. The subsequent removal of chimera and contaminant sequences retained about 62% of the
bacterial ASVs and about 66% of archaeal ASVs. ASVs were finally filtered to remove very low
abundant ASVs (relative abundance lower than 10−5) and unspecific ones (archaeal sequences in
bacterial amplicons and vice versa). This operation allowed us to reduce ASVs to 1111 for Bacteria and
563 for Archaea. By using the filtered ASVs, rarefaction curves were obtained for Bacteria and Archaea
(Figure S2) and, according to them, rarefaction thresholds were set to 125,000 and 70,000, respectively.
By using these thresholds, we were able to properly sample the observed biodiversity and retain all
the samples.

The alpha diversity was measured by using the Shannon Index and plotted as a dot-plot
(Figure 2). The distribution of Bacteria showed an increase in Shannon values in the first three ponds
(salinity ranging between 4.9 to 8.4%) and a continuous decrease from intermediate to high salinity
values, indicating a negative influence of salinity on bacteria species evenness and richness. The high
value observed for the pond with 8.4% salinity was possibly due to specific and currently unknown
environmental and chemical-physical conditions, allowing a greater bacterial diversity (see also the
taxonomic profiles). Archaea showed an opposite behavior, with an increase in the Shannon values from
low to high salinity ponds. Statistically significant differences were evaluated by the Kruskal–Wallis
test (p = 0 and 0.01 for Bacteria and Archaea, respectively) followed by the Dunn Test for pairwise
comparisons (Table S3). In particular, according to the Shannon index distribution in Bacteria, the alpha
diversity in Zero pond (the highest observed value) was statistically different compared to Alma
Dannata and high salinity ponds (namely Inizio, Armellina, Cappella and Imperatrice). In Archaea,
we observed statistically significant differences among the Fine pond (the lowest observed) and high
salinity ponds.
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Beta diversity was measured as weighted UniFrac and plotted as PCoA (Principal Coordinates
analysis) (Figure 3). For both Bacteria and Archaea, it was possible to observe a clustering of
samples on the first component (59.25 and 78.49%, respectively) that may be explained by salinity
concentrations. PERMANOVA analysis confirmed these observations for both the measures. In particular,
salinity explained about 42% (p-value = 0.001) and 69% (p-value = 0.001) of data variability in weighted
UniFrac data for Bacteria and Archaea, respectively.Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 21 
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Pearson’s product moment correlation coefficient (PC) was used to measure the correlation
between ASVs and salinity (Table S4). For Bacteria, 45 ASVs resulted correlated with salinity and,
in particular, 33 positively (PC from 0.67 to 0.97) and 12 negatively (PC from −0.67 to −0.80). In total,
20 out of the 33 positively correlated ASVs were taxonomically classified as Salinibacter. For Archaea,
32 ASVs resulted positively correlated with salinity (PC from 0.81 to 0.97) and 36 ASVs were negatively
correlated (PC from −0.82 to −0.93). A total of 31 out of the 32 positively correlated ASVs belonged
to the order Halobacteriales. The class Woesearchaeia was the most represented in the negatively
correlated ASVs.

3.3. Taxonomic Profiles

The taxonomic distributions of Bacteria and Archaea are shown in Figure 4 for the phylum rank
and in Figure 5 for the genus rank. All values were the average of the data from the three replicas.

Among Bacteria, Proteobacteria was the most abundant phylum in the evaporation ponds (up to
14.5% salinity). It reached percentages above 50% in waters at low salinity (4.9–8.4%), and then,
it showed a progressive lowering, until disappearing at the highest salt concentrations (34.6–36.0%).
The phylum Actinobacteria reached its maximum of relative abundance (31.35%) at the intermediate
salinity of 14.5%. It dropped to 1.85% in the next pond (24.1% salinity) and it was negligible at higher
salinities. Differently from these phyla, Bacteroidota abundance showed a steady increase with salinity,
being the most represented phylum starting from 24.1% of salt concentration and reaching percentages
above 95% in the three final ponds (30.6–36.0% salinity).

As for Archaea, our analysis identified a single predominant phylum (Halobacterota) throughout the
tested waters (13.1–36.0% salinity). It is interesting to note the presence in these waters of the Nanoarchaeota
and Nanohaloarchaeota phyla, known as components of the DPANN (Diapherotrites, Parvarchaeota,
Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota) superphylum [46]. Taken together, they reach a
maximum of about 11% in the pond, with a salinity of 14.5%. DPANN lineages have generally been
described in a variety of habitats worldwide including hypersaline environments and are characterized
by smaller sizes (~ 0.6 vs. 2–4 10−6 m) and smaller genomes (< 1.0 vs. 3–4 Mb) than other archaeal
cells [46,47].

At the genus level for Bacteria, the ponds at low and intermediate salinity of the evaporation zone
(4.9–14.5%) showed major richness, which decreased with the increase in salinity. Additionally, in this
case, the large salinity change from Paradiso (14.5% salinity) to Inizio (24.1% salinity) ponds had a
remarkable influence on bacterial composition, reducing the number of genera from 16 to 7 (Figure 5).

Concerning the abundance of specific genera, Salinibacter was the genus showing the highest
prevalence: 88% in the pond with 36.0% salinity. Other highly prevailing genera were “Candidatus
Aquiluna” (26% of abundance at 14.5% salinity), Psychroflexus (18% of abundance at 13.1% salinity) and
an unclassified genus of the Chitinophagales order (16% of abundance at 30.6% salinity). There were
no other genera above 15% of abundance in the examined waters. Salinibacter (phylum Bacteroidota)
is a known genus of solar salterns, diffused worldwide. Members of this genus are characterized by
sharing many features with archaeal cells of the family Halobacteriaceae that live in the same habitat [48].
The Psychroflexus (phylum Bacteroidota) genus has also been described in saline environments, including
marine solar salterns and graduation towers [49,50]. Little is known about the “Candidatus Aquiluna”
genus (phylum Actinobacteria). The first species of this genus were isolated from four different
freshwater habitats located in China, France, United Kingdom and Tanzania (the last described as a
tropical site) [51]. It is a selenoid-shaped photoheterotroph organism, consisting of actinorhodopsin
molecules for light energy transduction. After the first isolation, “Candidatus Aquiluna” members were
identified in Arctic sea waters, and brackish ice brine [52–55] and Indian brackish coastal waters [56].
Notably, “Candidatus Aquiluna” was identified as the dominant phylotype in brackish ice brine,
which has a lower salinity than immediate sub-ice seawater [55]. The presence of this genus in saltern
waters has not been reported so far. “Candidatus Aquiluna”, Psychroflexus and Salinibacter were also the
genera with the greatest ability to live at different concentrations of salts, being present in the salinity
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ranges of 4.9–24.1% (“Candidatus Aquiluna”), 8.4–24.1% (Psychroflexus), and 24.1–36.0% (Salinibacter).
On the contrary, several genera (fourteen out of the forty reported in Figure 5) showed a limited
capacity to adapt to different salt concentrations, being present only in single ponds of low salinity
(4.9–8.4%) and with generally low abundances (1–4%).
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Figure 4. Bar charts of Bacteria and Archaea phyla identified at different salinities in MdS (Margherita di
Savoia) saltern. Groups with relative abundances < 1.0% were joined as ‘Others’. Salinity is reported as
salt percentage (w/v). * also known as Bacteroidetes; ** also known as Euryarchaeota.
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Differently from Bacteria, the number of archaeal genera increased with salinity, reaching a
maximum of eleven genera in the Inizio and Armellina ponds (24.1 and 30.6% salinity, respectively).
Three genera (Haloquadratum, Natronomonas and Halorubrum) were present throughout the investigated
ponds, with the first two reaching the highest relative abundances (Haloquadratum about 63% in the
pond with 36.0% salinity; Natronomonas about 49% in the 13.1% salinity pond). The high presence of
the Haloquadratum genus in crystallizer waters makes the archaeal profile of MdS saltern different from
those described for the other two marine salterns located in the Adriatic sea (Secovlje in Slovenia and
Ston in Croatia), in which the genus was not detected [12]. The square-shaped Haloquadratum cells had
already been identified in the MdS saltern by phase-contrast microscopy [57].
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Figure 5. Bar charts of Bacteria and Archaea genera identified at different salinities in MdS saltern.
Groups with relative abundances <1.0% were joined as ‘Others’. Salinity is reported as salt percentage
(w/v). ASVs which could not be resolved at the genus level were reported with the notation g_uncultured
followed by the name of the closest known parental rank. A list of the identified genera and their
relative abundances is reported in Table S5.

The genus Halorubrum was first described about 25 years ago. Species of this genus are quite common
in hypersaline habitats, including salterns, saline lakes and soils and salted foods [58]. It includes rods or
pleomorphic cells forming red-orange pigmented colonies. It is the genus with the largest number of
species among all genera of Halobacteria, although recent studies based on genome analysis highlighted
the possibility that different species should actually be considered as single ones [59].

Natronomonas is a halophilic genus, deeply studied for possible biotechnological applications,
for which only four species have been described so far [60]. The high abundance of this genus in waters
of the saltern of MdS with low salinity (13.1%) differs from the optimal growth conditions currently
reported (including salt concentrations around 25%) and leads to the hypothesis of the presence of
new species.
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The other identified genera showed a lower diffusion throughout the saltern and, with the
exception of the unresolved genus ‘g_uncultured Haloferacaceae’ (with a relative abundance of about
42% in the 13.1% salinity pond), were generally in the 1–10% range.

The influence of salinity on microbiota composition was also clearly shown by heat maps
(Figure S3). For both Bacteria and Archaea, microbial diversities seemed to be grouped according to
ranges of salinities: low salinity (4.9–8.4% salinity), intermediate salinity (13.1–14.5% salinity), and high
salinity (24.1–36.0% salinity).

3.4. Combined Prokaryotic Populations

The availability of distinct metabarcoding data for Bacteria and Archaea and the description of
microbial populations as obtained by DAPI and CARD-FISH analyses also allowed us to establish
a bona fide profile of prokaryotic taxonomies for the waters at different salinity of the saltern of MdS
(Figure 6). The evaluation was, however, only possible for the last six ponds (13.1–36.0% salinity),
for which metabarcoding data were available for both Archaea and Bacteria. In practice, the relative
abundance data for each of the two domains (provided by the metabarcoding analysis) were combined
with each other, taking into account their relative abundances as obtained by the CARD-FISH analysis.
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Figure 6. Bar charts of taxonomic classification of Bacteria and Archaea identified in MdS saltern. (A) phyla;
(B) genera. Relative abundances (RAi) were obtained applying the formula RAi = RAi,m*RAD,cf/100,
where RAi,m is the relative value obtained by metabarcoding analysis and RAD,cf is the relative abundance
of the parental domain obtained by CARD-FISH analysis. Groups with relative abundances < 1.0% were
joined as ‘Others_B’ and ‘Others_A for Bacteria and Archaea, respectively. A list of all the identified genera
and their relative abundances is reported in Table S6.

These data show that although the bacterial and archaeal diversities have an opposite
correlation with salinity (the number of phyla and genera decreases for Bacteria, and increases
for Archaea), the relative abundances of the two domains in each pond do not follow the same trend.
Indeed, while Archaea was the prevailing domain in the ponds with salinities of 24.1 and 36.0%,
Bacteria prevailed at salinities of 13.1, 14.5, 30.6 and 34.6%. The alternating prevalence between the
two domains was mostly the effect of the high abundance in highly salted ponds of the Salinibacter
genus. It was in absolute, the most abundant prokaryotic genus in the analyzed waters of all the
saltern, reaching the highest count of 1.43·105 cells/mL in the Armellina pond (30.6% salinity). Even in
the most salted pond (Imperatrice, 36.0% salinity), the number of Salinibacter cells is comparable with
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that of the most represented Archaea genus (Haloquadratum) (4.14·104 vs. 6.10·104 cells/mL). These data
suggest that the assumption that extreme hypersaline waters are dominated by Archaea [33] cannot be
considered of general validity. These results also indicate that at the genus level, although salinity has
some influence on microbial diversity, it does not exert a negative effect on cell viability.

A graphical representation of the taxonomic tree of the most abundant lineages (i.e., ≥1%) in the
ponds of the MdS saltern and their relative abundances was obtained by the GraPhlAn tool [45] and is
reported in Figure 7. Abundances of single lineages in specific ponds were shown according to a 0 to
1 scale of transparency and were reduced to inward pointing arrows when the transparency value
was below 0.1. These graphs take into account both the CARD-FISH and the metabarcode results and
summarize the prokaryotic profiles of the six ponds with salinity from 13.1 to 36.0%.

At the phylum level, only the Bacteroidota and Halobacterota phyla are present with relevant
abundances (full colored sections) in all the ponds. Interestingly, the two phyla show alternating
prevalence in the different ponds (see color intensities), which can be explained on the basis of the
presence of specific genera (see below). Other phyla with relevant abundances are Actinobacteriota, in the
two evaporation ponds Fine (salinity 13.1%) and Paradiso (salinity 14.5%), and Proteobacteria in the
two evaporation ponds and in the first crystallizer pond Inizio (salinity 24.1%). The Nanohaloarchaeota
phylum is present in the six ponds, but with relatively low abundances.

The genera graph shows that Salinibacter (Bacteroidota) and Haloquadratum (Halobacterota) are the
two prevailing genera in the four crystallizer ponds (salinity 24.1–36.0%) and explains how their
relative abundances influence the abundance of the parental phyla. Indeed, in the Imperatrice pond
(salinity 36.0%, outermost ring), it is possible to observe a higher abundance of Haloquadratum than
Salinibacter. Conversely, in the Cappella and Armellina ponds (salinity 34.6 and 30.6%, respectively),
Salinibacter prevails over Haloquadratum. In the Inizio pond (salinity 24.1%), Haloquadratum is again
more abundant than Salinibacter. A minor contribution to the phyla abundances in these ponds is also
given by an unclassified genus of the Chitinophagales order (Bacteroidota). In the two evaporation ponds,
other genera become relevant, such as “Candidatus Aquiluna”, Psychroflexus, Spiribacter and Halomonas
for Bacteria and Natronomonas for Archaea.

Although the dynamic of microbiota composition in the MdS saltern showed common features with
other salterns, it is difficult to make quantitative comparisons. This is mainly due to the different investigative
approaches. For example, in the case of other salterns located on the Adriatic Sea (Secovlje in Slovenia and
Ston in Croatia), the identification of prokaryote profiles was carried out on the basis of the analysis of 16S
rRNA gene amplicon libraries developed in Escherichia coli [12]. This different approach may explain the
great difference observed for the Halorubrum genus, found with a maximum abundance of 14.47% in the
MdS saltern, and with abundances of 66 and 87% in Secovlje and Ston salterns, respectively.

The microbiota compositions of the MdS saltern also show quantitative differences compared to those
of the saltern of Santa Pola (Spain), the only saltern in the Mediterranean area for which an NGS-based
analysis of prokaryotes was performed [61,62]. The Santa Pola multipond solar saltern is one of the most
studied hypersaline environments, located about 20 km south from Alicante on the Spanish Mediterranean
Sea coast. Ponds are at increasing saline concentrations from 13% up to 37%. Deep shotgun sequencing of
DNA extracted from the different ponds was carried out by the pyrosequencing approach. A taxonomic
profile of prokaryotes was then established by analyzing the sequencing data for the content of the 16S rRNA
genes. The microbiota composition of these salterns is quantitatively different from that of MdS saltern,
even at the high rank levels of domain and phylum. Indeed, while in Santa Pola saltern, Archaea relative
abundance is around 27% in the intermediate 13% salinity pond, and reaches values around 90% in the
crystallizer pond at 33.37% of salinity, in MdS saltern, it is 35.77% in the 13.1% pond and reaches 43.87% in
the crystallizer pond at 34.6% salinity (it must be underlined that at the domain level, the percentages for
the MdS saltern were derived solely from the CARD-FISH data). At the phylum level, the most striking
difference is that concerning Bacteroidota which, even if always present, show different values and trends in
the two salterns. In Santa Pola saltern, the relative abundance of this phylum reaches a maximum of 15% in
ponds with intermediate salinity (19%) and has a moderate decrease to 9–10% in crystallizer ponds. In MdS
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ponds, Bacteroidota is always more abundant than in Santa Pola counterparts. Its relative abundance goes
from 15–18% in evaporation ponds (13.1 and 14.5% salinity) to more than 50% in crystallizer ponds of 30.6
and 43.6% salinity. In both the salterns, even if at different relative abundances, the other most represented
phyla of Bacteria, Proteobacteria and Actinobacteria, show a similar decreasing trend as salinity increases.
Archaea are almost exclusively represented by the Halobacterota phylum in both the salterns.
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The genera with the highest abundance in the high-salinity ponds of MdS are Salinibacter (48.76% at
34.6% salinity) and Haloquadratum (42.64% at 36.0% salinity), differing from what observed for Santa
Pola, where the most abundant genus in crystallizer ponds is Haloquadratum (with abundances between
29.5 and 58.0%), and Salinibacter is only in the 4.7–9.1% range. Halorubrum in Santa Pola reaches an
abundance of 23.1% in the crystallizer pond at 33% salinity. In MdS saltern it reaches a maximum of
6.26% of abundance at 30.5% salinity.

Whether these differences are due to the different geographical and environmental conditions
of the two salterns and/or to the different analytical approach (shotgun sequencing vs. amplicon
sequencing) cannot be established with available data. More uniform analysis will be necessary to
clarify this point.

4. Conclusions

A DNA metabarcoding analysis of prokaryotic populations in the waters of the saltern of MdS
was carried out by using distinct pairs of primers for the amplification of bacterial and archaeal 16S
rRNA gene regions. CARD-FISH cell count corroborated metabarcoding analysis and allowed us to
obtain a combined profile of prokaryotic taxonomies at different salinities. The analysis showed some
expected changes in the bacterial and archaeal composition along the investigated range of salinity
(4.9–36.0%), but also revealed some specific features which add new details on not yet exhaustively
studied microbes. This was the case of the bacterial genus “Candidatus Aquiluna”, known as typical of
fresh and sea waters, which was detected with a relative abundance of about 21% at 14.5% salinity.
Of interest also was the finding of the archaeal genus Natronomonas with an abundance of about 18% at
relatively low salinity value (13.1%), since the few cultivated species are grown at a salinity of 25%.
Another interesting feature of the MdS saltern was related to the distribution of Archaea in a wide
range of salinities, as demonstrated by CARD-FISH analysis. Archaeal cells were detected starting
from waters at low salinity (22.5% of relative abundance within prokaryotes in the Alma Dannata
pond with salinity of 4.9%) up to the crystallizer waters, where they reached abundances ranging
between 43–67%. It should be noted, however, that in crystallizer waters, bacterial and archaeal cells
showed abundances with alternating prevalence. This largely depends on the high number of cells of
the bacterial Salinibacter genus detected at high salinities.

A comparison with other solar salterns of the same area (the Adriatic and the Mediterranean
Seas) showed distributions of prokaryotes only partially similar to those of the MdS saltern.
Nevertheless, establishing common traits and differences of bacterial composition in the marine
solar salterns spread around the world, or located in a specific area as the Mediterranean Sea, can be of
great biological and ecological interest. NGS techniques are undoubtedly well suited to address this
objective, once common investigative approaches will be adopted.
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