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Abstract

Introduction: Patients with predementia Alzheimer’s disease (AD) and at-risk subjects

are targets for promising disease-modifying treatments, and improved polygenic risk

scores (PRSs) could improve early-stage case selection.

Methods: Phenotype-informed PRSs were developed by selecting AD-associated

variants conditional on relevant inflammatory or cardiovascular traits. The primary

outcome was longitudinal changes in measures of AD pathology, namely development

of pathological amyloid deposition,medial temporal lobe atrophy, and cognitivedecline

in a prospective cohort study including 394 adults without AD dementia.

Results: High-risk groups defined by phenotype-informed AD PRSs had significantly

steeper volume decline in medial temporal cortices, and the high-risk group defined

by the cardiovascular-informed AD PRS had significantly increased hazard ratio of

pathological amyloid deposition, compared to low-risk groups.

Discussion: AD PRSs informed by inflammatory disorders or cardiovascular risk fac-

tors and diseases are associated with development of AD pathology markers and may

improve identification of subjects at risk for progression of AD.
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1 BACKGROUND

Alzheimer’s disease (AD) is the most prevalent cause of demen-

tia, imposing huge burdens on society, patients, and carers. Recent

evidence has shown that AD-associated pathological changes occur

decades before onset of clinical symptoms,1 leading research to focus

on identification of at-risk subjects and predementia AD patients for

secondary prevention. As disease-modifying drugs become available,

this is increasingly important.
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Risk for late-onset AD is driven by a combination of environmental

and genetic factors. Late-onset AD is a highly heritable polygenetic

disorder,2 with apolipoprotein E (APOE) ε4 as the strongest risk factor.

While genetic evidence indicates that amyloidbeta (Aβ) dysmetabolism

causes early-onset AD, there is pathoanatomical,3,4 epidemiological,5,6

and experimental7,8 evidence for the involvement of processes

related to innate immune response and cholesterol metabolism9,10

in late-onset AD, although the underlying mechanisms have not yet

been determined. Aβ clearance decreases with age and could, in

combination with genetic liabilities for compromised innate immune

or vascular clearance capacity, contribute to Aβ dysmetabolism and
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disease inception.11 Genetic association analyses based on genome-

wide association studies (GWAS) have provided evidence for

pleiotropy between AD, inflammatory (INFL),12 and cardiovascu-

lar traits (CVD),13 lending support to previous results obtained using

other genetic approaches.14

Acknowledging inflammation and cardiovascular risk as two major

mechanisms leading toward progression toAD,we developedADpoly-

genic risk scores (PRSs) informed by inflammatory disorders (PRSINFL)

and cardiovascular disease risk factors and disease (PRSCVD), respec-

tively, expecting such scores to be associated with development of

pathological amyloid deposition, cerebral atrophy in AD predilection

sites, and cognitive decline. In addition, we sought to reveal biologi-

cal pathways and mechanisms involved in AD development based on

phenotype-specific genetic profiles.

2 METHODS

2.1 Study population

APGeM (pre-clinical genotype–phenotype predictors of Alzheimer’s

disease and other dementias) is a European multi-center network of

clinical sites, collecting cases from memory clinics based on standard-

ized examination of cognitive, functional, and behavioral measures.

PRSs were computed for subjects in the APGeM cohort. All APGeM

subjects with the exception of those in the prospective cohort Demen-

tiaDisease Initiation (DDI)15 served as an independent cohort to select

the optimal P-value threshold for the standard PRS or false discovery

rate (FDR) thresholds for the phenotype-informed PRSs. For details on

the APGeM cohort, seeMethods in supporting information.

Evaluation of the PRSs was done in DDI, a Norwegian multi-center

network comprising 394 study participants with follow-up ranging

from 0 to 5.4 years (median 2.1 years). The criteria for inclusion were

age between 40 and 80 years at baseline and Norwegian, Swedish, or

Danish as native language.

All participants underwent cognitive testing, cerebral magnetic res-

onance imaging (MRI), blood screening, and standard lumbar puncture

as part of the clinical assessment. Based on the cognitive testing,

the participants with normal performance on standardized tests, but

with reported cognitive symptoms, were classified as having subjec-

tive cognitive decline (SCD), as defined in the SCD working group

framework.16 TheNational InstituteonAging–Alzheimer’sAssociation

(NIA/AA) criteria for mild cognitive impairment (MCI) were used for

participants with lower performance than expected in one or more

cognitive domains but preserving independence in functional abil-

ity and not fulfilling the criteria of dementia, as defined in NIA-AA

guidelines.17,18 The cutoff values for SCD versus MCI were results

less than 1.5 standard deviation below normative mean on either

CERAD (Consortium to Establish a Registry for Alzheimer’s Disease)

word list (delayed recall),19 VOSP (VisualObject and SpacePerception)

silhouettes,20 COWAT (Controlled OralWord Association Test),21 and

TMT (Trail Making Test) part B.21 The same criteria were used to clas-

sify participants with no self-reported symptoms of cognitive decline

RESEARCH INCONTEXT

1. Systematic Review: We reviewed literature by conduct-

ing a search in PubMed andGoogle Scholar and reviewing

references in relevant publications.

2. Interpretation: Phenotype-informed polygenic risk

scores (PRSs) were developed by selecting Alzheimer’s

disease (AD)-associated variants conditional on relevant

inflammatory or cardiovascular traits, and these were

associated with development of AD pathology measures.

We here show that including biological information can

improve the predictive ability of the PRSs and potentially

improve identification of subjects at risk for progression

of AD.

3. Future Directions: It is vital to develop tools for bet-

ter detection of AD risk. To be clinically useful, a PRS

must identify at-risk subjects in samples of sizes typically

seen in memory clinics. This article demonstrates that

adding biological information to theADPRSs through this

novel method is robust enough to add prediction value in

such a sample. This newmethodologymight be important

for better AD risk detection for primary and secondary

prevention.

as cognitively normal (NC) or abnormal controls. The participants are

followed until development of dementia.

2.2 Polygenic risk scores

A standard P-value–based AD PRS was computed following the

method described by the International Schizophrenia Consortium22

using a recent ADGWAS.2

The phenotype-informed AD PRSs were computed in the same

way but selecting variants on the basis of their association with AD

conditional on CVD or INFL traits. Evidence for this comes in the

form of conditional false discovery rate (condFDR)23 as a function

of AD association with respective selections of 11 relevant INFL dis-

eases (ulcerative colitis,24 Crohn’s disease,24 rheumatoid arthritis,25

celiac disease,26 psoriasis,27 multiple sclerosis,28 primary scleros-

ing cholangitis,29 systemic lupus erythematosus,30 diabetes type 1,31

vitiligo,32 and ankylosing spondylitis33) or 11 relevant CVD traits (sys-

tolic blood pressure,34 diastolic blood pressure,34 coronary artery

disease,35 type 2 diabetes,36 stroke,37 body mass index,38 waist-

hip ratio,39 high density lipids,40 low density lipids,40 triglycerides,40

and total cholesterol).40 Genotyping and bioinformatic processing are

described in supporting information Methods, together with sum-

mary data for all GWASs reported in Tables S1 and S2 in supporting

information.
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2.3 AD markers

2.3.1 Measures of amyloid deposition

Lumbar punctures were performed similarly on six sites following a

detailed standard operating procedure from an EU-funded multicen-

ter study described previously.41 For more details, see supporting

informationMethods.

2.3.2 MRI volumes of medial temporal cortices

Volumetric segmentation was performed with the Automatic Segmen-

tation of Hippocampal Subfields (ASHS) software using the ASHS-

PMC-T1 atlas, which is free and publicly available (http://www.nitrc.

org/).42 The reference paper for ASHS was based on a cohort aged 54

to 88 years old.42 Of the 394 participants included in the baselineMRI

analyses, 40 (10.2%) were below 54 years of age. However, all segmen-

tationswere visually assessed.Multi-scanner effects were harmonized

using the Longitudinal ComBat method,43 also including age at base-

line, sex, intracranial volume, polygenic score, and number of APOE

ε4 alleles. As such, harmonization was performed three times, one for

each of the polygenic scores. We computed medial temporal cortices

(MTC) volumes by summing the harmonized volumes for each PRS of

the entorhinal cortex and the early Braak regions Brodmann areas 35

and 36, averaged across both hemispheres. A summary of scanners and

associated scanner parameters for the MRI are listed in Table S3 in

supporting information.

2.3.3 Cognitive test results

A cognitive composite score was computed by taking the mean of the

t-scores from VOSP silhouettes,20 CERADword list (delayed recall),19

COWAT,21 and TMT B.21 Based on these norms, T-scores were com-

puted as standardized z scores multiplied by 10 and shifted to a mean

of 50 (T = z*10+50). As VOSP was not part of the test battery for

staging initially, 8.7% of the study participants did not undergo the

VOSP silhouettes test at baseline assessment. The composite scores

for these participants only included the mean t-scores from CERAD

recall, COWAT, and TMTB.Weperformed an independent t-test of dif-

ferences between the mean of the cognitive composite score used in

our analyses and themean of a composite score omitting VOSP silhou-

ettes for all participants at baseline. Therewasno significant difference

(P= .715).

2.4 Statistical analyses

For a description of the procedure for the selection of optimal P-

value and FDR thresholds and biostatistics, see supporting information

Methods.

2.4.1 Cross-sectional analyses

To investigate the association between PRSs and the AD markers,

we fitted cross-sectional linear regression models of baseline cere-

brospinal fluid (CSF) Aβ42 level, MTC volume, and cognitive com-

posite score, for each of the PRSs. All continuous variables were

z-transformed to produce partially standardized coefficients. The anal-

yses were performed in R version 4.0.3. For more details on the

cross-sectional analyses including covariates, cut-offs, and R packages,

see supporting informationMethods.

2.4.2 Longitudinal analyses

We identified subgroups of the DDI cohort with high and low genetic

risk based on each PRS, defined by PRS values one standard devia-

tion or more above and below the mean in the whole DDI cohort,

respectively. To test our main hypothesis, we performed longitudinal

analyses comparing high- and low-risk groups for each of the ADmark-

ers: amyloid status, MTC volume, and cognitive composite score to

assess differences in progression. Those neither defined as high- nor

low-risk groups were not included in the longitudinal analyses.

CSF Aβ42 is assumed to have non-linear development with time,44

and we therefore performed Cox proportional hazards regression to

assess differences in hazard rates of amyloid positivity between high-

and low-risk groups.

RegardingMTC volume and cognitive composite score, we assessed

the difference in development with time between high- and low-risk

groups fitting linearmixedmodelswith eitherMTCvolumeor cognitive

composite score as dependent variable, categorical risk group vari-

able, years since baseline, and the interaction between risk group and

time as fixed independent variables and age at baseline, sex, and APOE

ε4 carrier status were included as covariates. An additional covariate

was intracranial volume in the analyses of MTC volume, and years of

education in the analysis of cognitive composite T-score.

We evaluated models with random intercepts (subject) or also ran-

dom slopes (years since baseline) using log-likelihood ratio tests. For

all models, random intercept showed the best fit, except for the model

withMTC volume as dependent variable and high- and low-risk groups

based on PRSCVD as independent variable. Random intercept only was

therefore chosen for all models, called Model 1. In Model 2, we added

the interaction term between APOE ε4 carrier status and time. All

continuous variables except the time variable were z-transformed to

produce partially standardized coefficients.

The analyses were performed in R version 4.0.3. Formore details on

the longitudinal analyses, see supporting informationMethods.

2.5 Genomic loci definition and functional
annotation

We submitted the results from the condFDR analyses to Functional

Mapping and Annotation of GWAS (FUMA) v1.3.645 to annotate the

http://www.nitrc.org/
http://www.nitrc.org/
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genomic loci with condFDR value < 0.01. FUMA was also deployed to

annotate lead single nucleotide polymorphisms (SNPs) based on func-

tional categories. We tested for overrepresentation of mapped genes

in the phenotype-informed condFDR at condFDR below 0.01 within

pathways derived from 12 public resources, collated by Consensus-

PathDB and corrected for multiple testing using the q-value.46 For

further details, see Vethods.

2.6 Ethics

The regional medical research ethics committee approved the study.

Participants gave their written informed consent before taking part

in the study. The study was conducted in line with the guidelines pro-

vided by the Declaration of Helsinki of 1964, 2013 revision, and the

Norwegian Health and Research Act.

3 RESULTS

Demographics of the study population are presented in Table 1.

3.1 Cross-sectional analyses

3.1.1 CSF Aβ42 levels

We found significant negative associations between baseline CSF

Aβ42 levels and the PRSINFL (β = –0.116, 95% confidence inter-

val [CI] = [–0.206, –0.026], P = .012, adjusted R2 for the entire

model = 0.239), the PRSCVD (β = –0.113, 95% CI = [–0.204, –0.022],

P= .015, adjusted R2 for the entiremodel= 0.238) and the standard P-

value-based AD PRS (β = –0.104, 95% CI = [–0.194, –0.014], P = .024,

adjusted R2 for the entire model = 0.237), meaning that higher PRS

are associated with more pathological Aβ42 levels (see scatter plots in
Figure 1A–C).

3.1.2 MTC volumes

We found a significant negative association of baseline MTC volume

with the PRSINFL (β = –0.084, 95% CI = [–0.162, –0.006], P = .034,

adjusted R2 for the entire model = 0.452), but not with the PRSCVD

(β = –0.042, 95% CI = [–0.124, –0.040], P = .316, adjusted R2 for the

entire model = 0.446) or the standard P-value-based AD PRS (β = –

0.066, 95% CI = [–0.145, 0.013], P = .103, adjusted R2 for the entire

model= 0.448; see scatter plots in Figure 1D–F).

3.1.3 Cognitive composite T-scores

We found significant negative association of cognitive composite T-

scores with both the PRSINFL (β = –0.114, 95% CI = [–0.203, –0.024],

P = .013, adjusted R2 for the entire model = 0.098) and the PRSCVD

(β = –0.092, 95% CI = [–0.182, –0.003], P = .043, adjusted R2 for

the entire model = 0.092), but only a trend association with the stan-

dard P-value-based AD PRS (β = –0.091, 95% CI = [–0.183, 0.001],

P = .053, adjusted R2 for the entire model = 0.092), see scatter plots

in Figure 1G–H.

3.2 Longitudinal analyses

3.2.1 Amyloid positivity

We found a significantly increased hazard ratio of 2.836 (95%

CI = [1.043, 7.710] and P = .041) comparing high- and low-risk groups

defined by the PRSCVD. For high- versus low-risk groups defined by

the PRSINFL and the standard P-value–based AD PRS the hazard ratios

were 2.130 (95% CI = [0.810, 5.599] and P = .125) and 1.612 (95%

CI= 0.610, 4.260] and P= .335), respectively. Survival plots are shown

in Figure 2A–C.

3.2.2 MTC volume

Using Model 1, we found a significant interaction between the risk

group variables and time for both the PRSINFL (P = .030) and the

PRSCVD (P = .008), meaning that the MTC volume decreased signifi-

cantly faster in the high-risk groups than in the low-risk groups. There

was no significant difference with time between the standard AD PRS

groups (P = .135). See Table 2 and Figure 2D–F. For the analysis with

PRSCVD high- and low-risk groups, it was a significant log-likelihood

test when we compared a model without and with random slopes

(P = .009), and using random slopes in the model, there was a signifi-

cant interaction between the risk group variable and time (β= –0.072,

95%CI= [–0.135, –0.009], P= .029).

UsingModel 2, the interaction between APOE ε4 positivity and time

did not meet the pre-specified requirement for significance, although

P-values were at subthreshold levels for PRSINFL and for PRSCVD

(P = .896 for standard AD PRS, P = .056 for PRSINFL, and P = .085 for

PRSCVD). It was a significant interaction between the risk group vari-

ables and time also with Model 2 for both the PRSINFL (P = .043) and

the PRSCVD (P= .021), see Table 2.

3.2.3 Cognitive composite score

We found no significant interaction between the risk group variables

and time for standard P-value-based PRS, PRSINFL, or PRSCVD. As there

was no significant time interaction between APOE ε4 positivity and

MTC volume (for standard AD PRS P = .711, for PRSINFL P = .839, and

for PRSCVD P= .839,model 2, Table 2), reported results are fromModel

1 (see Table 2), with similar coefficients and P-values for both models.

Adjusted fixed effects plots of group–time interaction from Model 1

are shown in Figure 2G-I.
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TABLE 1 Demographic data for the total DDI cohort and the low- and high-risk groups

Total AD PRS PRSINFL PRSCVD

Low-risk High-risk Low-risk High-risk Low-risk High-risk

Group size

Baseline n= 394 n= 59 n= 67 n= 62 n= 57 n= 64 n= 56

2. assessment n= 293 n= 44 n= 43 n= 46 n= 38 n= 48 n= 35

3. assessment n= 82 n= 13 n= 9 n= 12 n= 6 n= 15 n= 9

Years of follow-up:

median (IQR)

2.13 (2.76) 2.17 (2.57) 2.12 (2.56) 2.11 (2.56) 2.12 (2.50) 2.11 (2.67) 2.13 (3.06)

Age at baseline: mean

(st.dev)

63.9 (9.34) 63.5 (9.21) 63.8 (9.26) 61.9 (8.63) 65.5 (8.84)* 63.3 (9.89) 64.4 (8.70)

Sex: n (% female) n= 233 (59.1%) n= 30 (50.8%) n= 38 (56.7%) n= 37 (59.7%) n= 32 (56.1%) n= 38 (59.4%) n= 29 (51.8%)

MMSE at baseline:

median (IQR)

29.0 (2.0) 29.0 (1.0) 29.0 (2.0) 29.0 (2.0) 29.0 (2.0) 29.0 (1.0) 29.0 (2.0)

FraminghamRisk Score

at baseline: mean (st.

dev)

3.83 (3.41) 4.60 (3.45) 3.16 (3.68) 4.33 (3.57) 3.81 (3.51) 4.13 (3.39) 3.81 (3.94)

Erythrocyte

sedimentation rate at

baseline: median (IQR)

7.0 (8.0) 6.0 (7.25) 7.0 (8.0) 6.0 (7.0) 7.0 (9.0) 7.0 (7.0) 7.0(8.0)

APOE ε4 alleles

0 alleles n= 222 (56.3%) n= 35 (59.3%) n= 41 (61.2%) n= 33 (53.2%) n= 30 (52.6%) n= 37 (57.8%) n= 30 (53.6%)

1 alleles n= 145 (36.8%) n= 23 (34.6%) n= 21 (35.6%) n= 24 (42.1%) n= 24 (38.7%) n= 23 (35.9%) n= 23 (41.1%)

2 alleles n= 27 (6.9%) n= 3 (4.5%) n= 3 (5.1%) n= 3 (5.3%) n= 5 (8.1%) n= 4 (6.3%) n= 3 (5.4%)

Stage at baseline

NC n= 93 (23.6%) n= 19 (32.2%) n= 19 (28.4%) n= 18 (29.9%) n= 12 (21.1%) n= 16 (25.0%) n= 14 (25.0%)

Not-NC n= 43 (10.9%) n= 5 (8.5%) n= 10 (14.9%) n= 7 (11.3%) n= 7 (12.3%) n= 10 (15.6%) n= 3 (5.4%)

SCD n= 133 (33.8%) n= 22 (37.3%) n= 18 (26.9%) n= 25 (40.3%) n= 27 (47.4%) n= 23 (35.9%) n= 20 (35.7%)

MCI n= 101 (25.6%) n= 8 (13.6%) n= 17 (25.4%) n= 8 (12.9%) n= 10 (17.5%) n= 13 (20.3%) n= 16 (28.6%)

Missing data n= 24 (6.1%) n= 5 (8.5%) n= 3 (4.5%) n= 4 (6.5%) n= 1 (1.8%) n= 2 (3.1%) n= 3 (5.4%)

Aβ status at baseline

A– n= 279 (70.8%) n= 47 (79.7%) n= 51 (76.1%) n= 50 (80.6%) n= 38 (66.7%) n= 52 (81.3%) n= 38 (67.9%)

A+ n= 73 (18.5%) n= 7 (11.9%) n= 10 (14.9%) n= 7 (11.3%) n= 13 (22.8%) n= 7 (10.9%) n= 13 (23.2%)

Missing data n= 42 (10.7%) n= 5 (8.5%) n= 6 (9.0%) n= 5 (8.1%) n= 6 (10.5%) n= 5 (7.8%) n= 5 (8.9%)

Note: Overviewof demographic data for the total DDI cohort and the low- and high-risk groups based on standardADPRS, PRSINFL, and PRSCVD, respectively.

Median years of follow-up and the number of participants with 2 and 3 assessments are described for the total cohort and the low- and high-risk groups. The

simple FraminghamRisk Score for cardiovascular disease (FRS-CVD)was calculated for each subject, based on information about age, systolic blood pressure

(SBP), use of antihypertensive medication, body mass index (BMI), and history of type 2 diabetes mellitus (DM). To illustrate potential group differences in

cardiovascular risk beyond age, the FRS-CVDwas calculatedwithout the age component. Age at baseline and FRS-CVD are described bymean and standard

deviation, and we assessed group differences between low- and high-risk groups with independent samples t-tests. Continuous variables with non-normal

distribution (years of follow-up, MMSE, and erythrocyte sedimentation rate) are described by median and interquartile ranges and compared across groups

with Mann-Whitney U tests. Categorical variables (sex, number of APOE ε4 alleles, stage at baseline, and Aβ status at baseline) are described by frequencies
and percentages and compared across groupswith Pearson’s chi square tests. The different stages at baseline areNC, subjects recruited asNCwith abnormal

cognitive staging (Not-NC), subjectswith SCD,MCI, ormissing data. Aβ status at baseline is given as non-pathological (A–), pathological (A+), ormissing data.

We used version 27 of the Statistical Package for Social Sciences (SPSS) for testing group differences in patient characteristics within the DDI cohort. The

high-risk group based on thePRSINFL were significantly older and hadmore subjectswith SCDandMCI than the low-risk group.We found no other significant

group differences.

*P< .05 in comparisons between high- and low-risk groups.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; DDI, Dementia Disease Initiation; IQR, interquartile range;MCI, mild cog-

nitive impairment; MMSE, Mini-Mental State Examination; NC, normal control; PRSCVD, PRS informed by cardiovascular risk factors; PRSINFL, PRS informed

by inflammatory disorders; SCD, subjective cognitive decline.
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F IGURE 1 Cross-sectional association between Alzheimer’s disease (AD)measures and the phenotype-informed AD polygenic risk scores
(PRSs) and a standard AD PRS. Scatter plots of cerebrospinal fluid (CSF) amyloid beta (Aβ)42 levels versus standard AD PRS (A), PRS informed by
inflammatory disorders (PRSINFL; B) and PRS informed by cardiovascular risk factors (PRSCVD; C) with significant associations between CSF Aβ42
and all three AD PRSs at P= .024, P= .012, and P= .015, respectively. Scatter plots of medial temporal cortices (MTC) volume levels versus
standard AD PRS (D), PRSINFL (E), and PRSCVD (F), with a significant association between baselineMTC volume and PRSINFL at P= .034, but not for
standard AD PRS (P= .102) nor PRSCVD (P= .316). Scatter plots of cognitive composite scores versus standard AD PRS (G), PRSINFL (H), and
PRSCVD (I), with a significant association between the cognitive composite score and both PRSINFL and PRSCVD with P= .013 and P= .043,
respectively, and a sub-threshold tendency for the standard AD PRSwith P= .053

3.3 Genetic characterization of the genetic
association studies on which the phenotype-informed
AD PRSs are based

3.3.1 AD-associated loci identified with
phenotype-informed condFDR

Using a condFDR threshold of 0.01, 181 and 72 of the loci comprising

the phenotype-informed PRSs were identified as most likely suscep-

tibility loci for AD conditional on the 11 different INFL diseases or

the 11 different CVD traits, respectively. This is illustrated in Man-

hattan plots in Figure 3A and B, as well as Figure S1 in supporting

information for the Q-Q plots illustrating the genetic overlap, Tables

S1 and S2with functional annotation, Figure S2 in supporting informa-

tion for distribution of the annotations, expression quantitative trait

loci (eQTL) analyses (Tables S3 and S4 in supporting information) and

mapped genes (Tables S5 and S6 in supporting information) based on

the lead SNPs. Details on the top 10 AD-associated loci identified with

the phenotype-informed condFDRare reported in supporting informa-

tion Methods and Results. The differential expression of the mapped

genes is illustrated in Figure S3 in supporting information.

Of the 181 candidate gene loci identified by the INFL condFDRanal-

ysis (condFDRINFL), 157 represent unique gene loci not detected by

the AD GWAS (see Figure 3A and C). Of the 72 gene loci identified by

the CVD condFDR analysis (condFDRCVD), 48 represent unique gene

loci not detected by the AD GWAS (see Figure 3B and C). Details on

the gene loci unique for the phenotype-informed condFDR analysis

are reported in supporting information Methods and Results. In a clin-

ical setting, the scores based on these phenotype-informed condFDR

analyses identify partially overlapping patient cohorts with low and
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F IGURE 2 Longitudinal changes in Alzheimer’s disease (AD)measures for high- and low-risk groups defined by the phenotype-informed AD
polygenic risk scores (PRSs) and a standard AD PRS. Survival plots of amyloid status for high- versus low-risk groups, unadjusted for
apolipoprotein E ε4 alleles; in (A) for standard ADPRS (hazard ratio 1.612, 95% confidence interval [CI]= [0.610, 4.260], P= .335), in (B) for PRS
informed by inflammatory disorders (PRSINFL; hazard ratio 2.130, 95%CI= [0.810, 5.599], P= .125), and in (C) for PRS informed by cardiovascular
risk factors (PRSCVD; hazard ratio 2.836, 95%CI= [1.043, 7.710], P= .041). Adjusted fixed effects plots of group× time interaction of medial
temporal cortices (MTC) volume for high- versus low-risk groups; in (D) showing non-significant interaction for standard AD PRS (β= –0.041, 95%
CI= [–0.095, 0.012], P= .135), but significant interaction in (E) for PRSINFL (β= –0.056, 95%CI= [–0.106, –0.007], P= .030) and in (F) for PRSCVD
(β= – 0.080, 95%CI= [–0.137, 0.023], P= .008). Adjusted fixed effects plots of group× time interaction of cognitive composite scores for high-
versus low-risk groups, showing non-significant interaction in (G) for standard AD PRS (β= –0.045, 95%CI= [–0.059, 0.149], P= .397), in (H) for
PRSINFL (β= –0.015, 95%CI= [–0.127, 0.097], P= .798) and in (I) for PRSCVD (β= –0.071, 95%CI= [–0.175, 0.033], P= .186)

high AD PRS and phenotype-informed AD PRSs, respectively (see

Figure 3D).

3.3.2 Overrepresented pathway for condFDRINFL

and condFDRCVD

Using three gene mapping strategies (positional mapping, eQTL, and

chromatin interaction mapping) on FUMA,45 we functionally mapped

the 181 and 72 loci found in the condFDRINFL and condFDRCVD,

respectively (see Tables S1–S6). All 11 of the pathways overrep-

resented for condFDRINFL remained significant after correcting for

multiple testing. Two pathways were related to synthesis of GDP-

mannose (bothq=0.0383) andothers to fatty acids, antiviral response,

and mitochondrial energy production. None of the pathways overrep-

resented for condFDRCVD remained significant after correcting for

multiple testing. See Tables S9 and S10 in supporting information for

pathway overrepresentation analysis.

3.3.3 Gene set for condFDRINFL and condFDRCVD

The gene ontology analysis of all mapped genes (Tables S7 and S8 in

supporting information) revealed 80 and 23 significant gene sets asso-

ciated to biological processes for the condFDRINFL and condFDRCVD,

respectively. The gene set analyses showed a dominance of biological
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TABLE 2 Longitudinal linear mixedmodels of differences in time between high- and low-risk groups forMTC volume and cognitive composite
T-score, with low-risk groups as reference

ADmarkers Independent variable β 95%CI P-value

MTC volume

Standard ADPRS (ntot = 172, n1st = 96, n2nd = 65, n3rd = 11)

Model 1 Group –0.161 (–0.420, 0.098) .235

Time 0.004 (–0.033, 0.041) .843

Group× time –0.041 (–0.095, 0.012) .135

Model 2 Group –0.161 (–0.420, 0.098) .235

Time 0.005 (–0.037, 0.048) .812

Group× time –0.041 (–0.095, 0.013) .147

PRSINFL (ntot = 169, n1st = 93, n2nd = 64, n3rd = 12)

Model 1 Group –0.220 (–0.480, 0.040) .108

Time 0.023 (–0.008, 0.055) .157

Group× time –0.056 (–0.106, –0.007) .030*

Model 2 Group –0.222 (–0.482, 0.038) .106

Time 0.048 (0.009, 0.088) .021*

Group× time –0.051 (–0.100, –0.003) .043*

PRSCVD (ntot = 155, n1st = 84, n2nd = 57, n3rd = 14)

Model 1 Group –0.169 (–0.469, 0.131) .285

Time 0.015 (–0.023, 0.054) .440

Group× time –0.080 (–0.137, –0.023) .008**

Model 2 Group –0.173 (–0.473, 0.127) .272

Time 0.040 (–0.006, 0.086) .101

Group× time –0.069 (–0.126, –0.012) .021*

Cognitive composite T-score

Standard ADPRS (ntot = 209, n1st = 113, n2nd = 76, n3rd = 20)

Model 1 Group –0.366 (–0.689, –0.043) .031*

Time –0.011 (–0.081, 0.059) .762

Group× time 0.045 (–0.059, 0.149) .397

Model 2 Group –0.367 (–0.689, –0.044) .031*

Time –0.002 (–0.086, 0.082) .965

Group× time 0.046 (–0.058, 0.150) .387

PRSINFL (ntot = 206, n1st = 112, n2nd = 78, n3rd = 16)

Model 1 Group –0.167 (–0.510, 0.176) .350

Time 0.033 (–0.040, 0.106) .380

Group x time –0.015 (–0.127, 0.097) .798

Model 2 Group –0.167 (–0.510, 0.176) .350

Time 0.040 (–0.060, 0.140) .438

Group x time –0.014 (–0.126, 0.098) .805

PRSCVD (ntot = 213, n1st = 114, n2nd = 76, n3rd = 23)

Model 1 Group –0.088 (–0.430, 0.255) .624

Time 0.058 (–0.010, 0.126) .095

Group x time –0.071 (–0.175, 0.033) .186

(Continues)
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TABLE 2 (Continued)

ADmarkers Independent variable β 95%CI P-value

Model 2 Group –0.088 (–0.431, 0.254) .620

Time 0.092 (–0.0005, 0.183) .052

Group x time –0.068 (–0.172, 0.035) .203

Notes: InModel 1, a linearmixedmodel was fittedwith eitherMTC volume or cognitive composite score as the dependent variable, and categorical risk group

variable, years since baseline, and interaction between risk group and time as fixed independent variables. For the analyses of MTC volume, age at baseline,

sex, intracranial volume, and APOE ε4 carrier status were included as covariates. For the analyses of cognitive composite T-score, age at baseline, sex, years

of education, and APOE ε4 carrier status were included as covariates. In Model 2, an interaction term of APOE ε4 positivity and time was added. The subject

identification variable was included as random effect variable with random intercept in both models. In the table, the group variable’s coefficient represents

the baseline difference between the high-risk group and the low-risk group. The time variable’s coefficient represents the development with time for the

low-risk group. The Group × Time variable represent the difference in development with time for the high-risk compared to the low-risk group, and the sum

of the coefficients for Time and Group × Time gives the coefficient for the high-risk group. Analyses were performed in R version 4.0.3 (R core team 2019);

package lmerTest and function lmer for longitudinal linear mixedmodel regression.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CI, confidence interval; MTC, medial temporal cortices; PRSCVD, PRS informed by

cardiovascular risk factors; PRSINFL, PRS informed by inflammatory disorders; SCD, subjective cognitive decline.

processes relevant for immune activation, as positive regulation of

catalytic activity (P = .01 for condFDRCVD and P = 3.00×10–7

for condFDRINFL), regulation of immune response (P = .001 for

condFDRCVD and P = 2.12×10–5 for condFDRINFL), and regulation of

immune systemprocess (P=9.13×10–5 for condFDRCVD andP= .0001

for condFDRINFL). Candidate genes from both condFDR analyses were

significantly abundant in gene sets for lipidmetabolic process (P= .006

for condFDRCVD and P= .005 for condFDRINFL) and Aβmetabolic pro-

cess (P = .014 for condFDRCVD and P = 7.11×10–5 for condFDRINFL).

In addition to these shared gene sets, more gene sets relevant for

immune activation are enriched of genes singled out by condFDRINFL,

for instance cytokine production (P = .001), proteolysis (P = .0016),

innate immune response (P = .011), and myeloid leukocyte mediated

immunity (P= .029).

The gene ontology analysis also revealed 33 and 22 cellu-

lar components significantly enriched of genes from condFDRCVD

and condFDRINFL, respectively, like early endosomes (P = .047 for

condFDRCVD and P = 1.59×10–5 for condFDRINFL) and endosomes

(P = .0003 for condFDRCVD and P = 2.67×10–8 for condFDRINFL).

The condFDRCVD pointed rather to gene sets relevant for cell motility,

like cell leading edge (P = .0007), ruffle (P = .021), and cell projection

membrane (P = .049). Gene sets relevant for endocytosis (P = .0012)

and phagocytosis (P = .031) were enriched from the condFDRINFL. All

P-values presented above are Bonferroni-corrected.

4 DISCUSSION

Here we show that our novel PRSINFL and PRSCVD are associated with

progression of AD markers in an early-stage clinical setting. The high-

risk groups identified by the PRSINFL and PRSCVD had significantly

steeper decline inMTC volume over time compared to low-risk groups.

Also, the high-risk group defined by the PRSCVD had significantly

increased hazard ratio for pathological amyloid deposition compared

to the low-risk group. Finally, we found associations between baseline

cognitive performance and both the PRSINFL and PRSCVD and between

baselineMTCvolumeand thePRSINFL.No significant associationswere

observed between the standard P-value–based AD PRS and any of

these ADmeasures.

A standard P-value–based AD PRS captures overall genetic AD

risk, which includes a range of biological pathways and mechanisms.

We here show that including biological information in the form of

phenotype-specific GWASs can potentially help stratify clinical sub-

groups in need of different treatment strategies. Also, the process

of constructing phenotype-informed AD PRSs, by means of condFDR

estimation, can provide further insight into the genetic mechanisms

underlying AD.

Conditioning the AD association on 11 INFL or 11 CVDGWASs, the

number of candidate variants included in the PRSs are increased from

28 of the standard P-value–basedADPRS to 181 and 72 in the PRSINFL

and PRSCVD, respectively. As recently suggested by Zhou et al.,47 AD

risk might be modulated by the aggregate effects of many hidden vari-

ants. The phenotype-informed scores could embody such effects by

virtue of the condFDR method used to enrich the AD PRS. Exten-

sive information can be gleaned about the INFL- and CVD-related

candidate AD genes, even though not every individual gene function

is known. The results of this study add to the extensive literature

on condFDR-based methods23 and encourages us to regard the gene

loci identified using the condFDR-based approach as valuable non-

APOE candidate AD loci even though several of them did not reach

genome-wide significance in the ADGWAS.

Notably, a previous study found scores for an immune pathway

including six gene loci and a cholesterol pathway including three gene

loci to provide no additive predictive value for AD biomarkers com-

pared to APOE alone.48 As APOE genotyping is often part of clinical AD

risk evaluation, an AD PRS is only relevant if it has a predictive value

beyond that of APOE alone.49 We therefore excluded SNPs from the

APOE region from all the scores and corrected for APOE ε4 allele num-

ber or carrier status49 to evaluate the PRS’s value added to the APOE

genotype. More than half of the patients referred to memory clinics
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F IGURE 3 Unique and overlapping single nucleotide polymorphisms (SNPs), gene loci, and patients identified by Alzheimer’s disease (AD)
genome-wide association studies (GWAS), conditional false discovery rate for inflammatory disorders (condFDRINFL) and cardiovascular risk
factors (condFDRCVD) and their respective polygenic risk scores (PRSs). Manhattan plot in (A) and (B) showing the -log10 transformed condFDR
values for each SNP on the y-axis and the chromosomal positions along the x-axis. The dotted horizontal line represents the threshold chosen for
reporting the conditional associations (condFDR< 0.01). Independent lead SNPs aremarked by blue outlined circles if they are genome-wide
significant (P< 5×10–8) in ADGWAS (Jansen et al.2) and in yellow if unique for the phenotypes informing the AD score. Further details are
provided in Tables S1 and S2 in supporting information. Venn diagram in (C) showing unique and overlapping gene loci between ADGWAS,
condFDRINFL, and condFDRCVD, while the Venn diagrams in (D) shows the different populations identified as low- and high risk by one standard
deviation below or abovemean of the respective PRSs
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that eventually develop AD are APOE ε4 negative. An APOE-naive PRS

could be important in the early identification of these patients. Towhat

extent the genetic phenotype-informed scores detect distinct clinical

phenotypes will need to be further examined in subsequent work.

As attempts at using standard AD PRS, even in large cohorts, have

been inconclusive,49,50 an improvement of AD PRS is warranted. To

be clinically useful, a PRS must identify at-risk subjects in samples

of sizes typically seen in memory clinics. We showed here that the

phenotype-informed AD scores are robust enough to add prediction

value in such a sample.While the signs and symptoms are unspecific in

early-phase disease, it may represent an important window of oppor-

tunity for treatment. Thus, it is important to develop tools for better

detection of AD risk, for primary or secondary prevention.

We have chosen three different AD markers as outcome variables.

In the survival model we look at amyloid positivity, which has a high

specificity for AD. Hence, we believe that the results correspond with

actual AD, regardless of pleiotropic effects.MTC atrophy and cognitive

decline are less specific parameters of AD, where for example, cere-

brovascular disease might affect cognition without involvement of AD

pathology. Another limitation of this study is the application of theMRI

segmentation ASHS in this young pre-dementia cohort (up to 14% of

scans of participants below 54 years of age), as the reference study

for ASHS was based on a cohort aged 54–88 years old.42 However, all

segmentations were visually assessed.

In summary, the PRSINFL and PRSCVD seem capable of identifying

subjects at risk for progression of AD. This innovative polygenic risk

modeling may be useful in early-stage diagnostics and for inclusion in

clinical trials, as well as future development of personalized treatment

strategies.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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