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Abstract

Human colonic mucosa altered by inflammation due to ulcerative colitis (UC) displays a drastically altered pattern of gene
expression compared with healthy tissue. We aimed to understand the underlying molecular pathways influencing these
differences by analyzing three publically-available, independently-generated microarray datasets of gene expression from
endoscopic biopsies of the colon. Gene set enrichment analysis (GSEA) revealed that all three datasets share 87 gene sets
upregulated in UC lesions and 8 gene sets downregulated (false discovery rate ,0.05). The upregulated pathways were
dominated by gene sets involved in immune function and signaling, as well as the control of mitosis. We applied pathway
analysis to genotype data derived from genome-wide association studies (GWAS) of UC, consisting of 5,584 cases and
11,587 controls assembled from eight European-ancestry cohorts. The upregulated pathways derived from the gene
expression data showed a highly significant overlap with pathways derived from the genotype data (33 of 56 gene sets,
hypergeometric P = 1.49610–19). This study supports the hypothesis that heritable variation in gene expression as measured
by GWAS signals can influence key pathways in the development of disease, and that comparison of genetic susceptibility
loci with gene expression signatures can differentiate key drivers of inflammation from secondary effects on gene
expression of the inflammatory process.
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Introduction

The inflammatory bowel diseases (IBD)–Crohn’s disease (CD)

and ulcerative colitis (UC)–are chronic disorders resulting in

autoimmune destruction of segments of the gastrointestinal tract.

The study of these disorders has benefited from recent technolog-

ical advances that enable transcriptome quantification on micro-

arrays, including distinguishing inflammatory expression patterns

in healthy tissue from tissue derived from various levels of disease

activity. One goal of gene expression profiling has been to identify

dysregulated proteins which are rooted in the pathogenesis of the

disease and may serve as targets for therapeutic intervention. A

second goal has been to classify samples in order to support a

particular diagnosis when the IBD subtype is ambiguous since

each will require distinct medical and surgical treatment. These

studies have generally shown that ulcerative colitis mucosa has a

pattern of gene expression that is distinguishable from healthy

tissue, while colonic mucosa from Crohn’s disease or from tissue

not macroscopically involved in the disease process can have

patterns of gene expression that are inflammatory, normal, or a

degree of mixture of both [1–4].

Parallel with these efforts to characterize the UC transcriptome,

microarray genotyping technology has been applied to genome-

wide association studies (GWAS) in order to determine which

single nucleotide polymorphisms (SNP) confer a hereditary

predisposition to developing IBD. The most recent meta-analysis

of studies performed to date identified 163 loci as either risk-

conferring or protective in CD, UC, or both [5]. Linkage studies

highlighted the role of the HLA region and NOD2 [6,7], and later

GWAS implicated IL23R [8], ATG16L1 [9], IRGM, NKX2–3,

TNFSF15 [10] among the lead genes involved in the disease

process together with many others [11,12]. The implicated loci

clearly illustrate the importance of cytokine biology, such as the

IL12/23 pathway [13] and the tumor necrosis factor superfamily.

Other functions of interest are epithelial barrier function,

autophagy, and interactions with the gut microbiome [14,15].
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In this study we integrated both gene expression profiling in

colonoscopy biopsies of UC with genome wide genotype analyses

in order to identify and prioritize the gene sets and molecular

pathways most consistently associated with UC. Our results

showed that a large number of gene sets are differentially regulated

between UC and normal biopsies. We conducted a genome-wide

association study (GWAS) in order to identify gene sets using a

hypergeometric test and found that most of the pathways identified

were concordant with the transcriptome data. Comparison of

transcriptome and GWAS data can allow us to delineate initiators

of the disease process from secondary markers of the inflammatory

process observable on gene expression arrays. The functional

significance of the pathways and their implication for understand-

ing IBD pathogenesis will be an important future research area in

IBD.

Results

Gene Expression Data Set Description
We obtained three published data sets from the Gene

Expression Omnibus (GEO) of the NIH, each of which contained

healthy control colonic biopsies along with active UC biopsies as

described in Table 1. We refer to the data sets as Denson [16],

Olsen [2], and Planell [3] to reflect the name of the submitter to

GEO.

In order to obtain the maximum statistical power for our study

we aimed to pool all three datasets into one study given that they

were assayed on the same microarray platform, the Affymetrix

U133 Plus 2. We pooled all arrays into a single dataset of CEL-

format files and performed PLIER [17,18] probe-level analysis to

quantify transcript abundance in the Affymetrix expression

console. The result of that analysis is shown in Figure S1 in File

S1 as the Spearman rank correlation matrix. The matrix illustrates

that the arrays are highly stratified according to their origin. For

instance, the Denson control arrays correlate very strongly with

Denson UC samples but only weakly with Planell control arrays.

We determined that site-specific differences in sample production

and processing of the Affymetrix arrays made it statistically

unsound to combine all arrays into a single study, leading us to opt

instead to analyze each of the three data sets independently and

pool the results of the final pathway analysis.

Principal Components Analysis
In order to support the use of these datasets in elaborating the

pathways that distinguish inflamed UC tissue from healthy tissue,

we aimed to establish that each dataset produced consistent and

well-separated patterns of gene expression.

To create a visualization of the three datasets, we performed

principal components analysis (PCA) using all probesets present on

the arrays. As shown in Figure 1, the healthy control and active

UC biopsies were clearly separated from one another by principal

component axis 1, i.e., the axis that captures the greatest amount

of variance in the data matrix. The amount of variance

represented by PC axis 1 was 21% for Denson, 18% for Olsen,

and 17% for Planell. This result suggests that a gene set

enrichment analysis using healthy controls vs. active UC as a

comparison would be valid in generating gene set lists character-

istic of UC. We found that CD biopsies or biopsies of noninvolved

tissue from UC patients were scattered throughout the first two

principal component axes, suggesting that these specimens may or

may not have inflammatory gene expression characteristics

regardless of their macroscopic appearance. However, this does

not rule out the possibility that more specific phenotypic

Table 1. Description of microarray data sets analyzed in this study.

Data set GEO accession Description Reference

Denson GSE10616 A pediatric patient population at Cincinnati Children’s Medical Center containing 58 arrays with 16 healthy
controls, 18 ileo-colonic CD, 14 colon-only CD, and 10 UC.

[16]

Olsen GSE9452 An adult population at University of Copenhagen containing 26 arrays with 5 healthy controls, 13 UC samples
without signs of macroscopic inflammation and 8 UC samples with evidence of macroscopic inflammation.

[2]

Planell GSE38713 An adult population in Barcelona, Spain (IDIBAPS) containing 43 arrays with 13 healthy controls, 8 inactive UC,
7 noninvolved active UC, and 15 involved active UC (macroscopic inflammation).

[3]

doi:10.1371/journal.pone.0096153.t001

Figure 1. Principal components analysis of the ulcerative colitis
biopsies shows that healthy control mucosa and UC inflamed
mucosa exhibit distinct patterns of gene expression. The first
two principal component axes are graphed, with PC1 on the horizontal
axis and PC2 on the vertical axis. Healthy control biopsies are indicated
by orange squares and macroscopically-inflamed UC biopsies by blue
squares. All probesets on the array (54675) were included in the
analysis. (A) Denson data set, black square represent Crohn’s biopsies.
(B) Planell data set, black squares represent inactive UC or uninvolved
UC biopsies. (C) Olsen data set, black squares represent noninvolved UC
biopsies.
doi:10.1371/journal.pone.0096153.g001
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parameters, not available for these GEO samples, may be account

for variance in the data for CD or noninflamed UC.

Gene Set Enrichment Analysis of Expression Data Sets
We performed an empirical Bayes testing procedure using the

LIMMA package in R to pre-rank approximately 20,000 genes by

modified t-statistics for testing differential expression from highest

(positive for upregulated) to lowest (negative for downregulated)

[19]. These rank lists were used to conduct GSEA [20] contrasting

UC with healthy controls, produced an abundance of upregulated

gene sets in the UC biopsies and relatively fewer downregulated

gene sets. We utilized the curated pathways from Biocarta, Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Reactome as

gene sets. An example of a GSEA result for a single pathway,

chemokines and their receptors, is shown in Figure S3 in File S1,

showing that chemokines and their receptors are located near the

top of the ranked gene list. The rank lists are provided in Tables

S1 (Denson), S2 (Olsen), and S3 (Planell).

In order to elucidate a set of common pathways, we looked for

the intersection of the upregulated and downregulated pathways of

all three data sets and found that 87 pathways were upregulated in

active UC biopsies (Figure 2A) while 8 were downregulated

(Figure 2B). The list of 87 pathways is displayed in Table 2 using

the normalized enrichment score (NES) and FDR Q-values from

the Denson dataset. The gene sets in this table are classified

according to functional category and whether the gene set was

enriched in GWAS (described below). BioCarta identified many

immune-related pathways such as inflammation, natural killer T

cells, cytokines, IL12, and the complement pathway. Likewise,

KEGG contains many immune-related gene sets that overlap with

BioCarta, but also corroborates the involvement of less-expected

gene sets, such as the proteasome, apoptosis, and extracellular

matrix interaction. The Reactome gene sets largely agreed with

the immune-related functions, signaling pathways, and extracel-

lular matrix interactions. However, the Reactome gene sets alone

showed that in all three datasets there was an upregulation of

genes involved in cell proliferation and the control of mitosis,

including G1-to-S transition, synthesis of DNA, SCF/skp2

mediated degradation of p27/p21, and p53 regulation, among

others.

Another pathway highlighted by the Reactome database is the

function of platelets, which is evidenced by three gene sets being

significantly upregulated, including hemostasis, formation of

platelet plug, and platelet activation.

Activation of T cells by signaling through the T cell antigen

receptor was represented among the significant pathways,

including translocation of ZAP70 to the immunological synapse,

costimulation by CD28, T cell co-stimulatory signaling, and

phosphorylation of CD3 and TCR f chains. Cytokines, chemo-

kines, and their receptor signaling pathways appear in 7 of the 87

pathways, indicating that diverse members of these families are

enriched in the UC inflamed tissue.

Several signaling pathways were enriched among the concor-

dant upregulated gene sets, such as JAK-STAT signaling, NOD-

like receptor signaling, unfolded protein response, Wnt signaling,

Gai signaling, and generation of second messenger molecules.

With regard to the downregulated pathways in mucosal gene

expression, both KEGG and Reactome are in agreement that the

TCA (Krebs) cycle and oxidative phosphorylation in the

mitochondria are reduced in the active UC biopsies (Table 3).

Two less-expected pathways, Parkinson’s disease, and regulation

of insulin secretion, also appeared among the downregulated gene

sets (Figure S2 in File S1).

The pie chart in Figure 2D emphasizes the role of mitotic

control and immune-related pathways in differentiating gene

expression profiles between healthy mucosa and UC inflammation

based on the 87 upregulated concordant pathways.

Of the 1452 pathways in our curated gene sets, there are 161

immune- and inflammation-related gene sets. It is interesting to

examine the result from the use of solely immune and

inflammation related gene sets. We performed this GSEA analysis

using only these immune gene sets and found that there were 60

pathways significant, compared with the 43 immune pathways

significant when considering all 1452 pathways at the same FDR

level. Thus we experience a modest loss of power due to the

correction for multiple testing, however, our analysis is more

comprehensive by including all pathways available.

Characterization of the Pathway Database
We further sought to characterize our pathway database by

establishing that there are 3,216 genes in common to more than 3

gene sets and 1,700 genes unique to only one gene set (Table S5).

We also calculated overlap coefficients for all the pathways in our

analysis and display them as heatmaps in Figure S4 in File S1. The

overlap is generally small with 85% of the overlap coefficients less

than 0.01.

Due to the current limited knowledge of functional pathways,

pathway analysis may not be an exhaustive approach and may

miss genes of unknown function but with good discriminative

power. The Affymetrix U133 Plus 2 array covers 19,944 genes but

the pathway gene set lists cover only 6,804 genes. We found that

the percentage of differentially expressed genes are higher for the

6,804 annotated genes than for the non-annotated genes (54% vs.

42% for the Denson data set at FDR = 5%). Nevertheless, there is

a clear limitation to the exhaustiveness of the analysis caused by

the fact that many differentially expressed genes are not located

within the pathways gene set lists.

Genome-Wide Association Study Results
We sought greater understanding of our transcriptome findings

by comparing them with results from a pathway enrichment

analysis of several large GWAS SNP array datasets, described by

Jostins, et al [5]. We utilized an approach to pathway discrimi-

nation based on a simple hypergeometric test that is described in

Materials and Methods. The results of the gene set enrichment

analysis based on GWAS loci are shown in Table 4. We set an

FDR Q-value of less than 5% as a cut-off to call a gene set

significantly enriched among the GWAS loci. The gene sets

identified cover virtually every facet of the immune response, and

most are represented among the 87 gene-expression delineated

pathways (see Figure 2C). Of the 56 GWAS significant pathways,

33 are represented among the 87 gene-expression delineated

pathways (hypergeometric P = 1.49610–19 for this overlap). The

column ‘‘In GWAS’’ of Table 2 shows which of the 87 concordant

gene expression-delineated gene sets were also enriched in the

GWAS pathway analysis. We also explored the overlap between

gene expression and GWAS at the individual gene level in Table

S4, which shows individual genes significant in gene expression,

genes significant in GWAS, and the overlap between these two

sets.

The Biocarta gene sets could be classified into four overall

categories: immunity, lymphocyte activation and differentiation,

cytokines, and complement (Table 4). KEGG gene sets consisted

of immune-mediated diseases and cellular pathways, endocytosis

and cell adhesion molecules, and signaling pathways. Reactome

gene sets were classified as lymphocyte activation and differenti-

ation, transcription by RNA polymerases I and III, telomeres, and

Molecular Pathways in Ulcerative Colitis
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complement. We have selected three pathways that produced a

strong enrichment for visualization in our supplementary figures:

cell adhesion molecules, cytokine-receptor interaction, and T cell

receptor signaling, which are shown in Figures S5, S6, and S7.

The top normalized enrichment score in gene expression, as

well as the minimal FDR Q value in GWAS analysis, was

Biocarta’s inflammatory pathway. Notably, 8 of the 12 Biocarta

pathways were concordant between gene expression GSEA

analysis and GWAS-derived pathway enrichment analysis (hyper-

geometric P = 5.18610–8 for this overlap). In contrast to our

results from gene expression analysis, the downregulation in

oxidative phosphorylation and upregulation of mitotic control

pathways was not reflected in the GWAS-enriched pathways.

Discussion

We obtained three publically-available datasets of UC biopsies

and controls assayed on the same microarray platform. These

datasets showed a clear delineation of inflammatory from healthy

gene expression profiles by principal components analysis. CD

samples, as well as UC in remission or colonic mucosa from UC

patients that was macroscopically not involved in the inflamma-

tory process, gave profiles throughout the inflammatory-healthy

spectrum. Applying gene set enrichment analysis (GSEA) [20] to

the gene expression data yielded upregulated and downregulated

gene sets, with substantial overlap of all three independent datasets

for key pathways.

We performed a GWAS in each of eight European-ancestry

data sets, totaling 5584 UC cases and 11587 controls from the

International IBD Genetics Consortium (www.ibdgenetics.org).

We applied a hypergeometric test to the genes identified as

significant in each of the cohorts and combined the resulting test

statistics to generate a meta-analysis P value for each of the

pathways making up our gene set database. We compared these

GWAS-implicated pathways with the pathways identified through

our gene expression analysis to find a large intersection between

the two methodologies (Figure 2C). The vast majority of the

statistically significant pathways concordant among the two data

sources were in the category of immune system function.

In the gene expression data we observed downregulation of

gene sets involved in mitochondrial function, electron transport

chain, oxidative phosphorylation, and the Krebs cycle. However,

this pathway signature was not reflected in SNP-based GWAS,

suggesting that perturbation of the mitochondrial respiration as

well as elevated levels of cell proliferation are secondary features of

inflammation in the tissue and not primary etiopathologic drivers

that initiate the immune response.

It is commonly believed that the risk of autoimmune or

inflammatory disease that is represented in the GWAS loci is not

located in coding variation in the exome but rather in non-coding

regulatory elements that flank the functionally responsible genes

[21]. Whether these associations are the result of a small number

of common variants at the locus or an ensemble of rare variants is

open to debate [22,23], but in either scenario, the most compelling

explanation for the existence of the majority of GWAS signals is

that such variants participate in transcriptional regulation

independent of whether they reside in intergenic or genic regions

without direct impact on coding sequences.

One may argue that the pathway enrichment seen in the gene

expression dataset is merely the result of an infiltration of immune

cells (lymphocytes, polymorphonuclear cells, macrophages, and

dendritic cells) into the tissue which produces this gene expression

signature. Moreover, microscopic levels of inflammation or

histological changes in the mucosa in macroscopically normal or

healed tissue may influence the profile of transcripts present in the

biopsy. In the Reactome gene sets we observed an unmistakable

upregulation of gene expression in mitosis control pathways

suggesting that a population of cells in the macroscopically

inflamed UC tissue is actively proliferating. The biopsy tissue is an

admixture of various hematopoietic cell types (particularly in

inflamed tissue) as well as intestinal mucosal cells from the

epithelium and lamina propria. However, corroboration by

Figure 2. Gene set enrichment analysis (GSEA) demonstrates high concordance between three expression data sets as well as
genome-wide association study susceptibility loci. (A) Venn diagram of the intersection of gene sets upregulated in the inflamed UC samples.
Eighty-seven gene sets were upregulated in all three studies. (B) Venn diagram of gene sets identified as downregulated in the three studies. (C)
Overlap in gene sets identified as common to the three gene expression datasets (87 gene sets) with 56 gene sets identified as having altered
expression in a genome wide association study of ulcerative colitis. (D) Pie chart showing functional categories of the 87 gene sets upregulated in all
three biopsy datasets.
doi:10.1371/journal.pone.0096153.g002
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Table 2. Upregulated pathways by GSEA from active UC lesions common to three gene expression data sets.

Source and Pathway NES Q-value In GWAS Category

BioCarta

Cytokines and inflammatory response 2.302 0 Y Immune

Selective expression of chemokine receptors during T-cell polarization 2.191 0 Y Immune

Proteasome complex 2.144 0 Proteasome

Cytokine network 2.119 0.001 Y Immune

NO-dependent IL12 pathway in NK cells 2.001 0.002 Y Immune

Cells and molecules involved in local acute inflammatory response 1.931 0.004 Immune

Th1/Th2 differentiation 1.896 0.006 Y Immune

Dendritic cells in regulating Th1 and Th2 development 1.818 0.012 Y Immune

Co-Stimulatory signal during T-cell activation (CTLA4) 1.678 0.037 Y Immune

Complement pathway 1.678 0.037 Y Immune

Caspase cascade in apoptosis 1.675 0.037 Apopt

IL12 and STAT4 dependent signaling pathway in Th1 development 1.657 0.042 Immune

Kyoto Encyclopedia or Genes and Genomes

Proteasome 2.602 0 Proteasome

Cytokine/cytokine receptor interaction 2.578 0 Y Immune

Extracellular matrix receptor interaction 2.484 0 Mitosis

Leishmania infection 2.471 0 Y Immune

Graft versus host disease 2.371 0 Y Immune

Allograft rejection 2.333 0 Y Immune

Complement and coagulation cascades 2.284 0 Immune

Protein export 2.257 0 Metab

Glycosaminoglycan biosynthesis of chondroitin sulfate 2.255 0 ECM

Type I diabetes mellitus 2.228 0 Y Immune

Antigen processing and presentation 2.214 0 Y Immune

Intestinal immune network for IgA production 2.182 0 Y Immune

Asthma 2.117 0 Y Immune

Autoimmune thyroid disease 2.106 0.001 Y Immune

Hematopoietic cell lineage 2.084 0.001 Y Immune

Systemic lupus erythematosus 2.054 0.001 Y Immune

Chemokine signaling pathway 2.048 0.001 Y Immune

Toll like receptor signaling pathway 2.031 0.001 Immune

Cell adhesion molecules (CAMs) 2.018 0.002 Y ECM

NOD-like receptor signaling pathway 1.956 0.003 Immune

JAK STAT signaling pathway 1.911 0.005 Y Signal

Viral myocarditis 1.761 0.021 Y Immune

Glycosphingolipid biosynthesis, ganglio series 1.758 0.021 Metab

Focal adhesion 1.75 0.023 ECM

Pathogenic Escherichia coli infection 1.741 0.024 Immune

Natural killer cell mediated cytotoxicity 1.739 0.024 Y Immune

Reactome

Chemokine receptors bind chemokines 2.782 0 Immune

G1/S transition 2.616 0 Mitosis

Synthesis of DNA 2.6 0 Mitosis

S phase 2.599 0 Mitosis

CDT1 association with the CDC6 ORC origin complex 2.582 0 Mitosis

ORC1 removal from chromatin 2.548 0 Mitosis

DNA replication pre-initiation 2.535 0 Mitosis

Mitotic M/G1 phases 2.535 0 Mitosis

Cell cycle checkpoints 2.518 0 Mitosis
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GWAS signals demonstrates that the admixture of inflammatory

cells is not the only factor in the gene expression pattern, but that

variation in the transcriptional regulation of the immune response

genes also contributes to the overrepresentation of these transcripts

in the UC biopsies. UC patients are likely to be over-expressors of

the inflammatory genes and this can be seen in the hybrid pattern

of gene expression observed in quiescent or noninvolved UC

biopsies.

An interesting observation was that certain pathways were

downregulated in all gene expression datasets that were not

reflected in GWAS. Two of these pathways that might be less

expected are identified in this analysis: Parkinson’s disease

(KEGG) and insulin secretion (Reactome). Figure S2 in File S1

Table 2. Cont.

Source and Pathway NES Q-value In GWAS Category

M/G1 transition 2.507 0 Mitosis

p53 independent DNA damage response 2.505 0 Mitosis

Stabilization of p53 2.504 0 Mitosis

Regulation of ornithine decarboxylase 2.5 0 Metab

Cdc20 phospho-APC mediated degradation of cyclin A 2.487 0 Mitosis

VIF mediated degradation of APOBEC3G 2.473 0 Immune

Cyclin E associated events during G1/S transition 2.45 0 Mitosis

Unfolded protein response 2.446 0 Signal

Regulation of APC activators between G1/S and early anaphase 2.435 0 Mitosis

SCF Skp2 mediated degradation of p27 p21 2.399 0 Mitosis

Autodegradation of CDH1 by CDH1 anaphase promoting complex 2.378 0 Mitosis

Signaling in immune system 2.342 0 Y Immune

Cell cycle mitotic 2.33 0 Mitosis

SCF beta-TRCP mediated degradation of EMI1 2.313 0 Mitosis

Immunoregulatory interactions between a lymphoid and a non lymphoid cell 2.24 0 Y Immune

Integrin cell surface interactions 2.216 0 ECM

Platelet degranulation 2.2 0 Platelet

Peptide ligand binding receptors 2.157 0 Signal

Signaling by Wnt 2.152 0 Signal

Hemostasis 2.109 0.001 Platelet

Initial triggering of complement 2.102 0.001 Y Immune

PD1 signaling 2.099 0.001 Y Immune

Costimulation by the CD28 family 2.059 0.001 Y Immune

Apoptosis 2.058 0.001 Apopt

Cell surface interactions at the vascular wall 2.05 0.001 Immune

Mitotic prometaphase 2.029 0.001 Mitosis

Host interactions of HIV factors 2.027 0.001 Immune

HIV infection 2.005 0.002 Immune

G alpha i signaling events 1.925 0.004 Signal

Class A1 rhodopsin like receptors 1.922 0.005 Signal

Formation of platelet plug 1.91 0.005 Platelet

Translocation of ZAP70 to immunological synapse 1.895 0.006 Y Immune

Metabolism of amino acids 1.891 0.006 Metab

Complement cascade 1.868 0.008 Y Immune

Platelet activation 1.866 0.008 Platelet

Cell-extracellular matrix interactions 1.851 0.009 ECM

Generation of second messenger molecules 1.795 0.015 Y Signal

Innate immunity signaling 1.744 0.024 Immune

Metabolism of nucleotides 1.718 0.028 Metab

Phosphorylation of CD3 and TCR zeta chains 1.676 0.037 Y Immune

The second column gives the normalized enrichment score (NES) from GSEA analysis, the third column the FDR Q-value calculated by permutation, and the fourth
column the functional category of the pathway.
doi:10.1371/journal.pone.0096153.t002
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shows KEGG’s curated pathway for Parkinson’s disease and

illustrates that mitochondrial function, oxidative phosphorylation,

proteasome function, and apoptosis are all constituents of the

pathway. Hence, there may be an overlap between the processes

of apoptotic cell death in the substantia nigra of the brain in

Parkinson’s disease and the cell death pathway that normally

occurs in the inflamed mucosa. The insulin secretion pathways are

similarly involved due to the role of oxidative phosphorylation in

sensing the level of ATP and producing appropriate insulin

release, evidenced by the enrichment of cytochrome oxidases and

NADH dehydrogenase (ubiquinone) Fe-S proteins in this gene set.

The overall inference from these 8 downregulated data sets is that

the inflammatory process inhibits the normal production of energy

in the form of ATP and the normal processes of cell proliferation

and renewal that are found in the healthy colonic mucosa. It is

likely that the inflamed tissue has a reduced amount of this

metabolic activity, possibly because normally energy-consuming

colonic mucosa is replaced by necrotic or fibrotic tissue and

infiltrated with immune cells.

In obtaining colonic biopsy samples for study, there is generally

considerable variation between clinicians in which sites in the

colon are sampled, as well as variation among the different

research institutes in the technical production of microarray data.

It is therefore a pleasing result to observe such a high degree of

agreement among the three independent gene expression data sets

as to which pathways are enriched in the inflammatory state. It

can be concluded that UC presents a unique signature of histology

and gene expression, a specific type of alteration in the mucosal

immune homeostasis, which is corroborated by previous work

[24–27].

Pathway-based analyses such as GSEA have several attractive

features, namely, that they are more robust when trying to

aggregate results from studies performed on different platforms, or,

in this case, different study designs (gene expression vs. GWAS).

The conclusion that is supported by all four data sources used in

this study is that immune response genes are overwhelmingly

overrepresented and overexpressed in patients with UC, particu-

larly in the actively inflamed colonic mucosa.

The GSEA approach is a ‘‘competitive’’ method which tests the

null hypothesis that the expression distribution of genes in a

specific gene set is the same as other genes not in the pathway (or

in the other pathways under testing, more precisely) [28,29].

Therefore the gene set collection plays a critical role in our

pathway-based analyses, with a profound impact in determining

the null distribution and the extent of multiple testing correction.

For example, when using solely the immune and inflammation

related gene sets we identified fewer significant immune pathways.

However, it is noted that the null hypothesis should be determined

beforehand. That is to say we should not change the gene sets

collection retrospectively after we observe the testing results for

‘‘improving’’ power.

Another issue we must consider is that pathway-based

analyses will tend to favor genes which are well-studied and

about which solid biological knowledge exists. Certainly there

are many transcripts of unknown function which are overex-

pressed and there are many GWAS-implicated loci which

contain no functionally obvious candidate, or more than one

plausible candidate. Any database of curated gene sets is

certain to be incomplete due to the current state of biological

knowledge. Nevertheless, these gene set-based analyses do

have value because they can prioritize and direct interest

towards well-studied, therapeutically-tractable pathways that

are not widely appreciated or well-integrated into our

understanding of IBD pathogenesis. This being said, there

are several caveats to be aware of when considering investi-

gation of non-immune pathways. In our GWAS-based pathway

enrichment study, we found several gene sets from Reactome

involving transcription by RNA polymerase I and III, as well

as telomere maintenance, being significantly enriched in UC

(Table 4). However, inspection of the specific genes that were

identified in transcription and telomeres shows that their

significance was driven by the presence of many genes from the

histone cluster on chromosome 6, which lies in close proximity

to the HLA locus on that chromosome. HLA gives the

strongest signal in GWAS of UC, therefore, nearby genes in

gene rich clusters, such as the histone cluster, may contain

several low P value SNPs in linkage disequilibrium which will

give false positive signals.

Finally, our approach correlates genomic variants with

transcriptome regulation. A similar approach is eQTL analysis.

eQTL may be a more powerful tool to pinpoint how the genome

sequence interacts with the functional genome. However, both

mRNA expression data and genotype data are required for the

same individuals at the same time. It first imposes a cost issue

when both transcriptome and genome data have to be produced.

Since different projects have different aims; most GWAS/genetics

projects usually don’t profile transcriptomes. There is no

transcriptomic profiling in the study by the International IBD

Table 3. Downregulated pathways by GSEA from active UC lesions common to three gene expression data sets.

Pathway NES Q-value

Kyoto Encyclopedia or Genes and Genomes

Citrate cycle/TCA cycle 22.130 0.005

Parkinson’s disease 22.083 0.006

Oxidative phosphorylation 22.005 0.010

Reactome

Electron transport chain 22.662 0.000

Glucose regulation of insulin secretion 22.167 0.005

Peroxisomal lipid metabolism 22.149 0.005

Integration of energy metabolism 21.893 0.017

Regulation of insulin secretion 21.783 0.033

NES: normalized enrichment score from GSEA; FDR Q-value calculated from permutation.
doi:10.1371/journal.pone.0096153.t003
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Table 4. Curated pathways found to be statistically significant by hypergeometric test in a GWAS of ulcerative colitis (FDR,5%).

Biocarta

Lymphocyte activation and differentiation

Th1 and Th2 differentiation

Antigen-dependent B cell activation

B lymphocyte cell surface molecules

The co-stimulatory signal during T-cell activation (CTLA4)

Dendritic cells in regulating TH1 and TH2 development

Activation of CSK by cAMP-dependent protein kinase inhibits signaling through the T cell receptor

Bioactive peptide induced signaling pathway

Cytokines

Cytokines and regulation of hematopoiesis

Cytokines and the inflammatory response

Selective expression of chemokine receptors during T-cell polarization (natural killer T cell)

IL22 soluble receptor signaling pathway

IL-10 anti-inflammatory signaling

NO-dependent IL 12 pathway in NK cells

Complement

Classical complement pathway

Complement pathway

Lectin-induced complement pathway

Kyoto Encylopedia of Genes and Genomes

Immune-mediated diseases

Leishmania infection

Type I diabetes mellitus

Systemic lupus erythematosus

Viral myocarditis

Asthma

Primary immunodeficiency

Allograft rejection

Graft versus host disease

Autoimmune thyroid disease

Cellular processes

Endocytosis

Cell adhesion molecules, CAMs

Immune cell pathways

Antigen processing and presentation

Intestinal immune network for IgA production

Cytokine-cytokine receptor interaction

Natural killer cell mediated cytotoxicity

Fc gamma receptor mediated phagocytosis

Hematopoietic cell lineage

Signaling pathways

Chemokine signaling pathway

JAK-STAT signaling pathway

NOTCH signaling pathway

Reactome

Lymphocyte activation and differentiation

Costimulation by the CD28 family

Downstream T cell receptor signaling

Generation of second messenger molecules

PD1 signaling
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Genetics Consortium [5] from which we obtained in part the

genotype data for our current work. Conversely, a great many

molecular biology projects generate mRNA data but don’t

consider nor generate any genotype data, as evidenced by the

majority of microarray data hosted at the NIH GEO database,

including the ones we used. As of today, mRNA expression data

and genotype data are accumulated in parallel with little overlap

(i.e., eQTL data is still a minority in comparison with pure mRNA

data or pure genotype data). Our work, as a proof of principle,

shows that we may fully exploit these ample existing separated

datasets to conduct secondary analysis. Such an approach, even

though it may be a pure categorical overlap, has the ability to

produce additional interesting findings missed in their first-round

analysis at no extra data cost, as these two kinds of data are

complementary to each other.

In conclusion, we propose and correlate for the first time

GWAS data with independent transcriptome data at pathway-

level. Our GSEA results highlight several pathways which have

not be thoroughly investigated in ulcerative colitis and which may

be of interest to the clinical molecular biology community,

including endocytosis and extracellular matrix interaction. Anal-

ysis of gene expression in the biopsies further implicates mitotic

control, the ubiquitin/proteasome system, hemostasis by platelets,

and numerous signaling pathways.

Materials and Methods

Ethics Statement
Gene expression data was obtained from a public repository

administered by the U.S. National Institutes of Health, the Gene

Expression Omnibus (GEO). The repository is available at http://

www.ncbi.nlm.nih.gov/geo/. Data contained within GEO is

anonymized and de-identified by the submitters before it is

uploaded to the repository. All studies are approved by the

Institutional Review Board of the Children’s Hospital of Phila-

delphia.

Data Sets and Probe-level Analysis
In the three publically-available data sets, the healthy control

samples were obtained from individuals undergoing routine

screening colonoscopy or from individuals with irritable bowel

syndrome-like symptoms who were diagnosed as not IBD. The

Denson dataset has not been subjected to a systematic analysis

before and is uniquely derived from children under the age of 18.

Affymetrix CEL files from the Human Genome U133 Plus 2.0

arrays were downloaded from the Gene Expression Omnibus

(National Center for Biotechnology Information) using the GSE

accession numbers described in Table 1. This chip targets the 39

end of a set of over 54,000 transcripts representing all known

protein-coding genes. The CEL files were converted to probeset

intensity calls in the Affymetrix Expression Console build

1.3.1.187 using the command PLIER workflow.

Principal Components Analysis and Hierarchical
Clustering of Expression Data

The raw PLIER intensity calls were imported in MultiExperi-

ment Viewer (TMEV) version 4.8.1. Rows (genes) were normal-

ized to have mean 0 and variance 1. PCA was run to cluster

samples using all probesets on the array without filtering and the

first two principal component dimensions were graphed for each

of the three data sets.

Gene Set Enrichment Analysis (GSEA)
GSEA makes it possible to compare diverse data sets, even data

sets from different platforms, by identifying differentially regulated

pathways based on prior biological knowledge of gene function.

This analysis works by ranking the genes according to a chosen

metric, in our case the log-odds of differential expression, and then

analyzing all the gene sets to determine whether the members of

the set are overrepresented at the top of the ranked list, the

bottom, or some random pattern. The result of this calculation is

an enrichment score which is normalized to the size of the gene set

(NES). The false discovery rate Q-value is computed by comparing

the tails of the observed and null (i.e., randomly permuted)

Phosphorylation of CD3 and TCR zeta chains

Signaling in immune system

T cell receptor signaling

Translocation of ZAP70 to immunological synapse

Immunoregulatory interactions between a lymphoid and a non lymphoid cell

Transcription

RNA polymerase I promoter clearance

RNA polymerase I promoter opening

RNA polymerase I, III and mitochondrial transcription

Notch-HLH transcription pathway

Transcription

Telomeres

Packaging of telomere ends

Telomere maintenance

Complement

Initial triggering of complement

Complement cascade

doi:10.1371/journal.pone.0096153.t004

Table 4. Cont.
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distributions of the NES [20]. We utilize an FDR cut-off of 5% for

calling a gene set differentially regulated.

The Affymetrix CEL files were imported into Bioconductor in

the R statistical computing environment using RMA probe-level

analysis. The LIMMA package (Linear Models for Microarrays) was

used to create a pre-ranked list using the eBayes function, the

empirical Bayesian testing procedure with modified t statistics [19].

The pre-ranked list was analyzed in GSEA software using the

default parameters, namely: normalization mode meandiv;

enrichment statistic weighted; collapsing mode maxprobe; mini-

mum set size 15; maximum set size 500; and 1000 permutations.

We utilized the gene set database of all curated pathways,

‘‘c2.cp.v3.0.symbols.gmt’’.

Venn diagrams of the intersections of the enriched gene sets

were constructed by custom code written in Python.

Genome-Wide Association Study and GSEA
The GWAS pathway study covers seven GWAS cohorts

genotyped on conventional SNP arrays and one cohort genotyped

on the Immunochip, a custom Illumina Infinium chip. This custom

chip is designed to perform both deep replication of suggestive

associations and fine mapping of established GWAS significant loci.

It provides a more comprehensive catalog of the most promising

candidate variants by picking up the remaining common variants

and rare variants that are missed in the first generation of GWAS.

The data set was obtained from the International IBD Genetics

Consortium (www.ibdgenetics.org) and included their ulcerative

colitis cohorts (Cedars, CHOP, Germany, NIDDK1, NIDDK2,

Norwegian, Swedish, WTCCC, and ImmunoChip).

PLINK [30] was used to conduct single SNP association

analysis. Standard quality control procedures were used to remove

SNPs out of Hardy-Weinberg equilibrium or with low frequency

and logistic regression was used to correct for population

stratification with multidimensional scaling dimensions used as

covariates [5]. Gene-level association significance was determined

by taking the minimal P value of the SNPs in a gene region

(defined as 100 kb upstream and downstream of the gene

boundary) adjusted by the number of SNPs (Bonferroni correction)

in the gene region. We used a P-value cutoff of 0.05 to claim a

gene to be significant, which then divided all genes into two

groups, the significant group vs. the non-significant group, for each

of the eight cohorts. These significant vs. non-significant gene

categories were used as the basis of a hypergeometric test for

evaluating pathway enrichment of significant genes in a given gene

set. This pathway enrichment analysis was conducted separately

for each cohort. Individual significances were then combined into

a summary meta P-value across all participating cohorts. We used

the Benjamini-Hochberg [31] procedure for pathway-level mul-

tiplicity control and claimed pathways to be significant under a

false discovery rate (FDR) cutoff of 5%.

Supporting Information

Figure S1 Figures S1-S4.
(DOCX)

Figure S5 KEGG pathway ‘‘cell adhesion molecules’’
with genes significant in GWAS highlighted by red text.

(PNG)

Figure S6 KEGG pathway ‘‘cytokine-cytokine receptor
interaction’’ with genes significant in GWAS highlighted
in red text.

(PNG)

Figure S7 Reactome pathway ‘‘T cell receptor signal-
ing’’ with genes significant in GWAS highlighted in
yellow.

(PNG)

Table S1 Rank list of Denson biopsy data set for
differential expression by empirical Bayes testing
procedure. Genes are ordered by modified t statistics, with

positive values representing upregulation and negative values

representing downregulation. These rank lists served as the input

for the Gene Set Enrichment Analysis (GSEA) on microarray data.

The ranks were calculated by comparing healthy controls with

inflamed tissues from ulcerative colitis biopsies.

(XLSX)

Table S2 Rank list of Olsen biopsy data set.

(XLSX)

Table S3 Rank list of Planell biopsy data set.

(XLSX)

Table S4 Gene-level overlap between gene expression
and GWAS data. Column A lists the genes which are

differentially regulated in gene expression in all three data sets

(Denson, Olsen, Planell). Column B lists the genes with adjusted P

values below 0.05 in meta-analysis. Column C is the intersection

between Column A and B.

(XLSX)

Table S5 A large proportion of genes making up the
curated gene sets (Biocarta, KEGG, and Reactome)
appear in 3 or more gene sets. Column A gives the list of

genes appearing in 3 or more gene sets. Column B lists genes

unique to only one gene set.

(XLSX)
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