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Abstract

Multigene panel testing for cancer predisposition mutations is becoming routine in

clinical care. However, the gene content of panels offered by testing laboratories vary

significantly, and data on mutation detection rates by gene and by the panel is limited,

causing confusion among clinicians on which test to order. Using results from 147,994

multigene panel tests conducted at Ambry Genetics, we built an interactive prevalence

tool to explore how differences in ethnicity, age of onset, and personal and family history

of different cancers affect the prevalence of pathogenic mutations in 31 cancer pre-

disposition genes, across various clinically available hereditary cancer gene panels. Over

13,000 mutation carriers were identified in this high‐risk population. Most were non‐
Hispanic white (74%, n =109,537), but also Black (n =10,875), Ashkenazi Jewish

(n = 10,464), Hispanic (n =10,028), and Asian (n =7,090). The most prevalent cancer

types were breast (50%), ovarian (6.6%), and colorectal (4.7%), which is expected based

on genetic testing guidelines and clinician referral for testing. The Hereditary Cancer

Multi‐Gene Panel Prevalence Tool presented here can be used to provide insight into the

prevalence of mutations on a per‐gene and per‐multigene panel basis, while conditioning

on multiple custom phenotypic variables to include race and cancer type.
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1 | INTRODUCTION

Between 5% and 10% of all cancers are associated with an inherited

mutation in a cancer predisposition gene. The high rate of mutations has

led to a plethora of academic researchers and genetic testing laboratories

focused on defining the risk and prevalence of mutations in multiple

genes and how they are associated with various cancers. In an attempt to

provide some guidance into who should be tested for predisposition

mutations, the National Comprehensive Cancer Network (NCCN) set

criteria to categorize individuals who are likely to contain a mutation in a

predisposition gene—primarily based on an individual's personal and fa-

mily history of cancers. However, recent data have demonstrated lim-

itations in these selection criteria (Beitsch et al., 2019; LaDuca

et al., 2019).

Historically, pretest probability models have been the gold standard

to assess the likelihood that an individual is a mutation carrier in

BRCA1/2. These include BOADICEA (Antoniou et al., 2008; Antoniou,

Pharoah, Smith, & Easton, 2004), BRCAPRO (Biswas et al., 2013;

Parmigiani, Berry, & Aguilar, 1998), the Myriad II (Frank et al., 1998;

Frank et al., 2002), IBIS (Tyrer, Duffy, & Cuzick, 2004), Penn II (Couch
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et al., 1997; The Penn II Risk Model, BRCA 1 and BRCA 2 Mutation

Predictor), and Manchester (Evans et al., 2004; Evans, Lalloo, Wallace, &

Rahman, 2005) models for breast cancers and MMRpro (Chen

et al., 2006) and PREMM (Kastrinos et al., 2011) for Lynch syndrome. All

of these models were developed on relatively small patient populations

(<10,000), and each their own unique limitations. More recently, Color

Genomics released a website allowing quick perusal of genetic results

from 50,000 individuals (Color Data Portal), with filtering criteria to

better reflect the clinical characteristics of a given patient.

Here, we describe the development and demonstrate the func-

tionality of an open‐access web‐based tool that allows the end‐user
to query mutation prevalence across 49 genes and nine cancer in-

dications with fine‐grained control of demographic and clinical his-

tory factors taken from 147,994 individuals.

2 | DATA SPECIFICATION

Data type Interactive tables and figures

Data acquisition

method

NGS

Data format Analyzed

Experimental

factors

147,994 Individuals referred to Ambry Genetics

for hereditary cancer testing.

Experimental

features

Data were formatted into a custom R

DataFrame (v.3.3.3) object and loaded into

an RShiny (v1.1.0) application. Filtering uses

tidyverse (v.1.2.1), graphics with

ggplot2 (v.2.3.1).

Data source

location

NA

Data

accessibility

The application is located at https://www.

ambrygen.com/prevalence-tool.

3 | IMPACT OF DATA

This web‐based tool represents data from 147,994 individuals re-

ferred to Ambry Genetics for hereditary cancer testing, which is an

order of magnitude larger than most of the datasets used for pre-

vious models. It also contains the largest number of testing results for

Asian, Black, and Hispanic populations.

While the Hereditary Cancer Multi‐Gene Panel Prevalence Tool

was primarily designed to support clinical decision making, it could

also serve as a useful resource for researchers interested in studying

a specific cohort. This tool would aid investigators in the study design

process by allowing them to analyze broad trends and assess feasi-

bility based on the size of a given cohort. This tool allows the flex-

ibility to search the parameters of interest in an appropriate cohort

rather than relying only on data breakdowns that others have pre-

viously published or asking targeted questions to the owners of the

cohort data. For example, the tool shows that in individuals under the

age of 45, who had ER‐positive breast cancer as their first cancer,

mutations in the CHEK2 gene are found in 4.3% of non‐Hispanic

whites compared to only 0.73% of Blacks. A researcher could assess

whether the sample size by ethnicity is sufficient to address their

research questions.

4 | EXPERIMENTAL DESIGN, MATERIAL
AND METHODS

Study subjects included patients who underwent multigene panel

testing through Ambry Genetics (Aliso Viejo, CA) between March

2012 and December 2016. Individuals tested on the following panels

were included BRCAplus®, BreastNext®, CancerNext‐Expanded®,
CancerNext®, ColoNext®, GYNPlus®, OvaNext®, and PancNext®.

Analysis of most genes on each panel consists of full gene

sequencing of coding regions plus 5 base pairs into exon/intron

boundaries (see Table 1) with some exceptions (LaDuca et al., 2019).

TABLE 1 Panels and genes used in this study

Panel Genes

BRCAplus BRCA1, BRCA2, CDH1, PALB2, PTEN, TP53

BreastNext ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MRE11A, MUTYH, NBN, NF1, PALB2, PTEN, RAD50, RAD51C,

RAD51D, TP53

CancerNextEx-

panded

APC, ATM, BAP1, BARD1, BRCA1, BRCA2, BRIP1, BMPR1A, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, FH, FLCN, GREM1, MAX,

MEN1, MET, MITF, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, POLE, PTEN, RAD50,

RAD51C, RAD51D, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, SMAD4, SMARCA4, STK11, TMEM127, TP53, TSC1,

TSC2, VHL

CancerNext APC, ATM, BARD1, BRCA1, BRCA2, BRIP1, BMPR1A, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, GREM1, MLH1, MRE11A, MSH2,

MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, POLE, PTEN, RAD50, RAD51C, RAD51D, SMAD4, SMARCA4,

STK11, TP53

ColoNext APC, BMPR1A, CDH1, CHEK2, EPCAM, GREM1, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4,

STK11, TP53

GYNPlus BRCA1, BRCA2, BRIP1, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, PTEN, RAD51C, RAD51D, TP53

OvaNext ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2,

PTEN, RAD50, RAD51C, RAD51D, SMARCA4, STK11, TP53

PancNext APC, ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53
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Clinical histories were obtained from clinician‐completed test re-

quisition forms (TRFs), along with clinical documentation such as

pedigrees and clinic notes, when provided. Prior research has

demonstrated a high level of accuracy of such clinical information

provided on TRFs (LaDuca et al., 2018). This study was deemed

exempt from review by Western Institutional Review Board. Personal

and family histories for breast, colorectal, melanoma, ovarian, pan-

creatic, prostate, thyroid, reanl, gastric, leukemias, biliary, and uterine/

endometrial were included if provided. Individuals were grouped into

one of five racial and ethnic categories based on self‐report: and

non‐Hispanic White, Black, Ashkenazi Jewish, Asian, or Hispanic

(see Table 2). Only individuals between 18 and 90 years old are in-

cluded. For breast cancer, data from estrogen receptor (ER), proges-

terone receptor (PR), and human epidermal growth factor receptor 2

(HER2) statuses were included where available. Pathogenic mutations

include variants with a classification of “pathogenic” or “likely patho-

genic” based on a five tier variant classification scheme (Pesaran

et al., 2016). Data were formatted into a custom R DataFrame

(v. 3.3.3) object and loaded into an RShiny (v1.1.0) application.

Filtering uses tidyverse (v.1.2.1), graphics with ggplot2 (v. 2.3.1).

The application is located at https://www.ambrygen.com/prevalence-

tool (Figure 1).

TABLE 2 Population demographics

Non‐Hispanic white Black Ashkenazi Jewish Hispanic Asian Total

(N = 109,537) (N = 10,875) (N = 10,464) (N = 10,028) (N = 7,090) (N = 147,994)

Breast

Unaffected 51,341 4,042 5,538 4,816 2,868 68,605

Mean Age of Onset (SD) 50.3 (11.4) 47.2 (11.2) 52.6 (11.6) 46.2 (10.7) 45.6 (10.3) 49.7 (11.5)

Range 12.0–90.0 15.0–89.0 20.0–89.0 16.0–86.0 20.0–88.0 12.0–90.0

Ovarian

Unaffected 100,551 10,396 9,964 9,410 6,494 136,815

Mean age of onset (SD) 57.3 (13.4) 54.5 (14.0) 58.8 (13.7) 51.8 (14.3) 52.3 (13.6) 56.7 (13.6)

Range 5.0–90.0 14.0–86.0 11.0–88.0 16.0–86.0 17.0–88.0 5.0–90.0

Colorectal

Unaffected 103,169 10,268 10,112 9,467 6,729 139,745

Mean age of onset (SD) 50.0 (13.2) 47.6 (12.0) 52.6 (13.6) 45.5 (12.6) 45.2 (11.2) 49.4 (13.1)

Range 8.0–89.0 18.0–85.0 20.0–88.0 16.0–87.0 21.0–82.0 8.0–89.0

Uterine or endometrial

Unaffected 105,734 10,651 10,167 9,725 6,892 143,169

Mean age of onset (SD) 54.3 (12.4) 52.9 (13.2) 57.4 (11.4) 47.5 (13.1) 48.9 (10.7) 53.8 (12.5)

Range 17.0–90.0 20.0–80.0 23.0–84.0 18.0–84.0 23.0–78.0 17.0–90.0

Pancreatic

Unaffected 108,215 10,773 10,257 9,945 7,026 146,216

Mean age of onset (SD) 60.8 (11.6) 56.8 (11.9) 64.7 (11.0) 54.9 (12.9) 53.7 (14.7) 60.5 (12.0)

Range 20.0–89.0 26.0–80.0 31.0–88.0 22.0–82.0 9.0–83.0 9.0–89.0

Thyroid

Unaffected 107,578 10,773 10,212 9,875 6,992 145,430

Mean age of onset (SD) 45.2 (13.8) 46.6 (12.2) 46.7 (13.8) 45.8 (13.3) 44.2 (11.4) 45.4 (13.7)

Range 8.0–89.0 21.0–78.0 6.0–75.0 16.0–81.0 14.0–74.0 6.0–89.0

Prostate

Unaffected 108,841 10,826 10,362 10,004 7,077 147,110

Mean age of onset (SD) 59.9 (8.6) 58.9 (7.7) 62.6 (7.9) 61.0 (9.4) 63.2 (8.9) 60.2 (8.5)

Range 34.0–85.0 39.0–78.0 45.0–81.0 46.0–84.0 50.0–82.0 34.0–85.0

Kidney

Unaffected 108,520 10,790 10,369 9,938 7,062 146,679

Mean age of onset (SD) 53.0 (14.8) 51.4 (14.3) 56.4 (12.2) 47.9 (12.3) 51.6 (11.0) 52.7 (14.4)

Range 1.0–87.0 6.0–77.0 27.0–79.0 2.0–74.0 31.0–74.0 1.0–87.0

Melanoma

Unaffected 106,848 10,863 10,191 10,000 7,080 144,982

Mean age of onset (SD) 47.7 (14.4) 43.9 (16.2) 49.3 (14.6) 44.5 (14.9) 43.4 (15.3) 47.8 (14.5)

Range 1.5–90.0 19.0–69.0 3.0–90.0 21.0–73.0 18.0–69.0 1.5–90.0
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5 | DISCUSSION

As a demonstration of the utility of the tool, we posed the following

question: “How different are mutation frequencies in the MLH1

gene from colorectal cancer cases with a family history of pan-

creatic cancer versus the family history of prostate cancers?” To

answer this question, the data were filtered for individuals with

“First Cancer” as “Colorectal”, and then selecting either “Prostate”

or “Pancreatic” in the box labeled “What cancers are in the family?”.

After selecting the “By Gene” tab, the number of positive mutations

and the number of tested per gene are returned for all genes, in-

cluding MLH1. The numbers of individuals tested and positive are

returned for all genes, including MLH1, which in this case was 26/

845 (3.08%) in pancreatic cancer family histories versus 22/1477

(1.76%) with a family history of prostate cancer. Feeding these

values into a Fisher's exact test confirm that pathogenic mutations

were significantly higher in colorectal cases with a family history of

pancreatic cancer (p = .0149).

5.1 | Limitations of existing models

BOADICEA, BRCAPRO, Myriad II, IBIS, Penn II, and Manchester

models for breast cancers are limited to the utility of predictions

for BRCA1 and BRCA2, as they are usually the only genes ac-

counted for in these predictions due to the relatively low fre-

quency of pathogenic mutations in other genes, however,

BOADACEA now also provides a pretest probability for ATM,

PALB2, and CHEK2 mutations (Lee et al., 2019). These models were

found to be reasonably accurate (Lindor et al., 2010), however,

they were all derived from a small number of cases or families

which may present bias. For example, the Penn II model was de-

rived from 169 women of whom 16% were positive for BRCA1

mutations. Manchester, BRCAPRO, and BOADICEA were devel-

oped from 1121, 2713, and 2785 probands or families, respec-

tively, of which ~20% had pathogenic mutations in either BRCA1 or

BRCA2. The Myriad prevalence tables contain information from

10,000 consecutive cases through its clinical testing service;

however, the data has not been updated since 2010, and thus may

no longer be representative of the population referred for her-

editary cancer testing today.

While they have been useful, a key limitation to all pretest

probability models and existing prevalence tables/websites is the

granularity at which they are published. The Myriad tables only

contain two populations, Ashkenazi and non‐Ashkenazi Jewish.

Family history information is limited to select combinations of

breast and/or ovarian cancer personal and family history, even

though there may be histories of other cancers. Some modeling

F IGURE 1 Screenshot of the interactive tool
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tools can be overwhelmingly complicated or require downloading

before running. If presented with insufficient numbers of exemplar

data—or lack a strong statistical association for risk or outcome—

then the model may not converge, failing to produce an accurate

prediction.

Simpler, interactive tools are making mutation prevalence data

significantly easier to access. In 2018, Color Genomics released a

website allowing quick perusal of genetic results from 50,000 in-

dividuals (Color Data Portal). The user interface allows clinicians to

estimate more refined mutation prevalence data using filtering cri-

teria to better reflect the clinical characteristics of a given patient;

however, the vast majority of tested individuals (n~40,000) do not

have a personal history of cancer, which may limit the utility of

this tool.

The Interactive Prevalence Tables From Multi‐Gene Panel

Testing tool described here come with limitations as well, since as-

certainment is based on a cohort of patients referred for hereditary

cancer genetic testing due to clinical suspicion of hereditary cancer

predisposition. Prevalence estimates may not be generalizable to the

general population, but rather should be viewed in the context of the

clinical and family history provided. The clinical and demographic

data is limited to that provided to the researchers and testing la-

boratory, although such a limitation is a reality in any cohort re-

presented in a pretest probability model. In addition, while the size of

the cohort contributing to this tool is orders of magnitude higher

than that in most other currently available pretest probability models

or tools, greater numbers of patients are still needed, particularly for

ethnic minority populations, genes in which mutations are rare, and

queries for highly specific patient characteristics.

Despite these limitations, this tool is representative of patients

referred for hereditary cancer panels and is therefore highly relevant

to current genetic testing practices. Continued efforts to update this

tool and others like it will provide continuous benefits to patients and

providers by supplying relevant information in a timely manner.

Thanks to large scale data sharing from commercial and academic

entities, it is now possible to explore complex queries that more

accurately reflect the clinical experience through a simple web‐based
interface that draws upon data from large cohorts of patients re-

cently referred for hereditary cancer multi‐gene panel testing.
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