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Abstract

The maximum entropy model, a commonly used species distribution model (SDM) normally

combines observations of the species occurrence with environmental information to predict

the geographic distributions of animal or plant species. However, it only produces point esti-

mates for the probability of species existence. To understand the uncertainty of the point

estimates, we analytically derived the variance of the outputs of the maximum entropy

model from the variance of the input. We applied the analytic method to obtain the standard

deviation of dengue importation probability and Aedes aegypti suitability. Dengue occur-

rence data and Aedes aegypti mosquito abundance data, combined with demographic and

environmental data, were applied to obtain point estimates and the corresponding variance.

To address the issue of not having the true distributions for comparison, we compared and

contrasted the performance of the analytical expression with the bootstrap method and

Poisson point process model which proved of equivalence of maximum entropy model with

the assumption of independent point locations. Both Dengue importation probability and

Aedes aegypti mosquito suitability examples show that the methods generate comparatively

the same results and the analytic method we introduced is dramatically faster than the boot-

strap method and directly apply to maximum entropy model.

Introduction

Species distribution models [1–3] are commonly used to predict the geographic distributions

of animals or plants species. They are applied in species conservation [4], ecology [5], and

other fields. Some SDMs, like the maximum entropy model, are used to predict the probability

for the species being present. Others, like Poisson point process models, are used to model the

intensity of the species per unit area.

Quantifying the uncertainty of maximum entropy models can help biologists allocate sam-

pling efforts more efficiently. For places with the same probability estimate, different uncer-

tainty estimates can help differentiate the need for further sampling effort. It may be possible

to lower uncertainties in the estimates by choosing sampling locations carefully. However, the

independence between sample units need to be guaranteed to maintain the independence
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assumptions underlying a maximum entropy model. Quantifying the uncertainty also helps

biologists have an idea of the amount of data sufficient to estimate probabilities across the geo-

graphic area. Knowledge of uncertainty can help answer questions such as: What is the benefit

of collecting an additional 1000 presence only data points? What are low and high scenarios

for the output estimates?

Unfortunately, most SDM methodology focuses on using point estimates. Point estimation

involves using a single value for estimating target population parameters from sample data.

However, the estimations are usually not equal to the target population parameters exactly,

and so the accuracy of the estimations is important. A well accepted method of describing the

uncertainty of the estimations is to look at their variance. With the variance of the estimates,

one can compute confidence intervals, an interval that contains the true parameter with a cer-

tain confidence [6]. With current practice, SDMs only produce point estimates for the pre-

dicted probability or intensity at all species locations and background points without any

corresponding uncertainty estimates at these locations.

To address this lack of uncertainty quantification in SDM, one must refer both to the SDM

methodology and statistical methodology in quantifying uncertainty of point estimates. One of

the most popular methods for SDM is the maximum entropy model. The conventional maxi-

mum entropy model was first formulated by Jaynes in 1957 [7] based on Shannon’s measure

of entropy [8] (see details in [9]). MAXENT incorporating the effect of actual occurrence data,

became popular among biologists in modeling species distribution with the contribution of

MaxEnt software [1, 10, 11]. The mathematical equivalence of MAXENT, model used in Max-

Ent software, and Poisson point process models (Poisson PPMS has been shown in [12]. Pois-

son PPMS may be fitted in the ‘spatstat’ package in R, which provides a way of assessing model

uncertainty by providing standard error estimates [13]. To quantify uncertainty in point esti-

mates, bootstrap methods are popular. Bootstrap uses computer-intensive simulation to calcu-

late standard deviations of the estimated parameters, and is broadly applied in the biology field

[14–17]. In this paper, we adopt the maximum entropy method and compare the analytical

expression of the standard deviation with the standard deviation calculated through bootstrap

method and Poisson point process model (PPM) approach.

In this article we consider quantifying the uncertainty in SDM. We focus specifically on the

maximum entropy SDM methodology. A significant reason for the popularity of the maxi-

mum entropy methodology is its applicability to presence-only data with least assumptions

[18]. For traditional statistical estimation methods like regression, both of the presence and

absence of the species are required. However, in real cases, biologists often only know the

places a species has been observed, while lacking information about absences of species.

Our main contribution is analytically deriving an expression of the standard deviation of

the target species distribution probabilities and comparing the results with bootstrap methods

and standard deviation calculated through Poisson PPM approach. We show that the three

methods generate comparatively the same results and our analytic model uncertainty calcula-

tion procedure is dramatically faster than the boostrap method and more proper comparing to

Poisson PPM without independence assumption and provided a direct result to maximum

entropy model.

Materials and methods

Maximum entropy model

Consider a region with geographic divisions given by X = {x1, x2, . . ., xn}. Suppose some species

lives in the region, and the fraction of the species that lives in division i is pi. A basic goal in

SDM is to reconstruct the geographic distribution P = {p1, p2, . . ., pn}. To do this, we have
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some species occurrence data O = {o1, o2, . . ., on}, where each oi specifies the number of times

the species has occurred in division i. The occurrence data can be viewed as a sample from the

distribution P. In addition we are given k layers of environmental data for the region described

by features fj(X) for j = 1, . . ., k. For example, one such function could be the average elevation

in each geographic division.

Jaynes’ maximum entropy model attempts to reconstruct P. Let P̂ ¼ fp̂1; p̂2; :::; p̂ng be the

reconstructed density. Let ÊðfjðXÞÞ ¼ ð
Pn

i¼1
oifjðxiÞÞ=ð

Pn
i¼1

oiÞ be the empirical estimate of

EPðfjðXÞÞ ¼
Pn

i¼1
pifjðxiÞ given by the occurrence data O. Jaynes’ maximum entropy model

attempts to reconstruct P through an optimization problem. The optimization uses Shannon’s

measure of entropy as the objective (1), subject to the moment constraints (2). Constraints (3)

and (4) ensure that the optimal solution for the optimization is a probability distribution [9]. A

mathematical formulation of the maximum entropy problem is

max
pi

�
Xn

i¼1

pi logpi ð1Þ

s:t:
Xn

i¼1

pifjðxiÞ ¼ ÊðfjðXÞÞ j ¼ 1; . . . ; k ð2Þ

Xn

i¼1

pi ¼ 1 ð3Þ

pi � 0 i ¼ 1; . . . ; n ð4Þ

Bootstrap method

Table 1 describes the bootstrap method for estimating the uncertainty of the estimate resulting

from maximum entropy. The core of this bootstrap procedure is thinking of the distribution P
as parameterized by the values it assigns to each geographic division. The procedure starts by

estimating the parameters once, yielding a probability distribution. Then, it samples the data

from that estimated distribution to construct several new estimates.

Analytic deduction of uncertainty

In this section, we demonstrate the basic idea of the analytical method for quantifying uncer-

tainty in maximum entropy. The data O = {o1, o2, . . .on} follow a multinomial distribution

with unknown parameters P. A maximum likelihood estimator for P follows a certain multi-

variate normal distribution as the number of samples grow large. The maximum entropy

model can be viewed as a function mapping this estimator to Rn
. The input is the empirical

expectations, ÊðfjðXÞÞ, derived from the observation data, O = {o1, o2, . . .on}. The output is the

estimate of the probability distribution over geographic regions, P = {p1, p2, . . ., pn}. The ana-

lytical method of quantifying uncertainty describes how the output, P, changes as the input, O,

changes. This is essentially a quantification of the way the optimization mapping warps the

data input space, to the output space. We show the detailed deduction of the analytic method

for uncertainty in the S1 Appendix.

For brevity, let aj ¼ ÊðfjðXÞÞ and the vector of aj can be expressed as A = (a1, a2, . . .ak)T. Let

g(A) denote the maximum entropy optimization, model (1),(2),(3),(4), as a function from Rk
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to Rn
. In other words, the function takes as input the vector A with jth entry specified by aj,

specifying right hand sides of the equality constraints ÊðfjðXÞÞ, and outputs a probability esti-

mate across the geographic region P. We would like to understand the uncertainty in the out-

put g(A) as a function of the uncertainty of the input A. This can be done following steps

similar to those in the delta method [19, p.75].

To understand the uncertainty in the output g(A), we begin by writing a first order Taylor

expansion of g around E(A)

gðAÞ � gðEðAÞÞ þ rgðEðAÞÞ � ½A � EðAÞ�

� gðF � P̂Þ þ rgðF � P̂Þ � ½A � EðAÞ�;
ð5Þ

where F is k × n matrix of k features with entry (i, j) specified by fi(xj) andrg(�) is an n × k
matrix of partial derivatives, with entry (i, j) specified by

@pi
@aj

. If we can compute an expression

for these partial derivatives, then everything on the right hand side above is constant, except

[A − E(A)] whose distribution we know because we know the distribution of A. g(A) is an

affine transformation of [A − E(A)], and can be approximated as

gðAÞ � NormalðgðF � P̂Þ;rg �
F � Σ � FT

m
� ðrgÞTÞ; ð6Þ

where S is proportional to the covariance matrix of P̂ with entry (i, j) specified by � p̂ip̂j for

i 6¼ j, and entry (i, i) specified by p̂ið1 � p̂iÞ.

We express the
@pi
@aj

as (Detailed deduction shown in S1 Appendix)

@pi
@aj
¼
Xk

r¼1

piðar � frðxiÞÞðð� ΨÞ
� 1
Þrj; ð7Þ

where Ψrj = covP(fr, fj) is the covariance matrix of features with respect to the maximum

entropy model results, and fj denotes the jth feature in constraint (2). We denote the inverse

covariance matrix as Ψ−1 and refer to its (r, j)th entry as (Ψ−1)rj.

Table 1. Bootstrap method.

Algorithm Bootstrapping

1 function Bootstrapping (N)

2 P̂ ¼ MðOÞ
3 For i = 1: N do

4 Ôn ¼ BðP̂;mÞ
5 P0 ¼ MðÔnÞ

6 Record P0

7 Return SD(P0, N)

N Repeat the procedure N times

O = {o1, o2, . . ., on} Original occurrence data

M(On) Fit a maximum entropy model given a set of species occurrence data On = {o1, o2, . . ., on} and

return probability density estimation p̂

P̂ and P0 A reconstructed density over the geographic region

Bðp̂;mÞ Sample m occurrence data following probability density p̂, where m ¼
Pn

i¼1
oi

Ôn ¼ fôn
1
; ôn

2
; :::; ôn

ng The nth new sampled occurrence data with
Pn

i¼1
ôn
i ¼

Pn
i¼1

oi
SD(P0, N) Calculate standard deviation of the set of P0s

https://doi.org/10.1371/journal.pone.0214190.t001
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To summarize, one can compute analytical estimates of the uncertainty as follows:

1. Gather data for fr (�) and the right-hand sides of constraints (2), ar.

2. Solve the maximum entropy model to get a vector of P of probabilities pi.

3. Compute the matrix −covP(fr, fj), using the features and the vector P.

4. Compute the derivates
@pi
@aj

using (7), giving the matrixrg.

5. The covariance of the output P can then be estimated asrg � F�Σ�FTm � ðrgÞ
T
, following Eq (5).

Results

We demonstrate the applications of the analytical expression of the uncertainty through two

examples, Dengue virus and Aedes Aegypti mosquito, and compare the analytical results with

the uncertainty calculated using the bootstrap method and Poission PPM approach. The ana-

lytic method results aligned well with bootstrap method results, but Poisson PPM approach

gave much larger standard deviations. We only show the results and comparison of analytic

and bootstrap below but include results and comparison of Poisson PPM in S1 Figs. The reso-

lution of the Dengue virus example is at county level while the resolution of the Aedes Aegypti

mosquito is at 1 km2 area level through Texas.

Dengue importation probabilities

Dengue virus is often imported into Texas from endemic counties. We aim to estimate the

probability that the next importation case will happen in each county of Texas. Historical case

import data, O = {o1, o2, . . .on} with n equal to 254 counties in Texas, present empirical samples

from this distribution. Each oi counts the number of imports in county i. We are also given fea-

tures fj(X) 2 R1×254 for j = 1, . . ., 10 that represent socio-economic, demographic, and environ-

mental features selected for all 254 counties across the Texas counties. This completely defines

the inputs necessary for a maximum entropy model.

Specifically, we use ten years, 2002 to 2012, of Dengue importation data into Texas received

from the Texas Department of State Health Services. The features fj(X) represent features listed

in Table 2. The ten final features were selected through a series feature selection procedures,

including representative variable selections and most predictive variable selections, which

Table 2. Ten features included in maximum entropy model. The data for these features is derived at a county level

from the 2009-2013 American Community Survey 5-year estimates [21] and WorldClim Database [22].

Features
Population of Educational Attainment with Bachelor’s degree

Minimum Temperature of Coldest Month

Percentage of Using Public Transportation to Work

Population of Educational Attainment in some college(no degree)

Population of Walked to Work

Population of Commuting to Work with Other Means

Population of Educational Attainment less than 9th grade

Percentage with Graduate or professional degree

Percentage of Walked to Work

Average Artificial Surface (Percentage)

https://doi.org/10.1371/journal.pone.0214190.t002
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demonstrated in [20]. We estimate the standard deviation using the bootstrap method, Pois-

sion PPM approach and the analytic method. The results are presented in Fig 1.

Fig 1a shows the point estimates for the import probability estimated from maximum

entropy model and Fig 1b represents standard deviation estimates from the bootstrap method

and analytic method of maximum entropy model, respectively. Many Texas counties have

Fig 1. Standard deviation comparison for Dengue importation probability. (a) Figure shows the point estimates for the import probability p̂i. (b) Figure visually

plots the bootstrap standard deviation estimates for pi across Texas counties. (c) Figure visually plots the analytic standard deviation estimates for pi across Texas

counties. (d) Figure plots the standard deviations of bootstrap vs. analytic and shows a strong equivalence between the two. Each red dot represent the estimations

for one county.

https://doi.org/10.1371/journal.pone.0214190.g001
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never had imported Dengue cases over the past ten years, and their estimates are close to zero.

We map the standard deviation of the estimates pi of each county in Fig 1b and 1c with a

darker color indicating a higher standard deviation level. For bootstrap method, we did 2000

bootstrap runs and took 22403.34 seconds in total. The running time of the analytic method,

using optimized matrix operations as described in the S1 Appendix, is dramatically faster than

the bootstrap method and takes 0.0016 seconds in total.

Fig 1d shows the standard deviation resulting from the bootstrap against the standard devi-

ation resulting from the analytic method. Each red dot represent a county. It also depicts a

regression line between the two results—sa = 0.98sb with R2 = 0.972, where sa and sb stand for

the standard deviation estimates from the analytic and the bootstrap methods, respectively.

Regression results show a linear relationship between the standard deviation calculated from

analytic expression and bootstrap method with parameter approximate 1. Both bootstrap

method and analytic method generally indicate larger standard deviation for counties with

larger point estimates.

Aedes aegypti habitat

The Aedes aegypti mosquito is the primary transmission vector of dengue, chikungunya, and

zika viruses. We aim to estimate the relative probability distribution of Aedes aegypti in Texas.

Historical presence data O = {o1, o2, . . .on}, with n equal to the number of 1km grid squares in

Texas, present empirical samples from this distribution. Each oi is either 0, if there is no pres-

ence data for this square, or 1 if there is presence data. The features fj(X) represent environ-

mental data for each 1 km2 area across the Texas.

Specifically, we use 121 locations, within Texas, of Aedes aegypti presence data found from

previous studies [23–30], DSHS. The environmental features fj(X), found from WorldClim

Database [22], are listed in Table 3.

We aim to analyze the standard deviation of the estimates p̂i for each 1km square. We esti-

mate this standard deviation using both the bootstrap method and the analytic method. The

results are presented in Fig 2.

We present the point estimates of the distribution of the Aedes aegypti mosquito in Fig 2a.

Aedes aegypti primarily feeds on humans and is found in urban areas, which results in higher

probability estimates in those areas. The areas of concentration of Aedes aegypti in Texas tend

to be population centers like Houston, Dallas, San Antonio, Austin, El Paso, and McAllen.

Fig 2b and 2c plots the standard deviation of the estimates pi of each grid using the boot-

strap method and the analytic method. This can give a practitioner a good sense of the stan-

dard deviation in the estimates. In applying the analytic method, one could use as input the

empirical distribution or a Laplace smoothed estimator [31] to smooth the empirical

Table 3. Seven features, found from WorldClim Database [22], included in maximum entropy model.

Features
artificial surfaces

population count

temperature seasonality

elevation

precipitation seasonality

minimum temperature of coldest month

mean diurnal range

https://doi.org/10.1371/journal.pone.0214190.t003
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probability to be non-zero. The analytic method gives slightly higher uncertainty estimates

than bootstrap as shown in Fig 2c. Each red dot represent the standard deviation estimates for

each grid using the bootstrap and the analytic method respectively. The black dot shows the

diagonal line when two methods aligned well. When we applied a Laplace smoothing of

0.0001, we have the relationship sa = 1.0744sb with R2 = 0.802, where sa and sb stand for the

standard deviation estimates from the analytic and the bootstrap methods, respectively. We

map the standard deviation of the estimates pi of each 1 km2 using the analytic method and

Laplace smoothing of 0.0001 in Fig 2b. The bootstrap result and analytic result can be visually

compared through Fig 2c.

We did 2000 bootstrap runs and took 30400 seconds in total. The running time for the ana-

lytic method is 6516 seconds, which is much faster than bootstrap method. As we calculated

the relative probability for Aedes aegypti for a 1km2 square grid, we have 933,680 grid cells in

total. Computing the covariance of the output would require matrix multiplications for matri-

ces of size 933680 × 933680, which can cause out-of-memory errors. We introduce a faster

method of calculating the variance of each square grid in S1 Appendix.

Fig 2. Standard deviation comparison for Aedes aegypti. (a) Figure presents the point estimates pi. (b) Figure shows standard deviation

calculated using bootstrap method. (c) Figure shows standard deviation calculated using analytic method. (d) Figure shows the standard

deviation comparison between analytic method and bootstrap method.

https://doi.org/10.1371/journal.pone.0214190.g002
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Discussion

The maximum entropy model can give a point estimation of the unknown species distribution

within predefined grids using presence-only data with possible influential features like envi-

ronmental factors, demographic factors, social economic factors, etc. However, uncertainties

come from both the model and the sample data. Some possible sources of this uncertainty are:

• The true expectation of all features fj(X) are unknown and estimated using the presence-only

data.

• Species distribution data are not collected at random, but based on prior knowledge of the

biologists. For example, all samples may be observed within pre-selected locations.

• Having only a few presence points relative to the size of the grid can lead to unstable models.

• The features fj(X) used within the model may be inaccurate or vary dramatically over time.

So, it is unclear whether the presence only data collected is appropriate for use with the

given features.

In the maximum entropy model, the output probabilities are dependent on the features

fj(X). A flat fj(X) can only produce flat output probabilities. One may want to know how will

the output probabilities change when the feature values change? Uncertainty quantification

may help identify the features that most reduce uncertainty in a maximum entropy model.

The bootstrap method is a well accepted method of quantifying uncertainty. However, the

running time of the bootstrap can be very long. In the dengue example, bootstrap method took

more than 22000 seconds to generate a comparable uncertainty estimate of analytic method

while the analytic method just took 0.0016 seconds in total. The analytic method uses more

memory compared to the bootstrap method. In the Aedes aegypti example, the analytic

method took only 20 percent time of running bootstrap method. However, code optimization,

and element-wise matrix multiplications can significantly increase the speed of the analytic

method compared to the bootstrap method. A method for increasing programming speed are

shown in S1 Appendix. Furthermore, the analytic method is able to approximate covariances

in the output—whereas this can be quite difficult for the bootstrap method if we only use a

small number of samples.

The Poisson PPM approach proved to be equivalent to MAXENT providing an alternative

approach of estimating the uncertainty. However, the hidden independence assumption of

species appearance locations can affect the performance of the model which gives much larger

estimated uncertainty when assumptions violated.

Supporting information

S1 Appendix. Analytic expression of uncertainty, and comparison between analytic

method and poisson PPM can be found in S1 Appendix.

(PDF)

S1 Figs. Analytic and poisson PPM comparison. (a) Figure plots the relationship between

point estimates of Dengue importation probability vs. variance calculated through analytic

method. Non-linear relationship indicates the improper use of Poisson PPM for Dengue

importation cases. (b) Figure plots the standard deviations of Poisson PPM vs. analytic for

Dengue importation case study and indicates that Poisson PPM provides much larger standard

deviation for Dengue imports application. (c) Figure plots the relationship between point esti-

mates of Aedes Aegypti existence probability vs. variance calculated through analytic method.

(d) Figure shows the standard deviation comparison between analytic method and Poisson
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PPM of Aedes Aegypti existence probability.

(TIF)

S1 Data File. Dengue importation and Aedes aegypti existence case study data. All the data

used for Dengue importation and Aedes Aegypti existence case study are all included in data

file.

(ZIP)
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