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Similarity-based Regularized 
Latent Feature Model for Link 
Prediction in Bipartite Networks
Wenjun Wang1,2,3, Xue Chen1, Pengfei Jiao  1 & Di Jin1

Link prediction is an attractive research topic in the field of data mining and has significant applications 
in improving performance of recommendation system and exploring evolving mechanisms of the 
complex networks. A variety of complex systems in real world should be abstractly represented as 
bipartite networks, in which there are two types of nodes and no links connect nodes of the same 
type. In this paper, we propose a framework for link prediction in bipartite networks by combining 
the similarity based structure and the latent feature model from a new perspective. The framework 
is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes 
the local characteristics into consideration and encodes the geometrical information of the networks 
by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective 
function based on gradient descent. Extensive experiments on a variety of real world bipartite networks 
show that the proposed framework of link prediction has a more competitive, preferable and stable 
performance in comparison with the state-of-art methods.

With the rapid development of the Internet, the computational analysis of social networks has grown to be a sali-
ent issue. One of the important topics in network analysis is to explore the structures and functions of complex 
networks, and a considerable amount of attention has been devoted to the issue of link prediction. The process 
of network formation associated with the method capability of predict missing links1. Link prediction aims to 
estimate the likelihood of the existence of a link between two nodes from available network information, such as 
the observed links and the attributes of nodes2,3. For instance, discovery of underground groups of terrorists or 
criminals can be viewed as predicting missing links in social security networks. The nature of link prediction can 
be divided into two categories. One is the prediction of existing yet unknown links, such as protein-protein inter-
action networks and metabolic networks, the other is the prediction of links that may appear in future evolving 
networks, like online social networks. For the former, the discovery of links among nodes requires costly exper-
iments because of blindly checking all possible links. Making predictions based on the links already known and 
focusing on those links which are most likely to exist may sharply reduce costs4. For the latter, in recommendation 
systems5,6, link prediction can be utilized to discover the links that are most likely to emerge in the future.

Most of link prediction approaches have been proposed on monopartite networks. The most widely used 
methods are the similarity-based algorithms2,7 and the supervised learning algorithms8. Besides the above pre-
diction algorithms, some novel algorithms based on maximum-likelihood7,9,10 have been proposed. For the hier-
archical structure of networks, Clauset et al.9 proposed a model to infer hierarchical structure from network and 
applied it to solve the link prediction problem. GuimerÃ et al.10 developed a Stochastic Block Model to capture 
the community structure and to estimate the probability that two nodes are connected. Pan et al.7 proposed an 
algorithmic framework of probability by denoting a predefined structural Hamiltonian based on the network 
organizing, and predicted each non-observed link by computing the conditional probability of adding the link 
to the observed network. In particular, their work was able to identify both missing and spurious interactions in 
noisy network observations.

However, in the real world, a variety of complex systems in various fields can be modeled as bipartite net-
works11. There are two disjoint sets of nodes in bipartite networks and links may occur only if the nodes belong 
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to different sets. Taking a metabolic network as an example, chemical substances and chemical reactions are the 
two different types of nodes and there are only links between reactions and substances. In an online purchasing 
network, the two types of nodes are users and products respectively, and the links represent the purchase relations 
between them. Also of note, link prediction in bipartite networks is important for providing priceless information 
to improve e-commerce or to accelerate biological function research.

Because of bipartite networks’ particularity, most of the existing methods for link prediction are not suitable 
for it. To address the problem, some approaches have been developed and we mainly classify them into three cat-
egories, projection based methods, topological structure based methods, and latent feature model.

Projection based methods project the bipartite network into two monopartite networks and exploit one or 
both monopartite layers obtained from a bipartite network to predict new links12,13. These methods infer the 
presence of links between any two nodes, belonging to the same layer, as long as sharing at least one neighbor. It is 
obvious that these methods lose the original topological structure information of the bipartite network14.

The second and most widely used methods are based on the topological structure in bipartite networks. 
The preferential attachment (PA)15,16 algorithm only considers the node degrees information and thus can be 
directly applied to link prediction in bipartite networks. It achieves higher accuracy than various algebraic 
(e.g. matrix factorization) methods in many real world bipartite networks17. Based on the formal definitions 
of similarity-based indices in monopartite networks, Cannistraci et al.18 proposed related variations similarity 
indices in bipartite networks, including Common Neighbors (CN), Jaccard’s index (JC), Adamic Adar (AA) 
and allocation of resources (RA). Recently, a shift in perspective is from nodes to community links has been 
proposed18–20. The number of common neighbors and the number of local community links (links connecting 
common neighbors) have been taken into account by Cannistraci et al.18,20, and they proposed a series of simi-
larity indices to enhance the performance of link prediction in monopartite networks20 and bipartite networks18, 
including Cannistraci-Alanis-Ravasi (CAR), Cannistraci-Jaccard (CJC), Cannistraci preferential attachment 
(CPA), Cannistraci-Adamic-Adar (CAA), Cannistraci resource allocation (CRA). However, topological structure 
based methods consider only partial network characteristics.

Latent feature model always assumes that each node of the network is associated with a latent feature vector, 
and then the probability of a link is determined by the interactions among such latent features21,22. In details, in 
a network with n nodes, latent feature model represents each node i by a low-dimensional feature vector, which 
is a point in a latent feature space, and two nodes are more likely to be linked if they have similar latent features. 
From another perspective, the similarity matrix of the network can be approximated to the product of two lower 
ranked matrixes, which are basis matrix and coefficients matrix respectively. If we restrict the elements of the two 
matrixes to be nonnegative, the solution can be obtained by the algorithm of Nonnegative Matrix Factorization 
(NMF), which has been used to analyze complex networks successfully. Compared with other methods, latent 
feature model can learn expressive representations from network structures. However, the intrinsic geometrical 
and discriminating structure of the data space cannot be revealed, as discussed by Cai D, He X, et al.23.

Inspired by the idea of manifold learning24,25 and graph regularized Nonnegative Matrix Factorization23, in 
this paper we propose an algorithm framework for link prediction in bipartite networks by combining the topo-
logical structure and the latent feature model from a new perspective. The framework is called Similarity-based 
Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly considers the local similarity of the 
networks. We encode the geometrical information of the nodes space by constructing a similarity-based matrix. 
By incorporating the topological similarity structure, a new matrix factorization objective function is designed 
to find a parts-based representation space in which two nodes are both sufficiently close to each other in the 
space and in the similarity-based matrix. We also develop an iterative algorithm to optimize the objective func-
tion based on gradient descent. In the experiments, the proposed framework demonstrates a more competitive, 
preferable and stable performance on a variety of real-world bipartite networks compared with state-of-the-art 
methods.

Results
Considering an undirected bipartite network G(V, W, E), in which V and W are the two sets of disjoint nodes and 
E is the set of links. Given one network, we denote its adjacency matrix ∈ × =| | =| |A {0, 1}N M n V m W( , ), where the 
element Aij = 1 if nodes vi and wj are connected and Aij = 0 otherwise. To test the algorithm’s accuracy, the 
observed links E is randomly divided into two parts. The training set ET is treated as known information, and the 
probe set EP is used for testing the performance of methods for link prediction. It is clear that ET∪EP = E and 
ET∩EP = ∅. The corresponding adjacency matrix of the training set and the probe set can be represented by AT 
and AP respectively, also of note, they have the same size as A.

A framework of similarity-based regularized latent feature model. In this paper, we propose a 
framework for link prediction in bipartite networks by combining the topological structure and the latent feature 
model from a new perspective. The framework exploits the intrinsic similarity structure of the nodes and which 
is incorporated as an additional regularization term. By preserving the similarity structure, our framework has 
more discriminating power than the latent feature model. The framework is shown in Fig. 1. In detail, for each 
pair nodes, i ∈ V, j ∈ W, we assign a score, Sij, according to a given similarity measure. Higher score means higher 
similarity between i and j, and vice versa. Figure 1(c) gives the example of calculating CN measure in bipartite 
network. The CN measure between node v4 and w4 is CNs = 6, CNs counts the number of neighbours touched by 
the quadrangles that pass through the nodes v4 and w4.

Combining this similarity-based regularizer with the latent feature model, we can get the following objective 
function O
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where θ is a parameter vector, . .l( , ) is a loss function, Ω(·) is a regularization term that prevents overfitting, θ⁎A ( )ij  
is the model’s predicted score for (i, j), and the regularization parameter γ controls the smoothness of the new 
representation.

Such a loss function can be constructed by using some measures of distance between two matrices A and A*. 
For example, the cost function with the square of the Euclidean distance can be written as
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Specifically, in this paper we propose the objective function of the framework in view of the nonnegative 
matrix factorization and cost function with the square of the Euclidean distance. Therefore, we transform the 
solution of A* into solving optimal problem of NMF. By optimizing the objective function, we can obtain the basis 
matrix X and coefficients matrix Y. Finally, we get the reconstructed adjacency matrix A* = XY. Details can be 
illustrated in section Methods.

Evaluation Metrics. To quantify the prediction accuracy, we use the precision26 and AUC (area under the 
receiver operating characteristic curve)27 to measure the quality of the prediction results in this paper. The preci-
sion represents the ratio of correct edges recovered out of the top L edges in the candidate list generated by each 
link predictor. This operation is repeated 100 times for each network and the mean for each method is reported. 
Given the ranking of the unobserved links, precision is defined as

Precision L
L (4)

r=

where L is the number of the predicted links, i.e. the number of links in AP, and Lr is the number of correctly 
predicted links based on the methods. Clearly, large value of the precision means better prediction of the method.

AUC metric can be interpreted as the probability that a randomly chosen link in EP (i.e., a missing link that 
indeed exists but is not observed yet) is ranked higher than a randomly chosen link in U-E (i.e., a nonexistent 
link)7, here U is the set of all possible node pairs in a network. Among n independent comparisons, if there are 
n′ occurrences of missing links having a higher score and n″ occurrences of missing links and nonexistent link 
having the same score, we could compute the AUC as:

Figure 1. Framework of similarity-base regularized nonnegative matrix factorization. (a) An example of 
bipartite network. (b) Adjacency matrix of bipartite network. (c) CN measure between v4 and w4. (d) The CN 
similarity matrix of bipartite network. (e) Reconsitution adjacency matrix A*.
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In general, a larger AUC value indicates higher performance. Hence, the AUC value of the perfect result is 1.0, 
whereas the value of AUC gennerated by a random predictor is 0.5.

Datasets and Baseline Algorithms. To test the performance of our proposed framework, we consider the 
following eight real-world networks (i) G-protein coupled receptors (GPC Receptors)28: The biological network 
of drugs binding GPC receptors. (ii)Ion channels28: The biological network of drugs binding ion channel proteins. 
(iii) Enzymes28: The biological network of drugs binding enzyme proteins. (iv) Southern Women29 (referred here 
as “SW”): The social relations network of women and events. (v) Malaria30,31: The genetic network consisting of 
genetic sequences from the malaria parasite plasmodium falciparum. (vi) Drug-target32: The chemical network 
of drug-target interaction. (vii) Country-organization33: The network of organization most related to the country. 
(viii) Na-net34: The Air transportation network, with city identifiers and coordinates. (ix) MovieLens (http://www.
grouplens.org): The bipartite networks of users and movies. In the dataset each user gives any movie a rating from 
1–5. If the rating is not less than 3, then we can draw a link between the user and the movie. The detailed informa-
tion about these datasets is described in Table 1.

For comparison, we introduce some benchmark methods, which are defined in the following examples below. 
The first ten methods are based on topological structure. NMF, the eleventh method, directly predicts the links 
on bipartite adjacency matrix, and learns latent features from network. The last six methods are projection-based 
methods.

•	 Common Neighbors (CN)18, which denotes the similarity measure of two different types of nodes x and y as

s N x N N y N y N N x( ( ) ( ( ))) ( ( ) ( ( ))) (6)xy
CN ∩ ∪ ∩= | |

where N(x) and N(y) indicate the first-order neighbours, and N(N(x)) and N(N(y)) represent the second-or-
der neighbours of the nodes x and y, respectively. CN measure in bipartite networks counts the neighbours 
touched by the quadrangle that passes through the nodes x and y18. For instance, in Fig. 1(c) the CN index of 
two nodes v4 and w4 equals to 6.

•	 Jaccard Coefficient (JC)18 is denoted as

s
s

N x N y( ) ( ) (7)xy
JC xy

CN

∪
=

| |

•	 Adamic Adar (AA)18 is denoted as

s
N z
1

log ( ) (8)
xy
AA
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2
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which considers the information about the degree of the common neighbors of two different types of nodes x 
and y, and assigns the low-connected neighbors with more weight.

•	 Resources Allocation (RA)18 is denoted as

∑ ∩ ∪ ∩=
| |∈s
N z

1
( ) (9)xy

RA
z N x N N y N y N N x( ( ) ( ( ))) ( ( ) ( ( )))

the RA index assigns the different weight to the common neighbors of the two different types of nodes.

network |V| |W| |E| LD AD LAD RAD

GPC 95 223 635 0.0300 2.00 6.68 2.85

Enzymes 664 445 2926 0.0099 2.64 4.41 6.58

Ionchannel 210 204 1476 0.0345 3.57 7.03 7.24

Malaria 297 806 2965 0.0124 2.69 9.98 3.68

Drug-target 200 150 454 0.0151 1.30 2.27 3.03

Southern Women 18 14 89 0.3532 2.78 4.94 6.36

Country-organization 144 151 12170 0.5597 41.25 84.51 80.60

Na-net 940 940 12170 0.0078 3.67 7.33 7.33

Movielens 1682 943 85250 0.0537 32.48 50.68 90.40

Table 1. Statistics of the networks studied in this paper. Where, |V|, |W| denote the number of two types of 
nodes respectively. |E|, LD, AD, LAD, and RAD are the number of edges, the link density, the average degree, 
the left average degree, the right average degree.

http://www.grouplens.org
http://www.grouplens.org
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•	 Preferential attachment (PA)16 is denoted as

= | | ⋅ | |s N x N y( ) ( ) (10)xy
PA

•	 Cannistraci-Alanis-Ravasi (CAR)18 is denoted as

= ⋅s s s (11)xy
CAR

xy
CN

xy
LCL

where sLCL counts the links (purple colour) between the common neighbors. In Fig. 1(c), the LCL index of 
two nodes x and y equals to 7.

•	 Cannistraci-Jaccard (CJC)18 is denoted as

s
s
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•	 Cannistraci-Adamic-Adar (CAA)18 is denoted as
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where |γ(z)| is the local community degree of z and corresponds to LCL that originates from z;
•	 Cannistraci resource allocation (CRA)18 is denoted as
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•	 Cannistraci preferential attachment (CPA)18 is denoted as

= ⋅ + ⋅ + ⋅ + ( )s e x e y e x s e y s s( ) ( ) ( ) ( ) (15)xy
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where e(x) is the external degree of node x, and is presented in Fig. 1(c) (red edges);
•	 Nonnegative Matrix Factorization (NMF)35, which learns the representation parts of the original network by 

approximating the adjacency matrix into the product of two low-rank matrices, and has been developed to 
predict links with low-rank approximation.

•	 Jaccard (Jac)36 measures similarity between the same type of nodes x1 and x2. Jaccard uses the size of the inter-
section divided by the size of the union of it.

•	 Euclidean (Euc)36 measures similarity between the same type of nodes x1 and x2 by the concept of Euclidean 
distance.

•	 Cosine (Cos)36 is based on the Cosine similarity between the same type of nodes x1 and x2.
•	 Pearson (Pea)36 is based on the well-known Pearson correlation coefficient.
•	 Bipartite projection via Random-walk (BPR)36 defines a new similarity measure that utilizes a practical pro-

cedure to extract monopartite graphs without making a priori assumptions about underlying distributions.
•	 Network-based inference (NBI)13 computes the similarity between nodes in a projected network. NBI is based 

on resource allocation, and also takes the network structure into account.

Experiment results. In this section, we compare our SRNMF method with seventeen widely applied link 
prediction algorithms in bipartite network, consist of topological structure based methods (including CN, JC, 
AA, RA, CAR, CJC, CPA, CAA and CRA), projection-based methods (including Jac, Euc, Cos, Pea, BPR, NBI) 
and NMF methods. See “Baseline Algorithms” for details. In our experiments, we set γ = 1

2
, λ = 2. The prediction 

accuracy measured by precision and AUC is shown in Tables 2 and 3 respectively. For each of the nine networks, 
the training set contains 90% of the links, and the remaining 10% of links constitute the probe set. Among all the 
comparable indices the overall prediction performance of SRNMF outperforms significantly.

Table 2 shows the comparison of precision for nine real-world networks. Our SRNMF methods are in red color 
text while the baseline methods are in black color text. The numbers behind the slash denote the ranking. For 
example, 0.31\18 means the precision is 0.31, and the whole ranking in all methods is 18. This table shows that the 
proposed SRNMF (including SRNMF-CN, SRNMF-RA, SRNMF-AA, SRNMF-JC, SRNMF-PA, SRNMF-CAR, 
SRNMF-CRA, SRNMF-CAA, SRNMF-CJC and SRNMF-CPA) framework outperforms the LCP-based (includ-
ing CAR, CRA, CAA, CJC and CPA), CN-based (including CN, RA, AA, JC, PA), Projection-based (includ-
ing Jac, Euc, Cos, Pea, BPR, NBI) and NMF algorithms. Based on the results, we can draw conclusion that the 
LCP-based methods perform better than the CN-based methods and NMF methods. The reason is that the 
LCP-based methods additionally concerns the information derived from the node neighbourhood connectivity. 
NBI and BPR methods perform better than other projection-based methods. In addition, our proposed SRNMF 
framework performs better than LCP-based methods by adding similarity-based regularization. Moremore, 
SRNMF is superior to projection-based methods which cause loss of the original topological information in the 
bipartite network structure. Such as on Enzymes network, an improvement of 106% is offered in average precision 
compared to similarity-based methods, and an improvement of 125.6% is offered in average precision compared 
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to projection-based methods. This finding provides a strong evidence that methods using manifold learning and 
similarity regularized are more robust than other baseline methods.

Moreover, Table 3 demonstrates again a clear superiority on AUC index. Based on the results, A conclusion is 
drawn that the LCP-based (including CAR, CRA, CAA, CJC and CPA) methods almostly perform better than the 
CN-based (including CN, RA, AA, JC, PA), Projection-based (including Jac, Euc, Cos, Pea, BPR, NBI) and NMF 
methods. And our proposed SRNMF algorithms perform the best. Such as on SW network, an improvement 
of 12.6% is offered in average AUC compared with similarity-based methods, and an improvement of 11.7% is 
offered in average AUC compared with projection-based methods. Besides, our SRNMF methods perform better 
than benchmark methods (text in black color) in terms of stabilty.

Experiments under different fractions (from 40% to 90%) of four datasets (drug target, GPC, Ionchannel, 
malaria datasets) are conducted to test the accuracies for link prediction in bipartite networks. Results are shown 
in Figs 2 and 3 respectively. Each value of the accuracy is returned with the average over 100 runs with inde-
pendently random network divisions of the training set and probe set. The number of predicted links, L, is always 
set as being equal to the size of the probe set. According to Figs 2 and 3, by varying the size of training set, 
prediction accuracies of SRNMF (including SRNMF-CN, SRNMF-RA, SRNMF-AA, SRNMF-JC, SRNMF-PA, 
SRNMF-CAR, SRNMF-CRA, SRNMF-CAA, SRNMF-CJC and SRNMF-CPA) methods are either the best or 
very close to the best, other benchmark algorithms (especially PA, NMF and Pea) give very poor predictions for 
some networks. Usually, larger training set contains more information which could make the prediction easier. 
However, as shown in Figs 2 and 3, the precision and AUC do not always increase with the size of training set.

As we know, the choice of parameters influences evaluation results. Our SRNMF model has two regularization 
parameters γ and λ. To show how the precision preformance of SRNMF varies with the parameters γ and λ, we 
choose drug-target network as an example in this paper and the results are depicted in Fig. 4. As seen from Fig. 4, 
SRNMF achieves consistently good performance when λ varies from 1.5 to 2.5 and γ varies from 1.5 to 2 with the 
different similarity measures.

Discussion
In this paper, we investigate the problems of link prediction in bipartite network and propose a framework based 
on similarity-based regularized latent feature model (SRNMF), which exploits the intrinsic topological structure 

Precision GPC Enzymes Ionchannel Malaria
Drug-
target SW Na-net Movielens

Country- 
organization

CN 0.31\19 0.37\19 0.23\21 0.19\18 0.61\16 0.14\21 0.29\16 0.14\19 0.87\15

RA 0.33\13 0.30\21 0.26\20 0.22\16 0.69\11 0.18\16 0.29\16 0.10\23 0.89\13

AA 0.32\17 0.29\22 0.21\22 0.22\16 0.64\14 0.17\18 0.30\13 0.13\20 0.87\15

JC 0.01\25 0.03\23 0.02\25 0.25\12 0.38\23 0.02\27 0.00\24 0.00\26 0.60\25

PA 0.08\23 0.02\25 0.04\24 0.02\24 0.31\24 0.12\23 0.22\21 0.15\18 0.87\15

CAR 0.33\13 0.52\13 0.48\15 0.19\18 0.60\18 0.19\12 0.30\13 0.18\11 0.87\15

CRA 0.37\11 0.65\12 0.56\12 0.25\12 0.63\15 0.21\7 0.33\3 0.18\11 0.88\14

CAA 0.32\17 0.50\16 0.53\13 0.19\18 0.59\19 0.12\23 0.27\20 0.18\11 0.87\15

CJC 0.36\12 0.51\15 0.53\13 0.23\15 0.61\16 0.19\12 0.29\16 0.18\11 0.87\15

CPA 0.33\13 0.52\13 0.48\15 0.19\18 0.59\19 0.18\16 0.30\13 0.18\11 0.87\15

NMF 0.01\25 0.00\26 0.01\26 0.00\27 0.02\26 0.03\26 0.00\24 0.00\26 0.00\27

Cos 0.20\22 0.33\20 0.35\19 0.14\22 0.49\22 0.16\19 0.16\23 0.12\22 0.66\23

Euc 0.04\24 0.02\25 0.05\23 0.01\25 0.15\25 0.12\23 0.00\24 0.05\25 0.62\24

Jac 0.21\21 0.42\18 0.40\18 0.13\23 0.52\21 0.20\9 0.18\22 0.13\20 0.74\22

Pea 0.01\25 0.00\26 0.00\27 0.01\25 0.00\27 0.14\21 0.00\24 0.07\24 0.58\26

BPR 0.27\20 0.50\16 0.44\17 0.25\12 0.68\13 0.16\19 0.29\16 0.18\11 0.93\4

NBI 0.33\13 0.68\10 0.59\11 0.26\4 0.69\11 0.19\12 0.32\12 0.18\11 0.93\4

SRNMF-CN 0.41\10 0.69\1 0.69\1 0.26\4 0.74\1 0.20\9 0.36\1 0.19\1 0.94\1

SRNMF-RA 0.42\3 0.69\1 0.68\9 0.26\4 0.74\1 0.22\2 0.33\3 0.19\1 0.92\10

SRNMF-AA 0.43\1 0.69\1 0.69\1 0.26\4 0.74\1 0.22\2 0.33\3 0.19\1 0.92\10

SRNMF-JC 0.43\1 0.69\1 0.69\1 0.27\1 0.74\1 0.23\1 0.35\2 0.19\1 0.93\4

SRNMF-PA 0.42\3 0.69\1 0.69\1 0.26\4 0.72\10 0.22\2 0.33\3 0.19\1 0.91\12

SRNMF-CAR 0.42\3 0.68\10 0.69\1 0.26\4 0.73\7 0.22\2 0.33\3 0.19\1 0.94\1

SRNMF-CRA 0.42\3 0.69\1 0.68\9 0.26\4 0.73\7 0.19\12 0.33\3 0.19\1 0.93\4

SRNMF-CAA 0.42\3 0.69\1 0.69\1 0.27\1 0.74\1 0.20\9 0.33\3 0.19\1 0.93\4

SRNMF-CJC 0.42\3 0.69\1 0.69\1 0.26\4 0.73\7 0.22\2 0.33\3 0.19\1 0.94\1

SRNMF-CPA 0.42\3 0.69\1 0.69\1 0.27\1 0.74\1 0.21\7 0.33\3 0.19\1 0.93\4

Table 2. The prediction accuracy measured by precision on the 9 real networks. We compare our SRNMF 
method with seventeen well-known methods presented in baseline algorithms. For each real network, 10% of 
its links will be randomly selected to constitute the probe set, and the rest of the links constitute the training set. 
Prediction accuracy is measured by precision. The numbers behind the slash denote the ranking.
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of the nodes and encodes the geometrical information of the networks by constructing a similarity-based matrix. 
By preserving the similarity structure, our framework is more powerful in discrimination than the latent feature 
model. The new framework takes advantages of latent feature model and topological structure. A unified object 
function framework is proposed to derive the SRNMF in terms of NMF loss function and similarity-based reg-
ularization. The SRNMF can be optimized by applying the method of gradient descent. The results demonstrate 
a more effective, robust and stabilized performance of our SRNMF framework compared with the state-of art 
methods.

We compare the proposed SRNMF framework with other seventeen baseline methods on nine real-world 
datasets. These methods can be classified into bipartite-based methods and projection-based methods. 
Bipartite-based methods directly predict links in the bipartite network, and projection-based methods project 
the bipartite network into two monopartite networks to predict new links. Cos, Euc, Jac, Pea, BPR, NBI belong 
to projection-based methods. The rest baseline methods and our SRNMF methods are bipartite-based methods. 
In general, bipartite-based methods performs better than projection-based methods, because projection-based 
methods cause loss of the original topological information in the bipartite network structure. By adding 
similarity-based regularization, our SRNMF methods are siginificantly superior to other bipartite-based methods 
in terms of accuracy and stablity. Despite the passable performance of projection-based methods, NBI and BPR 
exhibit the higher AUC and prediction values.

Some extensions of this work can be explored. One of the concerns is the drawback of NMF, since its high 
complexity of iterative calculation. To reduce the computational complexity, parallelization37,38 and sampling 
methods can be adopted. Also more efficient optimization algorithms can be reconsidered to obtain the global 
optimal solution in NMF. Moreover, the weight to improve the link prediction accuracy in a bipartite network has 
not been reasearched systematically, which is important to be explored in the future.

Methods
Similarity-base Regularized Nonnegative Matrix Factorization (SRNMF). NMF obtains parts-
based representation due to the nonnegative constraints. However, the intrinsic geometrical and discriminating 

AUC GPC Enzymes Ionchannel Malaria
Drug-
target SW Na-net Movielens

Country- 
organization

CN 0.81\20 0.85\20 0.91\15 0.90\18 0.92\11 0.73\20 0.88\15 0.87\22 0.99\15

RA 0.84\1 0.86\19 0.92\13 0.92\11 0.93\3 0.77\12 0.90\11 0.89\17 1.00\1

AA 0.83\4 0.87\10 0.88\20 0.91\14 0.93\3 0.72\22 0.90\11 0.88\19 0.99\15

JC 0.82\17 0.88\5 0.85\21 0.90\18 0.91\16 0.66\26 0.84\22 0.79\26 0.95\24

PA 0.72\25 0.79\24 0.81\25 0.59\27 0.88\23 0.65\27 0.83\25 0.88\19 0.90\26

CAR 0.81\20 0.87\10 0.90\16 0.91\14 0.90\20 0.73\20 0.86\19 0.91\13 0.99\15

CRA 0.82\17 0.89\1 0.93\9 0.91\14 0.93\3 0.77\12 0.89\14 0.92\11 1.00\1

CAA 0.83\4 0.85\21 0.94\2 0.92\11 0.91\16 0.76\14 0.88\15 0.91\13 1.00\1

CJC 0.83\4 0.87\10 0.90\16 0.91\14 0.91\16 0.76\14 0.86\19 0.88\19 0.99\15

CPA 0.82\17 0.87\10 0.90\16 0.90\18 0.90\20 0.74\18 0.87\18 0.92\11 0.97\21

NMF 0.70\26 0.76\25 0.85\21 0.86\22 0.89\22 0.69\24 0.86\19 0.89\17 0.99\15

Cos 0.80\23 0.84\22 0.84\24 0.82\24 0.87\24 0.76\14 0.84\22 0.83\24 0.96\23

Euc 0.73\24 0.69\27 0.68\27 0.60\26 0.79\27 0.67\25 0.76\26 0.80\25 0.87\27

Jac 0.81\20 0.84\22 0.85\21 0.84\23 0.86\25 0.76\14 0.84\22 0.87\22 0.97\21

Pea 0.68\27 0.70\26 0.69\26 0.62\25 0.82\26 0.70\23 0.75\27 0.77\27 0.91\25

BPR 0.84\1 0.89\1 0.92\13 0.90\18 0.92\11 0.74\18 0.88\15 0.91\13 0.99\15

NBI 0.83\4 0.87\10 0.90\16 0.92\11 0.91\16 0.78\11 0.91\6 0.91\13 1.00\1

SRNMF-CN 0.84\1 0.88\5 0.94\2 0.95\1 0.93\3 0.83\2 0.91\6 0.93\9 1.00\1

SRNMF-RA 0.83\4 0.88\5 0.93\9 0.94\5 0.92\11 0.82\3 0.91\6 0.94\3 1.00\1

SRNMF-AA 0.83\4 0.88\5 0.94\2 0.94\5 0.93\3 0.82\3 0.91\11 0.93\9 1.00\1

SRNMF-JC 0.83\4 0.88\5 0.93\9 0.94\5 0.92\11 0.85\1 0.91\6 0.94\3 1.00\1

SRNMF-PA 0.83\4 0.87\10 0.94\2 0.95\1 0.93\3 0.82\3 0.92\1 0.94\3 1.00\1

SRNMF-CAR 0.83\4 0.89\1 0.93\9 0.95\1 0.93\3 0.81\9 0.91\6 0.94\3 1.00\1

SRNMF-CRA 0.83\4 0.87\10 0.94\2 0.94\5 0.94\1 0.82\3 0.92\1 0.94\3 1.00\1

SRNMF-CAA 0.83\4 0.87\10 0.94\2 0.94\5 0.92\11 0.82\3 0.92\1 0.95\2 1.00\1

SRNMF-CJC 0.83\4 0.87\10 0.95\1 0.94\5 0.93\3 0.80\10 0.92\1 0.96\1 1.00\1

SRNMF-CPA 0.83\4 0.89\1 0.94\2 0.95\1 0.94\1 0.82\3 0.92\1 0.94\3 1.00\1

Table 3. The prediction accuracy measured by AUC on the 9 real networks. We compare our SRNMF method 
with seventeen well-known methods presented in baseline algorithms. For each real network, 10% of its 
links will be randomly selected to constitute the probe set, and the rest of the links constitute the training set. 
Prediction accuracy is measured by AUC. The numbers behind the slash denote the ranking.
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structure of the node space cannot be revealed. In this section, we introduce our SRNMF algorithm by incorpo-
rating a similarity based regularizer, which avoids the limitation.

Determination of the number of latent features. There are many methods to determine the number of latent 
features, such as Partition density, Bayesian information criterion and cross validation. These methods need to 
calculate each possible value of the latent features under each number. Thus they are too complex in computation 
to be used in real networks. The PCA39 is used to reduce the dimensionality of a matrix consisting of a large num-
ber of interrelated variables, while still retaining the maximum information of the variation present in the matrix. 
This is achieved by transforming the original matrix to a new set of variables, named principal components (PCs), 
which are uncorrelated and ordered with the first few components explaining most of the variation present in all 
of the original variables. The eigenvalues of the matrix are used to calculate the cumulative contribution rate to 
determine the number of dimension. So in this paper, we determine the number of latent features by calculate the 
cumulative contribution rate and cumulative contribution rate of 95% is adopted to choose PCs.

NMF with Manifold Regularization. NMF aims to find two nonnegative matrices whose product provides a 
good approximation to the original matrix. A natural assumption here could be that if two nodes ui, vj are close 
in the intrinsic geometry of the node distribution, then Aij and (XY)ij are also close to each other. Aij and (XY)ij 
are the connected representations of these two nodes from the original network and a low-dimensional approxi-
mation derived from NMF. This assumption is so-called local invariance assumption40,41. It has been shown that 
learning performance can be significantly enhanced if the topological similarity structure is exploited and the 
local invariance is considered.

Sij is used to measure the closeness of two nodes ui and vj. The different similarity measures such as CN, AA, 
RA, JC, PA, CAR, CRA, CAA, CJC, CPA can be used in this paper (for details see baseline algorithms). With the 
above defined similarity matrix S, we can use the following term to measure the smoothness of the low dimen-
sional representation

R A x y S1
2 (16)i

n

j

m

ij
k

K

ik kj ij
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Figure 2. Precision under different methods with different sizes of training sets on four real networks. We 
compare our SRNMF method (including SRNMF-CN, SRNMF-RA, SRNMF-AA, SRNMF-JC, SRNMF-PA, 
SRNMF-CAR, SRNMF-CRA, SRNMF-CAA, SRNMF-CJC and SRNMF-CPA) with seventeen well-knowm 
methods (including CN, RA, AA, JC, PA, CAR, CRA, CAA, CJC,CPA, NMF, Cos, Euc, Jac, Pea, BPR and NBI) 
presented in baseline algorithms and the precision is returned with the average over 100 runs. X-axis denotes 
the fraction of links in trainging set. Y-axis denotes the each method.
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Figure 3. AUC under different methods with different sizes of training sets on four real networks. We compare 
our SRNMF method (including SRNMF-CN, SRNMF-RA, SRNMF-AA, SRNMF-JC, SRNMF-PA, SRNMF-
CAR, SRNMF-CRA, SRNMF-CAA, SRNMF-CJC and SRNMF-CPA) with seventeen well-known methods 
(including CN, RA, AA, JC, PA, CAR, CRA, CAA, CJC, CPA, NMF, Cos, Euc, Jac, Pea, BPR and NBI) presented 
in baseline algorithms and the AUC is returned with the average over 100 runs. X-axis denotes the fraction of 
links in trainging set. Y-axis denotes the each method.

Figure 4. Precision sensitivity analysis on drug-target dataset. The precision results of our proposed SRNMF 
framework (including SRNMF-CN, SRNMF-RA, SRNMF-AA, SRNMF-JC, SRNMF-PA, SRNMF-CAR, 
SRNMF-CRA, SRNMF-CAA, SRNMF-CJC and SRNMF-CPA) using the drug-target dataset. X-axis denotes γ 
value, Y-axis denotes λ value.
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By miniming R, we expect that if two nodes ui and vj are close (i.e., Sij is big), Aij and ∑ ⋅= x yk
K

ik kj1  are also close 
to each other. Combing this similarity-based regularizer with the original NMF objective function leads to our 
SRNMF. We now consider Euclidean distance formulations of NMF latent feature as the optimization problem, 
so the proposed model can be defined as the following constrained nonlinear programming

γ λ= − + +

. . ≥
≥

⁎O x y A XY R XY

s t X
Y

min ( , ) 1
2

0,
0 (17)

1 F
2

Here, λ ≥ 0 and γ ≥ 0 are the balance parameters, ||XY||* is the nuclear norm which is the sum of the singular val-
ues of XY. The benefit of the nuclear norm regularization is that, with a sufficiently large regularization parameter, 
the final solution will be low-rank42.

We utilize a standard reformulation of the nuclear norm which is more flexible to manipulate43.
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Combining Equation (17) and Equation (18), the objective function of our proposed SRNMF model can be 
rewritten as
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The objective function O(x, y) in (19) is not convex in both x and y together. Therefore, it is unrealistic to expect 
an algorithm to find the global minima. To address this problem, two iterative algorithms are introduced.

Let ϕik and ψkj be the lagrange multipliers for constraint xik ≥ 0 and ykj ≥ 0, respectively. The Lagrange L is:
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The partial derivatives of L with respect to xik and ykj are
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Using the KKT conditions ϕikxik = 0 and ψ =y 0kj kj , we get the following equations for xik and ykj
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The proposed SRNMF framework. The low-dimensional approximation matrix of the network A* can be 
obtained by the above optimal procedures and the pseudocode is presented in algorithm 1.

Complexity analysis. Here, we give a simple complexity analysis of the proposed SRNMF framework. The 
most time-consuming part occurs in updating X and Y. For each iteration, the time cost of AY S A Y( ( ) )T Tγ+ ⋅  
is O V W K V W K V W( )+ + , the time cost of γ λ+ ⋅ +XYY S XY Y X( ( ( )) )T T  is O V K W K( 2 2+ +

+ +V W K V W V K), thus the total time cost of the algorithm is + + +O N V W K V K W K( (iter
2 2

+V W V K O N V W K)) ( ( ))iter~ , where Niter is the number of iterations, V  and W  denote the number of 
two different types of nodes respectively. Many real-world networks are known to be sparse, so the final time cost 
can be denoted as O N E K( ( ))iter , where E  is the number of the edges in the bipartite network.
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