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Abstract: In nature, secondary metabolites have been proven to be the essential communication me-
dia between co-occurring microorganisms and to influence their relationship with each other. In this
study, we conducted a metabolomics survey of the secondary metabolites of an artificial co-culture
related to a hydrothermal vent fungal–bacterial community comprising Aspergillus sclerotiorum and
Streptomyces and their reciprocal relationship. The fungal strain was found to increase the secretion of
notoamides and the compound cyclo(Pro-Trp) produced by the actinomycetes strain was discovered
to be the responsible molecule. This led to the hypothesis that the fungi transformed cyclo(Pro-Trp)
synthesized by the actinomycetes as the biosynthetic precursors of notoamides in the chemical
communication. Further analysis showed Streptomyces sp. WU20 was efficient in transforming amino
acids into cyclo(Pro-Trp) and adding tryptophan as well as proline into the chemical communication
enhanced the induction of the notoamide accumulation. Thus, we propose that the microbial transfor-
mation during the synthetic metabolically-mediated chemical communication might be a promising
means of speeding up the discovery of novel bioactive molecules. The objective of this research was
to clarify the mechanism of microbial transformation for the chemical communication. Besides, this
research also highlights the utility of mass spectrometry-based metabolomics as an effective tool in
the direct biochemical analysis of community metabolites.

Keywords: secondary metabolites; co-occurring microorganisms; fungal–bacterial community;
hydrothermal vent; notoamides

1. Introduction

Natural products (NPs) continue to play a significant role in the discovery and devel-
opment of new drugs, and this is one of the main motivations for continuing research in the
field. Microorganisms have been proven to possess the rich genetic potential to synthesize
structurally and functionally diverse secondary metabolites (SMs) [1–3]. However, the
number of observed NPs produced in standard laboratory conditions is in contradiction to
the number of NPs gene clusters present in sequenced genomes (the former being much
less) [4,5]. To overcome such limitations, various culture-based approaches have been
exploited to expand chemical diversity, such as the one strain many compounds (OSMAC)
approach [6], co-cultures [7], epigenetic modification [8], etc. Among these strategies, mi-
crobial co-culture, consisting of multiple microorganisms together in the same confined
environment has attracted tremendous attention. It allows the microorganisms to initiate
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chemical interactions and such biological stimuli result in the biosynthesis of diverse NPs
by unlocking cryptic pathway expression [9].

Many synthetic microbial communities generated by co-culture techniques are com-
posed of two or more unrelated strains with different backgrounds, which rarely mimic
natural ecological interactions [10]. As the “chemical language” in natural microbial com-
munities, SMs are often involved in interspecies interactions or appear as a result of them,
such as in representative events including chemical attack and defense, expansion of the
chemical space, resource competition, antiviral infection, predation and anti-predator
behavior, and chromosome remodeling [11]. For instance, metabolite exchanges, metab-
olization and/or detoxification of defense molecules have been deciphered in co-culture
systems utilizing the cohabitant strains that originally evolved in the same micro-ecological
environment [12,13].

In co-culture experiments, another challenging goal is to identify secondary metabo-
lites that are either produced de novo or are up- or downregulated upon interspecies
competition [14]. Mass spectrometric (MS) detection generates large datasets, and in ad-
dition to the major metabolites, minor constituents can be sensitively and selectively de-
tected [15]. Recently, advances in MS-based comparative metabolomics analyses have been
coupled to enable high-throughput analysis of secondary metabolites for the comparison of
chemical clues in cellular processes, and intra-organ and inter-organ communication [16].
Correspondingly, metabolomics information helps researchers to gain insights into how
microorganisms respond to the interspecies chemical communication and may also provide
a means of investigating the biological mechanisms of newly isolated NPs, based on the
metabolic changes engendered within the synthetic communities [17].

In this study, we performed a metabolomics survey of the secondary metabolites of an
artificial co-culture related to a hydrothermal vent fungal–bacterial community comprising
Aspergillus sclerotiorum DX9 and Streptomyces sp. WU20. Both strains were isolated from
sulfur-rich sediments around the Kuishantao hydrothermal vent off Taiwan. The fungal
strain was found to increase the secretion of notoamides, and cyclo(Pro-Trp) produced
by the actinomycetes was discovered to be the responsible molecule, which led to the
hypothesis that cyclo(Pro-Trp) secreted by the actinomycetes was the precursor of fungal
notoamides in the chemical communication. Further analysis showed that Streptomyces sp.
WU20 was efficient in transforming amino acids into cyclo(Pro-Trp). Moreover, adding
tryptophan and proline into the chemical communication enhanced the induction of the
notoamide accumulation. The objective of this research was to clarify the mechanism of
microbial transformation for the chemical communications.

2. Results and Discussion
2.1. Mass Spectrometry-Based Comparative Metabolomics Profiling of Synthetic Multispecies
Microbial Communities Locating Major Discriminating Compounds Induced by
Metabolically-Mediated Interactions

Microbial species isolated from the same sample are likely to co-evolve through mi-
crobial symbiosis in the natural environment [18]. In this study, we aimed to investigate
the chemical communication of synthetic multispecies microbial communities, between
two microbial strains with the same background, and specifically, a combination of fungal
and bacterial strains. Employing our previously-developed co-culturing device (Supple-
mentary Materials, Figure S1) [19,20], we screened nine fungal–bacterial combinations
in the microbial culture collection isolated from the same hydrothermal vent sediment
sample collected from Kueishantao, Taiwan. A stable fungal–bacterial community com-
posed of Aspergillus sclerotiorum DX9 (host strain located outside the guest strain with
larger biomass) and Streptomyces sp. WU20 (guest strain located inside the host strain with
smaller biomass) was successfully generated for metabolomics investigation (Figure S2).
The chemical interactions with the bacterial strain Streptomyces sp. WU20 were considered
as ecological cues to access cryptic biosynthetic pathways of Aspergillus sclerotiorum DX9.
The major molecules that were uniquely detected in the co-cultures were deduced to be
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mainly synthesized by the fungal strain as it contributed a larger proportion of the total
culture biomass.

A combination of ultra-high-performance liquid chromatography (UHPLC) and high-
resolution mass spectrometry (HRMS) was employed to analyze the metabolomes. Due
to the fact that many acidic and nonpolar compounds do not ionize well in positive elec-
trospray ionization mode (ESI+), negative electrospray ionization (ESI-) was also applied
to cover as many SMs as possible in the investigations [21]. The metabolic profiles, i.e.,
the presence and abundance of detected features, for both the co-culture and monocul-
ture samples were compared using principal component analysis (PCA) [22]. The PCA
result showed the clustering of the samples in three groups, indicating that the co-culture
fingerprints did not overlap with the two corresponding monoculture clusters (Figure 1).
The separation meant that the datasets contained information that allowed for the dis-
crimination of the chemical composition of the co-cultures from that of the monocultures,
implying that chemically-mediated interactions modulated the biosynthetic pathways for
the production of secondary metabolites.
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Figure 1. Scores plot based on collected markers for the co-culture group and two related monocul-
ture groups.

Then, orthogonal projections to latent structure coupled with discriminant analysis
(OPLS-DA) (including two OPLS-DA models for the comparison of the co-culture with each
corresponding monoculture) was utilized to locate mass spectrometric markers exclusively
related to the co-culture group [23]. Each model permits the classification of features
according to its capacity to separate two groups (the co-culture and one of the pure-strain
cultures). In order to select features that are highly specific to the co-culture compared
to a single pure-strain culture, the datasets of the co-culture and datasets of a related
monoculture are compared in an S-plot. In this plot, the x-axis denotes the contribution of
a marker to the differences in the grouping, and the y-axis denotes the confidence of this
contribution. Thus, the markers in the lower-left corner are characteristic of the co-culture,
whereas the markers in the upper right corner are characteristic of the monoculture.

In detail, the datasets of both the co-culture and the bacterial monoculture were
compared in the first-step S-plot (Figure 2A). The green markers in the first quadrant
represent the molecules produced by Streptomyces sp. WU20 in the bacterial monoculture
as well as secondary metabolites secreted by bacteria in the co-culture, which can also
result in the discrimination of the co-culture from the fungal monoculture. The red markers
shown in the third quadrant are composed of molecules produced by the fungi in both
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the co-culture and monoculture. Thus, they were then included in the second OPLS-DA
(Figure 2B) for the comparison of the co-culture and the fungal monoculture. The markers
shown in the first quadrant are characteristic of the Aspergillus monoculture representing
the secondary metabolites that were downregulated upon chemical interactions with
Streptomyces in the co-culture. The presence of these markers also indicates shifts in the
biosynthetic pathways and metabolic regulation upon chemical communication with
bacteria. The markers in the third quadrant represent the secondary metabolites, which
were either produced de novo or were upregulated in the co-cultures and the markers in
the lower-left corner are the main contributions from the co-cultures to the differences in
metabolic profiles. Four markers in the lower-left corner were recognized as four positive
ions at m/z 448.2, 482.2, 446.2, and 482.2. These four features were set as the four targets
with the highest priority in the next step.

Mar. Drugs 2021, 19, 526 4 of 15 
 

 

discrimination of the co-culture from the fungal monoculture. The red markers shown in 
the third quadrant are composed of molecules produced by the fungi in both the co-cul-
ture and monoculture. Thus, they were then included in the second OPLS-DA (Figure 2B) 
for the comparison of the co-culture and the fungal monoculture. The markers shown in 
the first quadrant are characteristic of the Aspergillus monoculture representing the sec-
ondary metabolites that were downregulated upon chemical interactions with Streptomy-
ces in the co-culture. The presence of these markers also indicates shifts in the biosynthetic 
pathways and metabolic regulation upon chemical communication with bacteria. The 
markers in the third quadrant represent the secondary metabolites, which were either pro-
duced de novo or were upregulated in the co-cultures and the markers in the lower-left 
corner are the main contributions from the co-cultures to the differences in metabolic pro-
files. Four markers in the lower-left corner were recognized as four positive ions at m/z 
448.2, 482.2, 446.2, and 482.2. These four features were set as the four targets with the 
highest priority in the next step. 

 
Figure 2. Two-step OPLS-DA for locating major discriminating compounds induced by fungal–bac-
terial chemical communication. The S-plot of the co-culture samples and the bacterial monoculture 
samples was shown in (A). The markers in the first quadrant were excluded as they mainly repre-
sented molecules produced by Streptomyces. The markers in the third quadrant were then included 
into the second OPLS-DA (B) for the comparison of the co-culture and the fungal monoculture. 

2.2. Mass Spectral Molecular Networking Facilitating Structural Elucidation of Target Co-
Culture-Induced Metabolites 

As all four markers with the highest priority identified in the discriminant analysis 
were detected as positive ions, two mass spectrometry datasets belonging to the co-culture 

Figure 2. Two-step OPLS-DA for locating major discriminating compounds induced by fungal–bacterial
chemical communication. The S-plot of the co-culture samples and the bacterial monoculture samples
was shown in (A). The markers in the first quadrant were excluded as they mainly represented
molecules produced by Streptomyces. The markers in the third quadrant were then included into the
second OPLS-DA (B) for the comparison of the co-culture and the fungal monoculture.

2.2. Mass Spectral Molecular Networking Facilitating Structural Elucidation of Target
Co-Culture-Induced Metabolites

As all four markers with the highest priority identified in the discriminant analysis
were detected as positive ions, two mass spectrometry datasets belonging to the co-culture
group and the fungal monoculture in the positive-ion mode were transferred onto GNPS to
generate a comprehensive network (Figure S3). As a result, four targeted features positively-
correlated with the co-culture group were present in the network (represented as yellow
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nodes); these features were detected in both datasets (Figure 3). That is to say, these four
molecules were produced under both the co-culture and the monoculture but their con-
centration in the chemical communication increased when compared to the monocultures.
The feature at m/z 448.2 in an 11-membered cluster was putatively identified as notoamide
R ([M + H]+, C26H30N3O4), which is a known secondary metabolite [24] recognized in the
GNPS molecular library. Another target at m/z 446.2 in the same cluster was recognized by
the GNPS molecular library as notoamide I [25] ([M + H]+, C26H28N3O4), which possesses
a carbon backbone similar to notoamide R. The marker at m/z 462.2 in a two-membered
family was matched with notoamide F [25] ([M + H]+, C26H28N3O4) and its neighboring
yellow node at m/z 432.2 was found to be stephacidin A, which also has a similar chemical
structure. Besides, the feature at m/z 482.2 ([M + H]+, calculated for C26H32N3O6), was
elucidated as a previously undescribed notoamide-type structure (named as notoamide X)
by spectroscopic data analyses following the natural product isolation of crude extracts
from the large-scale monoculture (for detailed structure elucidation, see the Supplementary
Materials). Thus, the four targeted positive ions at m/z 448.2, 482.2, 446.2, and 482.2 were
presumed to be notoamide R, notoamide X, notoamide I and notoamide F, respectively.
Examination of the initial PCA data verified that these four related alkaloids all showed
significantly enhanced levels (6-fold, 3-fold, 2.5-fold and 2-fold increase, respectively)
in the co-cultures when compared to monoculture controls (Table S2). The production of
stephacidin A was distinctly different in the co-cultures and monocultures, with the content
in the co-culture group enhanced by a factor up to 1.5 compared with the monocultures.
It is worth noting that notoamide B, a chemical isomer of notoamide R at m/z 448.2 was
detected with a different retention time in both co-cultures and monocultures, whereas
there was no significant difference between the two groups. To further investigate the
differences between the co-cultured Aspergillus sclerotiorum DX9 and the corresponding
monoculture, fungal growth and the production of notoamide R were both examined at
24 h intervals (Figure 4). During the total 14 days of monitoring, the co-cultured fungi
showed slightly slower growth in the presence of Streptomyces sp. WU20 compared to
the monoculture. However, despite having less biomass, the co-cultured strain enhanced
the biosynthesis of notoamide R up to 7-fold, which also indicated the accumulation of
notoamide-type metabolites in the synthetic fungal–bacterial chemical communication.
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Aspergillus sclerotiorum (circle) and the corresponding monoculture (square). Values represent
means ± standard errors of results from three independent replicates.

Besides, the structures of these five alkaloids were closely related, but only two
notoamides were found to cluster in the same molecular family. This outcome clearly
hinted at the limitation of the GNPS spectral networking algorithm in clustering all the
structurally related nodes. Despite populating three different molecular clusters, notoamide
X, notoamide I, notoamide F and stephacidin A scored more than 75% similarities (77%,
94%, 93%, and 87%, respectively) to notoamide R, which was set as a reference feature in the
similarity scoring function in Peakview (version 2.1, AB SCIEX, Framingham, MA, USA). In
a previously described workflow [20], we defined the leads with similarities above 70% as
notoamide-similar markers, and linked other molecular clusters where notoamide-similar
markers located to the molecular cluster related to notoamide R. All of these five molecules
were then included in a newly generated molecular map (Figure 3). Thus, the coverage of
notoamide-related features was greatly increased by this combination of GNPS molecular
networking and Peakview similarity scoring.
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2.3. Induction-Effect-Guided Isolation Revealing Cyclo(Pro-Trp) Secreted by Streptomyces as
Potential Molecular Inducers of Fungal Secondary Metabolites in the Co-Cultures

Bacterial metabolites in the fungal–bacterial chemical communication were able to
induce the metabolic production of co-culturing fungi [19]. To investigate the possible mech-
anism of the accumulation of these alkaloids, the monoculture of Aspergillus sclerotiorum
DX9 was fed with 10 mg crude extracts from the monoculture of Streptomyces. Interestingly,
the production of four target notoamides (notoamide F, I, R and X) by Aspergillus fed with
such crude extracts increased significantly (p < 0.05, Figure 5), compared with the produc-
tion by untreated fungi. Based on this fact, we confirmed that certain molecules secreted
by Streptomyces sp. WU20 acting as starter molecules or as elicitors of specific biosynthetic
pathways, rather than cell-to-cell contact with or nutrient depletion by bacteria, induced
the fungal production of notoamides in the co-culture. To tackle these potential molecular
inducers, inductive effects derived from the fungal monocultures fed with fractions of
bacterial crude extracts were employed as guides in the isolation and purification of active
molecules in the bacterial monocultures, following a strategy similar to bioassay-guided
fractionation. Finally, a known cyclodipeptide cyclo(Pro-Trp) (also known as brevianamide
F [26]), as one of the major substances in the Streptomyces metabolome, was discovered to be
the molecule responsible for the accumulation of notoamides. When Aspergillus sclerotiorum
DX9 was fed with 2 mg of purified cyclo(Pro-Trp) on the fourth day after inoculation, a
similar induction of notoamides was observed after 14-day fermentation, with the level of
all five notoamide-type structures significantly enhanced (p < 0.05, Figure 5).
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Previous research on the biosynthesis of notoamide metabolites from fungal metabolomes
has proved that cyclo(Pro-Trp) is an essential precursor in the biosynthetic process of no-
toamides [27]. In the reported biosynthetic pathway, Aspergillus sclerotiorum transformed
cyclo(Pro-Trp) to obtain various notoamide structures through multiple steps such as
isopentene derivation, oxidation, and intramolecular Diels-Alder reaction (Figure 6A). This
meant that Aspergillus sclerotiorum had a complete intracellular enzyme system catalyzing
the entire synthesis of notoamides by consuming cyclo(Pro-Trp). Therefore, we hypoth-
esized that the accumulation effect of the notoamide-type structure in the chemically-
mediated chemical communication might be due to the efficient biotransformation of
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cyclo(Pro-Trp) by fungi in the interspecies chemical communication. In the artificial micro-
bial community established in the experiment, in addition to its own intracellular synthesis
of cyclo(Pro-Trp), the fungi also assimilated the same compound secreted by co-culturing
Streptomyces as a substrate to synthesize notoamides (Figure 6A), so that the yield of
notoamide compounds in the final secondary metabolome was significantly enhanced.
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To validate the fungal potential of utilizing the exogenous cyclo(Pro-Trp) in the chemi-
cal communication, an isotopic labeling experiment was performed to unveil the microbial
transformation (Figure 6B). Stable 15N-labeled L-proline and L-tryptophan were incorpo-
rated in the 7-day bacterial cultivation. 15N-labeled cyclo(Pro-Trp) was then detected in the
mass spectrometry-based metabolic profiling of the final fermentation (Figure S14). Then,
the EtOAc extracts of the bacterial fermentation were fractionated by HPLC on an Rp-18
column to afford an enriched fraction, which contained 15N-labeled cyclo(Pro-Trp) but no
labeled amino acids. The target fraction was fed into the fungal monoculture of Aspergillus
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sclerotiorum on the fourth day after inoculation. As a result, 15N-labeled notoamides were
found to be present in the LC-MS analysis of fungal secondary metabolites (Figure S15),
which further supported the above-mentioned fungal assimilation of bacterial metabolites
in the co-cultures. However, it is important to note that the growth conditions employed
were far from the conditions that the microbial strains have evolved to deal with. Thus,
chemical communication here was a highly artificial interaction showing the principle of
chemical communications in the synthetic microbial community.

2.4. Further Investigation on the Effects of Exogenous Amino Acids on the Metabolism of Both
Monocultures and Co-Cultures

Amino acids are raw compound materials for the biosynthesis of many secondary
metabolites, including cyclo(Pro-Trp) and notoamides in this research. However, microbial
abilities to convert exogenous amino acids into their metabolites vary with the species [28].
As tryptophan and proline were biogenic precursors for cyclo(Pro-Trp) and notoamide-type
skeletons, we monitored the effects of exogenous tryptophan and proline addition on the
secretion of cyclo(Pro-Trp) by Streptomyces sp. WU20 as well as notoamides by Aspergillus
sclerotiorum DX9. Tryptophan (200 µM) and proline at the same concentration were added
into both fungal and bacterial monocultures. After 14-day fermentation, we used the
same LS-MS method as employed in the previous experiments to analyze the secondary
metabolites of both the amino-acid-treated cultivations and untreated cultivations. An
OPLS-DA model was utilized here to quickly display the contribution made by MS markers
to the difference in the two groups and then to evaluate the influence of added amino
acids on the metabolic production. The MS features detected in the OPLS-DA analysis
were divided into two clusters positively-correlated with the experiment group and control
group, respectively. The results for Aspergillus sclerotiorum DX9 (Figure 7A) showed that
the MS markers on behalf of five notoamide-type compounds were located in the third
quadrant, that is, they were all positively correlated with the amino-acid-added group.
However, these notoamides and detected cyclo(Pro-Trp) featured in the metabolic files were
quite near the origin of the S-plot coordinates, indicating that these five notoamide-like
molecules contributed little to the difference between groups, and this contribution had
a low confidence value. This plot demonstrated the relatively little effect of the amino
acid addition on the fungal production of both cyclo(Pro-Trp) and the five recognized
alkaloids. So, the strain Aspergillus sclerotiorum DX9 possessed a weak ability to convert
high concentration of exogenous tryptophan and proline, which might be related to its
catalytic efficiency of intracellular cyclic dipeptide synthase (CDPSs).

In the S-plot of Streptomyces sp. WU20 (Figure 7B), the marker representing cyclo(Pro-
Trp) was located in the bottom left corner of the S-plot, showing that its yield was highly
positively correlated with the group treated with exogenous amino acids. According to the
MS abundance of the target cyclic dipeptide in both groups, the production of cyclo(Pro-
Trp) in the experimental group was boosted up to 4 times compared to that in the control
group. In addition, the molecule at the far left of the S-plot was recognized by the molecular
library as the known compound N-acetyltryptamine, whose secretion increased approxi-
mately 6 times compared to in the untreated cultivations. The biosynthetic precursor of
N-acetyltryptamine was proved to be tryptophan.

To further investigate the dose–effect relationship between the addition of tryptophan
and proline on the biosynthesis of cyclo(Pro-Trp), the treated culture media consisted of
an additional 100, 200, 400, and 800 µM of both tryptophan and proline. The outcome
showed that significant cyclo(Pro-Trp) accumulation could be observed with the fortified
concentration at 100 µM, but there was no further increase in the yield of target cyclic
dipeptide when the level of added amino acid concentration was higher (400 or 800 µM)
(Figure 8). This was possibly because the catalytic activities of intracellular CDPSs had
approached saturation in the bacterial fermentation treated with high concentrations of
tryptophan and proline.
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It was confirmed that Streptomyces sp. WU20 can efficiently transform tryptophan and
proline in the culture system to increase the secretion of cyclo(Pro-Trp), while exogenous
cyclo(Pro-Trp) can induce Aspergillus sclerotiorum DX9 to boost the production of notoamide
metabolites. Therefore, we examined the effect of exogenous amino acids on the content
of notoamide-type structures in the co-culture metabolome. Another OPLS-DA model
was established to study the correlational relationship between various MS features and
cultivation groups. As a result, two markers representing notoamide R and X were located
in the lower left side of the S-plot (Figure S4). With the combination of the MS abundance
and EIC pattern (Figure 9), we found that the yield of these two compounds could be
further significantly enhanced with the addition of exogenous amino acids in the co-
culture system. The molecular abundances of notoamide R and X were about 2 times
and 1.5 times, respectively, of that in the co-culture group without adding amino acids,
and 15 times and 6 times, respectively, of that in the fungal monoculture. However, no



Mar. Drugs 2021, 19, 526 11 of 15

significant differences were detected in the contents of the other three notoamide-type
structures (notoamide I, notoamide F and stephacidin A) in both synthesized microbial
communities. Therefore, we adopted the exogenous addition of tryptophan and proline to
successfully realize the further increase in the yield of notoamide-related metabolites from
Aspergillus sclerotiorum DX9, which accelerates the efficient exploitation and utilization of
notoamide-type natural products.
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3. Materials and Methods
3.1. Hydrothermal Vent Microbial Strains Isolation

The strains Aspergillus sclerotiorum DX9 and Streptomyces sp. WU20 were isolated
from hydrothermal vent sediment (121◦55′ E, 24◦50′ N at depths of 15 m, and the ambient
temperature was around 44 ◦C), collected from Kueishantao, Taiwan. The sediment was ho-
mogenized using a blender containing 20 mL sterile natural seawater in aseptic conditions.
The resulting homogenate was diluted with sterile seawater (1:5, 1:25, 1:125, 1:625). Under
sterile conditions, 200 µL of each dilution was inoculated in quadruplicate on to ISP2,
containing 4 g dextrose, 4 g yeast extract, 10 g malt extract, 15 g agar per liter of seawater.
The plates were incubated at room temperature for 1–4 weeks until the morphology of the
microbes could be distinguished. Each isolate was picked. The pure strains were isolated
by reinoculation on agar plates and identified by their 16S rDNA or 18S rDNA sequences
for bacterial or fungal strains, respectively.

3.2. Culturing Conditions for Co-Cultures

The microbial communities were constructed in 2 L co-culture devices (Shi et al.,
2017a). The volume of the culture medium for the host strain and the guest strain was
800 mL and 150 mL, respectively. For the purposes of a minimal impact on the discriminant
analysis resulting from medium differences, we used the same culture medium for both
strains in the co-culture. The fungi and bacteria were cultured under rocking conditions
at 28 ◦C in co-culture devices containing PDB-LB liquid culture medium (100 g potato
lixivium, 10 g dextrose, 5 g yeast extract, 10 g peptone, 10 g NaCl, per liter at pH 7.2) for
14 days. Aspergillus sclerotiorum DX9 and Streptomyces sp. WU20 were first cultivated in
500-mL Erlenmeyer flasks containing 200 mL PDB-LB medium (pH 7.2) on a rotary shaker
at 150 rpm for 3 days before 1 mL of fungal suspension (OD600 0.8) was added to the
space outside the dialysis bag and 1 mL Streptomyces suspension (OD600 0.8) was added
into the dialysis bag. Two co-culturing strains were cultured under rocking conditions at
180 rpm, 28 ◦C for 14 days. All co-culture experiments were performed in quintuplicate.
For the isotopic labeling experiment described in the Results, Streptomyces sp. WU20 was
inoculated in the PDB-LB liquid culture media (200 mL × 20) spiked with 400 µM stable
15N-labeled L-proline and L-tryptophan (Sigma-Aldrich, St. Louis, MO, USA). The 7-day
bacterial fermentation was extracted twice with ethyl acetate to afford 1.4 g crude extracts
containing 15N-labeled cyclo(Pro-Trp) detected in the LC-MS analysis. Then the EtOAc
extracts of the bacterial fermentation were fractionated by HPLC on an Rp-18 column
(MeOH-H2O as the mobile phase) to give an enriched fraction B (103 mg), which contained
labeled cyclo(Pro-Trp) but no labeled amino acids. This fraction (10 mg per 200 mL) was fed
into the fungal monoculture of Aspergillus sclerotiorum on the fourth day after inoculation
in the same PDB-LB media. The final 14-day fermentation was extracted three times with
ethyl acetate to afford the final EtOAc extract for LC-MS analysis.

3.3. Metabolomics Sampling and UHPLC-ESI-HR-MS Analysis

The culture broth (200 mL) was extracted three times with 200 mL of ethyl acetate
to afford the final EtOAc extract for analysis. The detailed mass spectrometric method is
included in the Supplementary Materials. The remaining culture broth of all the co-cultures
was also extracted to combine with samples for metabolomics analysis to yield the total
crude extract (4680 mg) for further isolation.

3.4. Data Processing, Molecular Networking and Multivariate Data Analysis

The HR-MS data were analyzed using Peakview 2.1 (Version 2.1, AB Sciex, Concord,
ON, Canada). Molecular networking was conducted at Global Natural Products Social
Molecular Networking (GNPS, http://gnps.ucsd.edu/, accessed on 14 September 2021).
The mass fragmentation similarity result was calculated using the Similarity Scoring
function in Peakview. Statistical analysis of the data was done using SIMCA (version 14.0,
Umetrics, Umea, Sweden) for PCA and OPLS-DA analysis.

http://gnps.ucsd.edu/
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3.5. Induction Effect-Guided Isolation of Cyclo(L-Pro-L-Trp)

Streptomyces sp. WU20 (10 L) was cultured in the PDB-LB medium at 180 rpm, 28 ◦C
for 14 days. Then the broth (10 L) was extracted with EtOAc (2 × 10 L), which pro-
duced an organic extract (3.2 g). This gummy residue was partitioned between n-hexane,
dichloromethane, n-butanol and H2O. Four parts were tested and fed Aspergillus sclero-
tiorum DX9 to check whether they induced notoamide. The dichloromethane part (1.4 g)
was confirmed as having induction potential and it was then fractionated by HPLC on
an Rp-18 column with MeOH-H2O as the mobile phase and yielded nine subfractions
(A–I). Subfraction C (174 mg) was tracked by the feeding experiments and further frac-
tionated by HPLC using 45% MeOH/H2O as the mobile phase to give four subfractions
(C1–C4). Fr. C2 (33 mg) was found to affect the notoamide production of the fungal strain
and only contained one main HPLC absorption peak. Then this major peak was purified
to yield a pure compound (white powder, 8.2 mg) with induction effects on the fungal
production of notoamide-related metabolites. The molecular formula was presumed as
C16H17N3O2 based on its HRMS data ([M + H]+ 284.1395 calculated for C16H18N3O2,
[M − H]− 282.1248 calculated for C16H16N3O2). The chemical structure of this compound
was finally elucidated as cyclo(L-Pro-L-Trp) by comparing its 1D NMR data with those in
the literature.

4. Conclusions

In summary, we performed a metabolomics survey of the secondary metabolites of an
artificial co-culture related to a hydrothermal vent fungal–bacterial community comprising
Aspergillus sclerotiorum DX9 and Streptomyces sp. WU20. Both strains were isolated from
sulfur-rich sediments around the Kuishantao hydrothermal vent off Taiwan. The fungal
strain was found to increase the secretion of notoamides and cyclo(Pro-Trp) produced
by the actinomycetes was discovered to be the responsible molecule, which led to the
hypothesis that the fungi transformed cyclo(Pro-Trp) synthesized by the actinomycetes as
the biosynthetic precursors of notoamides in the chemical communication. Further analysis
showed Streptomyces sp. WU20 was efficient in transforming amino acids into cyclo(Pro-
Trp) and adding tryptophan as well as proline into the chemical communication enhanced
the induction of the notoamide accumulation. Thus, we propose that such metabolically-
mediated interactions might play a fundamental role in microbial ecosystem functioning
and could serve as a potential trigger for unveiling bioactive natural products. Especially,
the microbial potential to convert metabolites secreted by co-existing microorganisms could
be utilized in the exploration of novel antibiotics and other medically relevant natural
products. Besides, this study highlights the utility of MS-based metabolomics as an effective
tool in the direct biochemical analysis of community metabolism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19090526/s1, Figures S1–S15; Tables S1–S2. FigureS1: Establishment of a previously-
described stationary co-culture device for culturing of multispecies strains that are physically sepa-
rated but can exchange small molecules. Figure S2: A synthetic fungal-bacterial community com-
posed of Aspergillus sclerotiorum DX9 and Streptomyces sp. WU20 generated in a co-culture device.
Figure S3: Molecular networking of the samples derived from the co-culture and the corresponding
fungal monoculture. Figure S4: OPLS-DA analysis for the metabolic comparison of Pro-Trp-added
co-cultivations and untreated co-cultivations. Figure S5: 1H NMR spectrum (500 MHz) of purified
cyclo(Pro-Trp) in CD3OD. Figure S6: 13C NMR spectrum (125 MHz) of purified cyclo(Pro-Trp) in
CD3OD. Figure S7: 1H NMR spectrum (500 MHz) of purified notoamide X in CD3OD. Figure S8:
13C NMR spectrum (125 MHz) of purified notoamide X in CD3OD. Figure S9: DEPT135 spectrum
(125 MHz) of notoamide X in CD3OD. Figure S10: 1H-1H COSY spectrum (500 MHz) of notoamide X
in CD3OD. Figure S11: HSQC spectrum of notoamide X in CD3OD. Figure S12: HMBC spectrum
of notoamide X in CD3OD. Figure S13: NOESY spectrum of Compound 1 in CD3OD. Figure S14:
15N-labeled cyclo(Pro-Trp) detected in the LC-MS analysis of the bacterial cultivation added with
stable 15N-labeled L-proline and L-tryptophan. Figure S15: 15N-labeled notoamides detected in
the UHPLC-HRMS analysis of the fungal cultivation added with the corresponding bacterial broth
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containing 15N-labeled cyclo(pro-trp). Table S1: 1H NMR (500 MHz) and 13C NMR (125 MHz) Spec-
troscopic Data of notoamide X. Table S2: Mass intensities of notoamide-type metabolites detected in
the UHPLC-HRMS analysis of both the fungal mono-cultures and fungal-bacterial co-cultures.
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