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Abstract: Pigs play an important role in agriculture and biomedicine. The globally developing
swine industry must address the challenges presented by swine-origin viruses, including ASFV
(African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV
(porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV
(transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities,
these viruses are still widespread. Currently, gene-editing technology has been successfully used
to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and
improving animal economic traits in the future. Here, we summarized the current advance in
knowledge regarding the host factors in virus infection and the current status of genetically modified
pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant
pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host
factors in virus infection. Furthermore, we summarized the remaining problems in producing
virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide
CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible
method. At the same time, exploring the key amino acids of host factors in virus infection with library
screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs
in the future.

Keywords: ASFV; PRRSV; PEDV; CSFV; PRV; TGEV; antiviral pigs; host factors; CRISPR/Cas9 library

1. Introduction

Pigs, as one of the most important types of livestock, play an indispensable role
in agriculture. They share similar genetic, physiological, and anatomical features and
body sizes with humans, and are regarded as important candidates for organ donors for
xenotransplantation. Furthermore, pigs are an important model organism for insights into
the mechanisms of human disease [1–3]. Hence, it is critical to maintain the stability of
the swine industry for the benefits of the agricultural and biomedicine industries. To this
end, the globally developing swine industry must address the challenges represented by
swine-origin viruses, including ASFV, PRRSV, PEDV, PRV, CSFV, TGEV, et al.

In recent decades, vaccines against porcine viral diseases have been developed to
enhance the adaptive immunity of hosts [4,5]. However, several viruses can still escape
immune surveillance [6–10]. Accordingly, it is of great importance to develop an efficient
means to protect hosts from being infected by these viruses or to block virus replication.
Recently, gene-editing technology, such as CRISPR/Cas9, ABEs (Adenine Base Editors),
CBEs (Cytosine Base Editors), and prime editing, has been successfully applied in pigs
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to increase animal disease tolerance and improve economic traits. Therefore, generating
genetically modified pigs with gene-editing technology may be another feasible method
to fight against swine-origin viruses. The focuses of this review are the current status of
virus-resistant pigs in the world and the existing problems. In addition, we put forward
two possible solutions to the problems: identifying the key host receptors in virus infection
with genome-wide CRISPR/Cas9 library screening, and exploring the key amino acids of
host factors in virus infection with BE-induced library screening (Figure 1).

Figure 1. Possible method of producing virus-resistant pigs in the future. (A) First, genome-wide
knockout cells were constructed from lentivirus-packaged CRISPR/Cas9 library or ABE/CBE library.
(B) Then, candidate host factors were enriched and screened by next-generation sequencing tech-
nology after several rounds of viral infection. (C) Fetal fibroblast cells over-expressing or without
candidate host factors were prepared. (D) Then, the donor cells were injected into the enucleated
oocytes, and cloned pigs were prepared by embryo transplantation.

2. Current Progress of Genetically Modified Pigs That Are Resistant to CSFV Infection

Classical swine fever (CSF), one of the most highly contagious swine diseases, charac-
terized by high fever and high mortality, is caused by the classical swine fever virus, and
leads to tremendous economic losses to the swine industry throughout the world [11,12].
The classical swine fever virus belongs to the Pestivirus genus within the Flaviviridae family,
and is an enveloped and positive-sense RNA virus [13]. According to the sequence of
virus genomes, CSFV was classified into three genotypes (genotypes 1 to 3) and 11 sub-
genotypes (1.1 to 1.4, 2.1 to 2.3, and 3.1 to 3.4) [14,15]. It was reported that the CSFV strain
of genotype 2 was the dominant strain in the world, while the other two strains are also
epidemic [16,17].

There are 38 CSFV-free regions in the world according to the World Organization for
Animal Health (OIE), which are mainly located in North America, the European Union,
Oceania, Asia, Eastern Europe, and part of Africa. Furthermore, it was reported that CSFV
recurred in a supposedly CSFV-free country, Japan, due to a reservoir of CSFV in wild
boars in that country [18]. Therefore, as an endemic and recurring porcine virus, CSFV is
still a considerable factor affecting the porcine industry, especially in China.

Currently, live attenuated vaccines are the most widely used strategy to control CSFV
in the world. Classical CSF vaccines, such as c-strain, GPE-strain, LPC-strain, and LK-
VNIVViM strain, provided robust protection from CSFV infection [19], though they lack
DIVA (differentiating infected from vaccinated animals) capacity. Thus, several marker
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DIVA vaccines were developed, such as FlagT4Gv, TWEJ2, Flc-LOM-BErns, and other E2
subunit DIVA vaccines [20].

Despite consistent efforts by many government authorities, it is still difficult to stamp
out CSFV in infected areas and re-emerging areas. The live attenuated vaccines and the
marker DIVA vaccines result in subclinical infection and immunosuppression, which makes
it even harder to eliminate CSFV. As a result, another strategy is urgently needed to control
the virus in pigs.

2.1. Host Factors in CSFV Infection

A number of host factors were identified to have participated in the process of CSFV
replication and pathogenesis (Table 1). Several of these host factors were found to have
antiviral activity, the over-expression of which could inhibit CSFV growth, and the knock
down of which promoted CSFV growth. The others worked on CSFV growth, where
knocking them down promoted virus growth. Since these hosts are the potential targets
that offer new prospects for developing antiviral strategies, more and more researchers are
concentrating on generating anti-CSFV pigs with these targets.

Table 1. Host factors that act in CSFV infection.

Host Factors Function in CSFV Infection
Promote (+) or

Inhibit (−) CSFV
Growth in Host Cell

Reference

Annexin2 Interacts with CSFV E2 and NS5A, promote CSFV replication + [21,22]

IFITM1-3 (interferon-induced trans membrane
protein 3)

Modifies the membrane structure or alter endosomal physiology to
impair viral membrane fusion − [23]

ARFGAP1 (ADP-ribosylation factor
GTPase-activating protein 1) Binds to CSFV NS5A and promote CSFV replication + [24]

β-actin The amino acids 95-188 of β-actin are responsible for the interaction
between β-actin and CSFV E2 + [25]

Caveolin-1 CAV1-mediated endocytosis is necessary for CSFV invasion + [26]

NDP52 (nuclear dot protein 52) CSFV inhibits NDP52 expression. Additionally, inhibiting NDP52
promotes interferon and TNF release, acting on the NF-κB pathway + [27]

GBP1 (guanylate-binding protein 1)

The N-terminal globular GTPase domain of GBP1 interacts with CSFV
NS5A. Overexpression of GBP1 inhibits CSFV replication; knocking

down GBP1 significantly promotes CSFV replication. Furthermore, the
K51 of GBP1 is essential for CSFV replication

− [28]

PSMB10 (proteasome subunit beta 10) Acts as an NS3-interacting partner in CSFV infection. Overexpression of
PSMB10 inhibited CSFV replication + [29]

POASL (interferon-inducible oligoadenylate
synthetase-like protein)

Interacts with MDA5 to enhance MDA5-mediated type I IFN signaling
and suppress CSFV replication − [30]

MERTK (Mer tyrosine kinase) Interacts with CSFV E2 to facilitate CSFV entry, and down-regulates the
expression of IFN-β to enhance CSFV replication + [31]

MG132 Activates JAK-STAT pathway and up-regulates several
interferon-stimulated genes’ (ISGs) expression in CSFV infection cells − [32]

RACK1 (receptor for activated C kinase 1) RACK1 interacts with NS5A, inhibiting CSFV replication by inhibiting
NF-κB activation − [33]

PRNF114 (porcine RING finger protein 114) Interacts with NS4B and degrades NS4B through a
proteasome-dependent pathway − [34]

Rab1b, Rab5, Rab7, and Rab11 Regulates CSFV endocytosis + [35,36]

Rab18 Interacts with NS5A and mediates virus replication and assembly + [37]

DCNT6 (dynactin subunit 6) Interacts with E2, and the DCNT6-E2 interaction is important for CSFV
replication and viral virulence + [38]

Torsin-1A Interacts with E2, disrupting Torsin-1A-E2 interaction to completely
inhibit CSFV replication + [39]

CCDC115 (coiled-coil domain-containing 115) CCDC115-E2 interaction is essential for CSFV replication in
swine macrophages + [40]

LamR (laminin receptor) Acts as an alternative attachment receptor, interacting with Erns + [41]

Fatty acid synthase (FASN) FASN participates in the formation of the replication complex. Knocking
down FASN in host cells inhibits CSFV replication + [42]

PCBP1 (poly C-binding protein 1) Interacts with Npro, down-regulating type I interferon in CSFV
infection cells + [43]
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2.2. Progress of Genetically Modified Pigs That Are Resistant to CSFV Infection

Several host factors with anti-CSFV activity were utilized to generate anti-CSFV pigs.
In 2016, our group generated pigs that over-express MxA [44]. Later, the Rosa26 site-specific
integration pigs of RSAD2 were produced in our lab [45]. All these pigs exhibited the
ability to inhibit CSFV growth.

In addition, RNAi has been regarded by virologists as a promising way to suppress
virus infection. To date, there have been several RNAi-based studies on CSFV suppression
in vitro, and these studies have indicated that the development of shRNA-TG pigs that are
resistant to CSFV may be possible [46]. Anti-CSFV shRNA was integrated specifically into
porcine Rosa26 sites and porcine miR-17-92 clusters in our lab [47,48]. The viral challenge
assays demonstrated that these TG pigs could effectively limit the replication of CSFV
and reduce clinical signs and mortality. Moreover, they could be stably transmitted to F1
generation (Table 2).

Table 2. Advance of genetically modified pigs resistant to CSFV infection.

Genotype Country Institution Research Group Reference

Anti-CSFV shRNA China Jilin University Ouyang group [47,48]
RADS2 knock-in China Jilin University Ouyang group [45]

MxA overexpression China Jilin University Ouyang group [44]

3. Current Progress of Genetically Modified Pigs That Are Resistant to ASFV Infection

African swine fever (ASF), which is caused by the African swine fever virus (ASFV), is
a hemorrhagic and infectious disease listed by the OIE, causing enormous economic losses
each year [49]. ASFV belongs to the Asfarviridae family, and contains a linear double-strand
DNA. The genome of ASFV is about 170 kb-190 kb and encodes about 151–167 ORFs [50].
Currently, there has been no efficient vaccine against ASF. The main and efficient strategies
to control ASF are quarantine and slaughtering the infected pigs.

Like porcine reproductive and respiratory syndrome virus (PRRSV), ASFV replicates
predominantly in porcine alveolar macrophages (PAMs). Previous studies showed that
ASFV mainly replicates in specific cytoplasmic sites, which have been referred to as viral
factories, albeit a lot of ASFV DNA synthesis takes place in the nucleus in the early stages
of infection. Despite decades of efforts by virologists, the key membrane receptor in the
process of ASFV entry has not been identified yet. Early studies implied that ASFV entry
into host cells is through receptor-mediated endocytosis [51,52]. Given the cell tropism
of ASFV, several macrophage membrane receptors, including CD163, MHC II, CD203a,
and CD45, were under suspicion as important molecules in ASFV infection [53]. In 2003,
researchers demonstrated that ASFV infects CD163+ monocyte subpopulations, but not
CD163- monocyte subpopulations. Blocking the membrane receptor of primary alveolar
macrophages with mAbs 2A10 and 4E9 inhibits ASFV infection, suggesting that CD163
acts as an important membrane receptor in the process of ASFV infection [54]. However,
it was confirmed that CD163 was not the receptor of ASFV, and there was no difference
in clinical signs and survival rates between CD163-knockout pigs and control pigs after
ASFV challenge [55]. So far, few key host factors have been identified owing to cell tropism
and the limited technology for host factor screening, albeit several host factors, such as
EGFR (epidermal growth factor receptor), PI3Ks (phosphoinositide 3-kinases), PAK1 (p21-
activated kinase-1), NPC1 (Niemann-Pick C1), and NPC2 (Niemann-Pick C2), were found
to be involved in ASFV entry [56–58].

It was announced by Chinese scientists in 2020 that Lansibai-2 pigs (LS-2), which were
bred by China Shandong Landsee Genetics Co., Ltd., were resistant to ASFV. Previous
results implied that LS-2 pigs showed significant ASFV resistance following oral challenge
with an SY18 strain at the dosage of 106.0 TCID50. Five out of six LS-2 pigs were found
to have low viremia at 9 dpi, while the common domestic pigs were found to have fever
and viremia at 3 dpi. In the end, five out of six LS-2 pigs survived, and all the common
domestic pigs died at less than 10 dpi [59].
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More attention should be paid to exploring key receptors with CRISPR/Cas9 library
screening technology in the future. Additionally, generating anti-ASFV pigs with function-
ally annotated gene targets may be a promising strategy to control ASFV.

4. Current Progress of Genetically Modified Pigs That Are Resistant to
PRRSV Infection

Porcine reproductive and respiratory syndrome, which is caused by the porcine
reproductive and respiratory syndrome virus (PRRSV), is an economically significant
contagious disease [60]. PRRSV is a small, enveloped, positive-sense single-strand RNA
virus, belonging to the Arteriviridae family in the order Nidovirales [61]. The genomes of
PRRSV are approximately 15 kb in size, which encode at least ten ORFs. There are two
well-characterized genotypes: type 1, also known as European-like (EU-type); type 2, also
known as Northern American-like (NA-type) [62]. In China, the most common PRRSV
isolate was NA-type, which was first reported in 1996. In 2006, a highly pathogenic PRRSV
named HP-PRRSV was first identified in China, and an HP-PRRSV epidemic in China
caused enormous losses in the Chinese swine industry [63]. Recombination and mutation
are the main strategies of PRRSV evolution, and they play an important role in increasing
PRRSV variation. In 2013, a new, recombined PRRSV, termed NADC30, which was like
PRRSV, was isolated in China [64].

Vaccination has been the major strategy to prevent PRRSV infection in the past two
decades. Multiple modified live and inactivated vaccines against both types of PRRSV have
been developed to control PRRSV transmission. However, these vaccines failed to provide
sustainable protection owing to the high recombination and variation of PPRSV, which
delayed the neutralization antibody response and led to antibody-dependent enhancement
(ADE) to counter host immunity [65,66]. Accordingly, PRRS has been one of the most im-
portant animal diseases. Therefore, other effective multiple heterologous PRRSV protection
methods are urgently needed. The CRISPR/cas9-based gene editing of the key host factors
which interact with PRRSV is a promising prospect. Here, we review the latest progress in
identifying host factors that interact with PRRSV and anti-PRRSV pigs across the world.

4.1. CD163 and Other Host Factors in PRRSV Infection

Numerous studies have shown that PRRSV entry is mediated by various cell receptors,
such as sialoadhesin (Sn, CD169) [67,68], CD151 [69,70], heparin sulfate [71], vimentin [72],
MYH9 [73,74], and CD163 (a scavenger receptor) [75]. Recently, CD163 was reported to
be the key receptor during the process of PRRSV infection [76]. The knock out of CD163
inhibited PRRSV infection, and the over-expression of CD163 in the membranes of PRRV
non-permissive cells converted them to PRRSV permissive cells [77]. CD163, known as
a scavenger receptor, is a type 1 transmembrane glycoprotein, which is expressed on the
surface of monocyte/macrophage lineages (such as PAMs) and MARC145 cells [78]. It was
announced that CD163 consists of nine scavenger receptor cysteine-rich (SRCR) domains in
the extracellular domain (SRCR1-SRCR9), among which the SRCR2 domain was shown to
support the adhesion of erythroblastic cells, facilitating their maturation into erythrocytes,
while SRCR3 was shown to clear the free hemoglobin within the plasma, and SRCR5
was shown to be essential to PRRSV entry [79]. Knocking out porcine CD163 SRCR5, or
replacing it with human CD163L1 SRCR10, made it resistant to PRRSV [75,79].

Besides these PRRSV entry blockers, some host factors that act in PRRSV infection were
found, too. (Table 3). Jiang et al. [80] found that ZAP, a zinc finger antiviral protein, interacts
with the N-terminal amino acids (150–160 aa) of NSP 9, and acts as an antiviral host factor
to prevent PRRSV replication. Guo et al. [81] reported that triggering receptor expression
on myeloid cells 2 (TREM2), which includes dendritic cells and macrophages, interacts
with NSP 2 to promote PRRSV replication. Silencing TREM2 significantly inhibits PRRSV
replication, and the over-expression of TREM2 promotes PRRSV replication in PAMs. In
addition, USP18 [82], LSM14A [83], heme oxygenase-1 [84], cholesterol 25-hydroxylase [85],
and MOV10 [86] were verified to play a negative role in PRRSV replication; nevertheless,
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DDX18 [87], Rab11a [88], and poly (C)-binding protein 1 and 2 [89] play a positive role in
PRRSV replication.

Table 3. Host factors that act in PRRSV infection.

Host Factors Function in PRRSV Infection
Promote (+) or

Inhibit (−) PRRSV
Growth in Host Cell

Reference

Sn The first 150 amino acids of the Sn N-terminal region are essential for
the attachment of PRRSV + [67]

CD151 Interacts with PRRSV 3 UTR RNA; knocking down CD151 in Marc-145
cells significantly suppresses PRRSV infection + [70]

MYH9 (myosin heavy chain 9) Interacts with GP5 via its C-terminal domain and confers cells
susceptible to PRRSV + [90]

Vimentin Acts as a virus receptor, leading to the opsonization and endocytosis
of PRRSV + [72,91]

CD163
Acts as a key receptor; CD163 interacts with GP2a and GP4. CD163

SRCR5 plays an important role in PRRSV infection, and deleting
SRCR5 inhibits PRRSV proliferation

+ [75]

ZAP (zinc finger antiviral protein) Interacts with NSP9, and acts as an efficient antiviral host factor to
inhibit PRRSV infection − [80]

TREM2 (triggering receptor expressed on myeloid
cells 2)

Down-regulating TREM activates the PI3K/NF-κB signal pathway,
reinforcing the expression of proinflammatory cytokines and type

I interferons
+ [81]

USP18 Alternates the nuclear translocation of NF-KB P65 and p50; the
overexpression of USP18 restricts PRRSV growth − [82]

DDX18 Interacts with NSP2 and NSP 10; silencing DDX18 inhibits
PRRSV replication + [87]

LSM14A
Up-regulates the activities of IFN-β and ISRE promoters, enhancing
IFN-β, RIG-1, and ISGs expression; inhibits the expression of TNF-α

and IL-6
− [83]

Heme oxygenase-1 Generates down metabolite CO, and suppresses PRRSV replication by
activating the cyclic cGMP/PKG signal pathway − [84]

Rab11a Acts as a pro-viral host factor in PRRSV replication and plays a vital
role in autophagosome maturation + [88]

Poly (C)-binding protein 1 and 2 Binds to the 5 UTR of PRRSV, silencing PCBP1 and PCBP2 and
inhibiting PRRSV replication + [89]

Cholesterol 25-hydroxylase Restricts PRRSV replication by targeting viral penetration, as well as
degrading NSP1α and silencing CH25H, to promote PRRSV replication − [85]

MoV10 (Moloney leukemia virus 10-like protein) Interacts with N proteins and affects the distribution of N proteins in
the cytoplasm and nucleus, leading to the retention of N proteins − [86]

Sydecan-4 Mediates PRRSV entry by interacting with EGFR + [92]

4.2. Current Progress of Genetically Modified Pigs That Are Resistant to PRRSV Infection

In 2013, Li et al. [93] reported that PRRSV replication was inhibited in transgenic pigs
expressing PRRSV-specific shRNA in vitro and in vivo. The result of PRRSV challenge
demonstrated the transgenic pigs exhibited reduced serum PRRSV titers compared with
wild-type pigs. Additionally, the transgenic pigs survived 11 days, while the wild-type
pig survived 8 days. Sialoadhesin (Sn), also known as Siglec1 or CD169, is a macrophage-
restricted molecule in the immunoglobulin (Ig) superfamily and a type I transmembrane
(TM) glycoprotein [94]. CD169 has been extensively studied as an essential receptor for
PRRSV infection by mediating the capture and internalization of the virus [95]. Further-
more, Prather et al. [96] announced that CD169-knockout pigs exhibited no significant
PRRSV resistance, and CD169 was not required in the PRRSV infection. Most importantly,
Whitworth [97] first verified in 2015 that CD163-knockout pigs showed significant PRRSV
resistance, and the CD163-gene-modified pigs experienced no viremia and no clinical signs.
Hereafter, many CD163-knockout pigs were generated with CRISPR/Cas9, and all the
CD163-modified pigs showed resistance to type 1 and type 2 PRRSV [98–101]. Besides, it
was acknowledged that substituting porcine CD163 SRCR5 with human CD163L1 SRCR10
conferred resistance to PRRSV to pigs [102]. Wells et al. and Li et al. produced gene-edited
pigs by substituting porcine CD163 SRCR5 with human CD163L1 SRCR10 [103,104]. The
results of virus challenge in vivo from Wells et al. showed that these pigs were resistant
to type 1 PRRSV but not to type 2 PRRSV. However, Li et al. demonstrated that these
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pigs showed highly pathogenic porcine reproductive and respiratory syndrome virus
(HP-PRRSV) resistance.

Accordingly, CD163-gene-edited pigs with great PRRSV resistance exhibit fine prospects
for controlling viral infection and also lay the foundation for controlling others virus. Neverthe-
less, there are still some concerns that need to be addressed. Firstly, CD163 plays an important
role in vivo. It remains unknown whether knocking out CD163 SRCR5 affects the function of
CD163. Additionally, it is still an issue of concern as to whether substituting CD163 SRCR5
with human CD163 L1 SRCR10 renders humans sensitive to PRRSV. Hence, exploring the
key amino acids that function in the process of PRRSV infection in the CD163 may be another
approach to address these concerns.

5. Current Progress of Virus-Resistant Pigs in Porcine Enteric Coronaviruses and the
Other Viruses

Porcine enteric coronaviruses (PECs) cause high mortality and morbidity in newborn
piglets. Such viruses include porcine epidemic diarrhea virus (PEDV), transmissible gas-
troenteritis virus (TGEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and
porcine delta coronavirus (PDCoV) [105]. It was announced that PECs could potentially
transmit into humans and cause enormous economic losses in the pig industry in China
and around the world. In China, several attenuated and inactivated vaccines were applied
to control PECs [106,107]. However, their effectiveness is still debated due to the unique
characters of PECs, such as the low oral infectious dose and the ineffective immunogenicity
of vaccines [108]. Therefore, an effective and safe method is urgently needed to control
these PECs.

Porcine aminopeptidase-N (pAPN), which is mainly expressed on the surface of ente-
rocytes, was first reported to serve as a receptor of TGEV in 1992 [109]. Later, it was verified
that pAPN was also an important receptor of PDCoV [110–112]. The overexpression of
pAPN in non-permissive cell lines rendered it susceptible to TGEV and PDCoV. Knock-
ing out pAPN in swine testis cells (ST cells) significantly decreased TGEV and PDCoV
attachment, but not PEDV [113]. Hence, pAPN, which acts as an important receptor of
TGEV and PDCoV, may be a potential gene target to produce TGEV-resistant pigs. In 2019,
Whitworth et al. [114] generated pAPN-null pigs with CRISPR/Cas9. The results of virus
challenges showed that pAPN-null pigs were resistant to TGEV, but not to PEDV. Further-
more, Li et al. [100] produced CD163 and pAPN-double-knockout pigs in 2020. It was the
first report on gene-edited pigs with PRRSV, TGEV, and PDCoV resistance simultaneously,
while maintaining the same growth and reproductive production traits compared with
wild-type pigs.

Similarly, Ouyang et al. [115] produced transgenic pigs expressing shRNA directed to
foot-and-mouth disease virus (FMDV) VP1 sequences. Upon FMDV challenge, transgenic
pigs remained non-febrile and showed lower viremias and clinical scores compared to wild-
type pigs. Furthermore, RSAD2 is a member of the radical S-adenosylmethionine (SAM)
superfamily of enzymes [116]. Many reports have shown that RSAD2 exhibits antiviral
activity against a broad range of viruses, including influenza A, Zika virus, and so on [117].
A recent study indicated that pRSAD2 effectively inhibits CSFV replication in vitro via the
interaction with the CSFV E2 protein [118]. Xie et al. [45] found that the pRSAD2 knock in
(pRSAD2 KI) of the pRosa26 locus of PK-15 cells made it resistant to CSFV and PRV, but
the resistance of pRSAD2 KI pigs to CSFV and PRV infections was undetermined. At the
same time, it was reported that human CCCH-type zinc finger proteins containing the 11A
protein (ZC3H11A) are essential for the replication of multiple nuclear-replicating viruses
(such as HIV, influenza virus, herpes simplex virus, and adenovirus) in human cells [119],
which suggested porcine ZC3H11A may be an ideal gene target to prevent PRV, PCV, and
even ASFV in the future.
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6. Concluding Remarks

At present, there are many pigs resistant to CSFV, PRRSV, and TGEV being produced,
which suggested the enormous potential of CRISPR/Cas9-based gene-editing technology
for shortening the breeding cycle and enhancing disease tolerance in pigs. However,
there have been no reports of pigs resistant to PEDV, ASFV, and PRV owing to the lack
of understanding of the key receptors in viral infection. In the future, genome-wide
CRISPR/Cas9 library screening technology may be an ideal method to explore the key
receptors in PEDV, ASFV, and PRV infection.

Gene-edited pigs showed remarkable virus resistance, indicating a fine prospect for
controlling virus infection. Nevertheless, there are still some concerns emerging. First, it
was reported that CRISPR/Cas9 may induce megabase-scale chromosomal truncations
in cell lines and primary cells with P53-dependent mechanisms [120]. Some host factors,
such as CD163, play an important role in vivo, but whether knocking out CD163 SRCR5
affects the function of CD163 is not yet understood. In addition, the types and population
of gene-edited pigs are limited. It is essential to increase the population size and supervise
the production traits and reproduction traits of gene-edited pigs. Additionally, it is still
unknown whether substituting porcine receptor proteins with homologous proteins from
other species can make the virus contagious to other species. Hence, exploring the key
amino acids within the key host receptor that acts in the process of virus infection may be
another desirable solution to these concerns in the future.
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