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Abstract. Heart arrhythmia is a severe heart problem. Automated
heartbeat classification provides a cost-effective screening for heart
arrhythmia and allows at-risk patients to receive timely treatments, which
is a highly demanded but challenging task. Recent works have brought vis-
ible improvements to this area, but to identify the problematic supraven-
tricular ectopic (S-type) heartbeats is still a bottleneck in most existing
studies. This paper presents a two-step DNN-based framework to identify
arrhythmia-related heartbeats. In the first step, a deep dual-channel con-
volutional neural network (DDCNN) is proposed to classify all heartbeat
classes, except for the normal and S-type heartbeats. In the second stage, a
central-towards LSTM supportive model (CLSM) is specially designed to
distinguish S-type heartbeats from the normal ones. By processing heart
rhythms in central-towards directions, CLSM learns and abstracts hidden
temporal information between a heartbeat and its neighbors to reveal the
deep differences between the two heartbeat types. As an improvement, we
also propose a rule-based data augmentation method to solve the training
data imbalance problem. The proposed framework is evaluated over three
real-world ECG databases. The results show that our method outperforms
the baselines in most evaluation metrics.

Keywords: Arrhythmia detection - Deep learning - Data
augmentation

1 Introduction

Heart arrhythmia is known as abnormal heart rhythms, which threatens people’s
lives by preventing their hearts from pumping enough blood into vital organs. It
has been a major worldwide health problem for years, accounting for nearly 12%
of global deaths every year [13]. Early detection and timely treatment are the
keys to survival from arrhythmia. The electrocardiogram (ECG) plays a pivotal
role in arrhythmia diagnosis since it captures heart rate, rhythm, and vital infor-
mation regarding the electrical heart activities and related conditions. However,
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the manual interpretation of ECG recordings is time-consuming and error-prone,
especially for the long-term ECG recording which is essential to capture the spo-
radically occurred arrhythmia [17]. Therefore, an automated method to assist
clinicians in detecting arrhythmia heartbeats from ECG is highly demanded.

Heartbeat classification on ECG is a core step towards identifying arrhyth-
mia. As reported by the Association for Advancement of Medical Instrumenta-
tion (AAMI) [2], heartbeats can be categorized into five super classes: Nor-
mal (N), Supraventricular (S) ectopic, Ventricular (V') ectopic, Fusion (F)
and Unknown (@Q). In particular, problematic arrhythmias are mostly found in
S-type and V-type heartbeats [6]. Figurel shows several ECG samples of
different heartbeat types. We can see that the V-type heartbeat exhibits a
huge morphological difference against other heartbeats, while the normal and
the S-type heartbeats are similar in shape. It is less likely to accurately iden-
tify S-type heartbeats from normal ones merely based on morphology. In clini-
cal practice, special rhythm information between two heartbeats, known as the
RR-interval, is needed to help identify S-type heartbeats because S-type heart-
beats are premature and they normally have shorter previous- RR-intervals than
normal heartbeats. However, the inter- and intra-patients variations existing in
the heart rhythms still impose great challenges to detection tasks. Besides, the
sporadic occurrence of S-type heartbeats can also be an issue that tends to bias
an automated heartbeat classification method.
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Fig.1. Examples of different types of heartbeats. Letters indicate the P-waves,
R-peaks, QRS-complexes and T-waves, corresponding to their references in the med-
ical literature. Time gap between two successive R peaks is known as RR-interval.
Specifically, previous- R R-interval denotes the interval between the current R peak
and the previous R peak. In comparison to the normal heartbeat (class N), the S-type
heartbeat has a less obvious P-wave which is due to junctional premature beating. The
V-type heartbeat exhibits a deep and capacious S-wave caused by left bundle branch
block. Class F is a fusion of paced and normal heartbeats. The unclassifiable beat is
denoted as class Q.

Existing solutions for the heartbeat classification problem mostly follow a
traditional pattern recognition paradigm [4,6,14,17], in which the fluctuations
of the raw ECG signals are modeled by a set of carefully extracted features,
such as RR-intervals, wavelet coefficients, and morphological amplitudes. How-
ever, pattern-based classification models often experience difficulties in achiev-
ing satisfactory performance on abnormal heartbeat detection, especially when
S-type arrhythmia heartbeats are involved. Besides, the effectiveness of extracted
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features, the mutual-influences among features, and the compatibility between
the feature distribution and the classifiers [5] are three major factors that lead
to a solid upper-bound on model performance.

Recent advances in heartbeat classification are largely driven by deep neu-
ral networks (DNNs). In consideration of the sporadic occurrence of S-type
heartbeats, which imposes a great challenge to DNN training, many DNN-based
studies use synthetic heartbeats for model training and evaluation [1,8,9,15,16].
However, these efforts suffer from data leakage because, after augmentation, data
is not partitioned patient-wise into training and test sets. So that beats from the
same patient may appear in both training and test data. The deep learning
algorithms may learn patient-specific characteristics during training and gain
a nearly-perfect classification performance on test data. Additionally, the over-
optimistic results obtained from data leakage have hided a potential limitation
of these DNN models in which only the ECG segmented heartbeats are accepted
as inputs. The inter-heartbeat rhythm information, like RR-intervals, is not well
considered in these models. Without such information, a high misclassification
rate is probably obtained on S-type heartbeats. The problem is still open.

Contributions: In this work, we propose a two-step deep neural network-based
heartbeat classification framework. Due to the observed difficulty of detecting
S-type heartbeats from N-type heartbeats, the proposed framework trains a
deep dual-channel convolutional neural network (DDCNN) which accepts seg-
mented heartbeats as input in the first step to classify V-type, F-type and
Q-type heartbeats. At this stage, S-type and N-type heartbeats are not the tar-
gets, so they are put into one bundle to be studied in the next step. In the second
step, a central-towards LSTM supportive model (CLSM) is specially designed to
distinguish S-type heartbeats from N-type ones. The RR-intervals of a heart-
beat and its neighbors are arranged in sequence form, serving as the input to
CLSM. In particular, CLSM learns and extracts hidden temporal dependency
between heartbeats by processing the input RR-interval sequence in central-
towards directions. Instead of using raw individual RR-intervals, the abstractive,
mutual-connected temporal information provides stronger and more stable sup-
port for identifying the problematic S-type heartbeats. Besides, as an improve-
ment as well as a necessary driver for activating the CLSM, a rule-based data
augmentation method is also proposed to supply high-quality synthetic samples
for the under-represented S-type RR-interval sequences. To avoid data leakage,
the benchmark dataset is split into training and test sets at patient level fol-
lowing the well-recognized inter-patient division paradigm proposed in [6]. The
synthetic training samples are generated from the training set only.

2 The Proposed Framework for Arrhythmia Detection

The proposed framework consists of DDCNN and CLSM. DDCNN is used to cap-
ture the morphological patterns of heartbeats, and CLSM is specially designed
to handle the temporal information between heartbeats. Details of these two
models and the proposed data augmentation for driving CLSM are presented in
this section.
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2.1 Deep Dual-Channel Convolutional Neural Network

The architecture of DDCNN is presented in Fig.2. The network accepts seg-
mented ECG heartbeats (modified limb lead IT, sampled at 360 Hz) as input, and
outputs a prediction of probabilities of the N&S-bundle, V, F and @ classes.
DDCNN is designed as a dual-channel convolutional neural network, with the
small filter channel Conv(8,32) capturing subtle fluctuations and the larger fil-
ter channel Conv(64,32) handling wave patterns in ECG heartbeats. Informa-
tion from the two channels are added together before the pooling operation.
The entire DDCNN contains 18 convolutional layers, a pooling layer, a concat
layer, a dense layer, and a softmaz output layer. Specifically, the concat layer is
designed to concatenate rhythm information (RR-intervals) to assist heartbeat
classification. Each convolution operation is followed by a batch normalization
and a ReLU activation. Every three convolutional layers of each channel are
packed into a residual block and bypassed by a shortcut connection. The stacked
residual blocks design reduces the network degradation risk and accelerate the
training process.
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Fig. 2. Architecture of DDCNN, where Conv(zx,y) denotes a convolutional layer with
a kernel in size x and an output of y feature maps.

2.2 Central-Towards LSTM Supportive Model

The proposed CLSM consists of two specially designed central-towards LSTM
layers and one softmax output layer. The term ‘central-towards’ means that
information in an LSTM chain flows from farthermost units in both sides towards
the central units, without crossing over with each other. A graphical represen-
tation of our model is provided in Fig. 3.

CLSM accepts heartbeats’ previous-RR-interval sequences as inputs. A
previous- RR-interval sequence of the t* heartbeat hb; is defined as

St = [Rt—NeRanv (XS Rt—l7 Rt; Rt-‘rla weey Rt+NeRan] (1)

where R, denotes the RR-interval between the ¢t — 1*"* and t** heartbeats, and
NeRan defines the range of a heartbeat’s neighborhood. The default value of
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Fig. 3. Central-towards LSTM Supportive Model architecture.

NeRan is 25. A previous- RR-interval sequence S; is labeled as the same label
of the central heartbeat hb;, which is N-type or S-type.

Each central-toward LSTM layer contains 2 * (NeRan + 1) common LSTM
units. Particularly, the two central units receive and process the learned temporal
dependencies from the previous and the posterior heartbeats, respectively.

Given an input sequence S;, update equations of a unit in the proposed
central-toward LSTM layer depend on the unit’s position n at the layer, where
n € (0,2« NeRan+1]. Let g, gin, gon, hn denotes the forget gate, input gate,
output gate, and the output of the n*" unit, respectively.

o (WeSi[n] + Ughp—1 + bg) ,n < NeRan + 1 ,
Jan = {U (WySi[n] + Ughni1 +bg) ,n > NeRan+1 4 € fiio @

where W and U are the weight matrix of inputs and recurrent connections,
respectively, and b denotes the bias. We define the change of the memory as:

Cp =

- Jtanh (W.S¢[n] + Uchyp—1 +bc),n < NeRan + 1 ()
tanh (W.S¢[n] + Uchyy1 +be),n > NeRan + 1

Then the cell state is determined by the following equation:

= {gf,nocnl +gi,n00n,n<NeRan+1 (4)

9fn ©Cnii +gz,n 0Cn, N 2> NeRan +1
The output of the unit depends on the cell state, which is given by:
hn, = gon o tanh (c,) (5)

In the 2"¢ central-toward LSTM layer, the central units output 32 feature
maps in size 1 x 1. The feature maps are flattened before being processed by a
softmaz function for classification. The model outputs probabilities of the central
heartbeat being normal and S-type.
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2.3 Rule-Based Data Augmentation

The sporadic occurrence of the S-type heartbeats has resulted in a serious class
imbalance problem in the benchmark training heartbeat data, which puts an
obstacle to the successful training of CLSM. To generate synthetic samples for
the under-represented S-type heartbeats becomes necessary and critical. Many
oversampling techniques, such as SMOTE [3], have been introduced for data aug-
mentation purpose, but these techniques are mainly designed for data samples
that are represented by extracted features. Elements in a heartbeat’s previous-
RR-interval sequence Sy = [Ri—NeRan, -, Ri—1, Rt, Ri+1, -, Ri4 NeRan) have evi-
dent linear correlations, which are different from the mutual-independent fea-
tures. Application of the existing oversampling methods will introduce invalid
samples and make the training even worse.

To solve the problem, we propose a rule-based data augmentation method to
generate synthetic previous- RR-sequences of the S-type heartbeats. Basically, a
valid synthetic previous- RR-interval sequence subjects to 3 medical facts:

a. S-type heartbeats normally have shorter previous- R R-intervals than the nor-
mal ones. (questioni: what is the valid range of distance between previous-
RR-intervals of S-type and normal heartbeats?)

b. Heartbeats of the same type exhibit a limited variation in the previous- RR-
intervals within a short period. (questions: how much the variation is?)

c. Some normal heartbeats can be found within the neighborhood scope of a
S-type beat. (questions: how many normal heartbeats can be found?)

The above medical facts provide a qualitative overview of what a valid synthetic
sample should be. To synthesize a new valid sample, we still need to explicitly
answer the questions following each medical fact.

The proposed method seeks for the answers via performing a statistical anal-
ysis on the benchmark training set (DS1 of MIT-BIH-AR [12]). We define three
variables, gap, var Pct and nAmt for questions 1, 2 and 3, respectively. Statisti-
cally, we have: gap = 0.1; varPct ~ 3%; and nAmt = Range([0, 48]).

Let nVals and sVals be the collections of previous-RR-intervals of the nor-
mal and the S-type heartbeats in the training set, respectively. The proposed
rule-based data augmentation method is detailedly illustrated in Algorithm 1.

By complying with the rules (line 3, 5, 8 & 11 in Algorithm 1) and creating
new combinations (line 2, 4, 9 & 12 in Algorithm 1) from the existing data, our
method is able to generate high-quality and diversified S-type training sequences.

3 Experimental Evaluation

Extensive experiments on three real-world ECG databases are implemented to
evaluate the proposed framework and the rule-based data augmentation method.
In this section, we introduce the databases and experiment settings, and then
discuss the experimental results.
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Algorithm 1. Rule-based Data Augmentation

Input: gap, varPct, nAmt, nVals and sVals;
Output: synSeg;
synSeq «— new(list);
centralS < a random pick from sVals;
amount «+ a random pick from nAmdt;
candidate <+ a random pick from nVals;
while candidate < centralS + gap do

L candidate <+ a random pick from nVals;

o oA W N

for i in range(amount) do
var <« a random float in [1 — varPct, 1 4+ varPct];
synSeq.add(candidate * var);

®

10 for i in range(2 x NeRan — amount — 2) do
11 var «— a random float in [1 — varPct, 1 + varPct];
12 synSeq.add(central S x var);

13 shuffle(synSeq);
14 insert centralS into the central position of synSeg;
15 return synSeq;

3.1 Arrhythmia Datasets

The real-world ECG datasets used in this study are: (1) MIT-BIH Arrhythmia
database (MIT-BIH-AR); (2) MIT-BIH Supraventricular Arrhythmia database
(MIT-BIH-SUP) and (3) St.-Petersburg Institute of Cardiological Technics 12-
lead Arrhythmia database (INCART). The databases are all publicly available
in the Physiobank [12].

MIT-BIH-AR is the benchmark database for arrhythmia detection, which is
used in most published research [11]. To fairly compare against existing methods,
we train and test our framework in this database following the well-recognized
inter-patient evaluation paradigm [6]. MIT-BIH-SUP and INCART are used to
demonstrate the generalizability of the proposed framework to external data.

— MIT-BIH-AR contains 48 two-lead ambulatory ECG recordings from 47
patients. The recordings were digitized at 360 Hz per second per channel
with 11-bit resolution over a 10-mV range. For most of them, the first lead
is modified limb lead II (except for the recording 114). The second lead is a
pericardial lead. In this study, only the modified limb lead II is used.

— MIT-BIH-SUP consists of 78 two-leads recordings, with each of them
approximately 30 min in length. The recordings are sampled at 128 Hz. They
were chosen to supplement the examples of supraventricular arrhythmias in
the MIT-BIH-AR database.

— INCART consists of 75 ECG recordings sampled at 257 Hz. Each recording
contains 12 standard leads. Similarly, only the modified limb lead II is used
in this study. Most of the recordings have ventricular ectopic heartbeats.
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3.2 Experiment Setup

The experimental setup procedures are shown as follows.

Table 1. The inter-patient division paradigm (for MIT-BIH-AR)

Dataset | Recordings®

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208,
209, 215, 220, 223, 230

DS2  |100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222,
228, 231, 232, 233, 234

@ Recordings 102, 104, 107 and 217 containing paced beats are excluded [2].

Table 2. Heartbeat distributions in MIT-BIH-AR, MIT-BIH-SUP and INCART

Database N S A% F Q
DS1 45808 943 | 3786 414 @ 8
DS2 44198 | 1836 | 3219 388 | 7
MIT-BIH-SUP | 158760 | 11976 | 9718 | 23 |76
INCART 150210 | 1917 | 19621 |218 | 6

Benchmark Training and Test Datasets. We divide MIT-BIH-AR into a train-
ing and a test set at patient level following the well-recognized inter-patient
evaluation scheme [6]. Table1 presents the division in detail, where DS1 is
the training set and DS2 in the test set.

Heartbeats Segmentation. We segment each recording to heartbeats based
on the R peak locations in notations. For each R peak, 70 samples (200-ms)
before R peak and 100 samples (280-ms) after R peak were taken to represent
a heartbeat. After segmentation, the heartbeat distributions of each dataset
are shown in Table 2.

Previous-RR-Interval Sequence Generation. For each segmented normal or
S-type heartbeat hb;, we generate a previous- RR-interval sequence Sy corre-
spondingly.

Data Augmentation. We generate synthetic S-type previous-RR-interval
sequences from the training set (DS1) using our rule-based data augmen-
tation method. After data augmentation, the sequences for training CLSM
are made up of 44738 normal and 45908 S-type sequences.

Training Specification. Both the proposed DDCNN and CLSM are trained
with a variant of the gradient decent algorithm named Adam [7]. The learning
rate are set to 0.001 with no decay. The Categorical Cross-Entropy function
is used to measure the loss.

Evaluation Metrics. The evaluation metrics used in this study are accuracy
(ACQ), precision (PRE), recall (REC) and f1 score (F1).
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3.3 Experiment;: Overall Heartbeat Classification

In this section, we evaluate the heartbeat classification performance of the pro-
posed framework on the benchmark database and compare the results against
multiple baseline algorithms [1,4,6,10,14,17] derived from literature. Table3
summarizes the comparative results. The comparison focuses on normal, S-type
and V-type heartbeats because, according to the AAMI standard [6], F-type
and @-type heartbeats are naturally unclassifiable and penalties should not be
applied for the misclassification of these heartbeats. The proposed DDCNN +
CLSM architecture performs significantly better than the baseline algorithms
on the overall accuracy (95.1% vs 78.0%-93.1%), F1 score of normal heartbeats
(97.6% vs 87.3%-96.9%), recall rate of S-type heartbeats (83.8% vs 29.5%—
76.0%), precision rate of S-type heartbeats (59.4% vs 36.0%-52.3%), and F1
score of S-type heartbeats (69.5% vs 33.4%-56.3%). The performance on V-
type beats is above the average, ranking the 3"¢ place of the listed works.

Table 3. Performance comparison on DS2 of MIT-BIH-AR

Method ACC|N S A%
REC | PRE | F1 REC | PRE | F1 REC | PRE | F1

DDCNN + CLSM |95.1 |97.5 97.6 |97.6 | 83.8 |59.4|69.5|80.4 |90.2 |85.0
DDCNN Only 93.4 197.9 1 95.7 |96.7 | 13.2 |20.7 |16.1 |87.2 |87.7 |87.5
DDCNN Only 85.9 190.2 195.9 [{93.0 | 3.9 3.5 3.7 1824 46.3 |59.2
(without Concat)

Acharya [1] 71.3 | 73.3 |95.0 [82.6 | 6.3 2.3 3.4 190.8 | 28.2 |43.5
De Chazal [6] 81.9 |86.9 [99.2 |92.6 |75.9 |38.5 |51.1 |77.7 |81.9 |80.0
Ye [14] 86.4 | 88.5 |97.5 |92.8 60.8 | 52.3 |56.3 |81.5 |63.1 |71.2
Zhang [17] 86.7 | 88.9 [99.0 [93.7 |79.1 |36.0 49.5 |85.5 |92.889.0
Shan [4] 93.1 198.4 /954 [96.9 29.5 384 |33.4 |70.8 |85.1 |77.3
Mariano [10] 78.0 | 78.0 {99.1|87.3 |76.0 |41.0 |53.3 |83.0 |88.0 |85.4

* Results in this table are presented in percentage (%), which are obtained on DS2 of
MIT-BIH-AR following the same evaluation procedures.

It is apparent from Table 3 that most of the listed works struggle in the detec-
tion of S-type heartbeats. We re-implement the DNN model [1] and evaluate it
following the inter-patient paradigm. The result confirms that, without consider-
ations of heart rhythm, a DNN is less likely to identify S-type heartbeats. Zhang
et al. [17] and Mariano et al. [10] achieve close recall rates of S-type heartbeats
as our framework, but they sacrifice S-type heartbeats precision rates (36.0%
and 41%, respectively) and normal heartbeats recall rates (88.9% and 78.0%,
respectively). This implies that both these two works misclassify a large portion
of normal heartbeats as S-type heartbeats. In clinical practice, the erroneous
misclassification of normal heartbeats as disease heartbeats leads to unneces-
sary additional tests, unnecessary patient treatments, expensive costs, and risks
for patients.
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An ablative analysis is also performed. We remove CLSM from the proposed
framework and use standalone DDCNN for overall classification of all five types
of heartbeats. The result is shown as DDCNN Only in Table3. To further
investigate whether raw R R-intervals help to identify problematic heartbeats, we
train a DDCNN without the concat layer for comparison. The result is denoted
as DDCNN Only (without Concat). It is clear that, without the proposed
CLSM, both standalone DDCNNs can hardly detect S-type heartbeats. The
DDCNN with the concat layer performs better on both S-type and V-type
heartbeats than the DDCNN without the concat layer. The outcome indicates
that RR-intervals help to identify problematic heartbeats, especially for S-type
heartbeats, but the assistance of raw RR-intervals is limited because they are
likely to be influenced by the intra- and inter-patients variations. Therefore,
having a consideration of neighbor heartbeats and performing an abstraction of
the temporal dependency from the raw RR-intervals is necessary.

3.4 Experiments: Generalization of the Proposed Framework

We apply the proposed framework (trained in DS1) to MIT-BIH-SUP and
INCART to demonstrate its generalizability. To be fitted, ECG recordings in
these two databases are re-sampled to 360 Hz. Table 4 summarizes the results.

To the best of our knowledge, this work is the first one to report heartbeat
classification results on MIT-BIH-SUP. When being applied on MIT-BIH-SUP,
the proposed framework experiences a slight performance drop on V-type heart-
beats detection. However, this is mainly due to the low-resolutions of the source
ECG recordings which are originally sampled at 128 Hz.

We compare the proposed framework to Mariano’s work [10] on INCART.
Mariano’s work is one of the few works that conduct model evaluation on both
MIT-BIH-AR and INCART. The results show that both works achieve promis-
ing performances, where the proposed framework slightly outperform Mariano’s
work [10] in majority metrics. The commonly low precision rates of S-type heart-
beats are mainly due to the extreme class imbalance of INCART.

Table 4. Generalization performances (%) on MIT-BIH-SUP and INCART

Method Dataset ACC|N S A%

REC |PRE |REC |PRE | REC | PRE
Proposed MIT-BIH-SUP |88.2 [90.6 |97.8 |72.6 |53.5 |70.0 |43.0
Proposed INCART 91.6 192.0 199.6 |81.0 |14.4 1 91.0 |81.9
Mariano L [10] INCART 91.0 {92.0 199.0 |85.0 |11.0 | 82.0 |88.0
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3.5 FExperiments: Rule-Based Data Augmentation Versus SMOTE

We investigate the effectiveness of our rule-based data augmentation method in
this section. The SMOTE algorithm [3] is used as a baseline. We train individual
CLSMs with the rule-based augmented sequences and the SMOTE augmented
sequences, respectively, and evaluate their classification performances using all
normal and S-type heartbeats in DS2. Table 5 summarizes the results.

Apparently, SMOTE failed to generate valid previous- RR-interval sequences
for training the proposed CLSM. The CLSM trained with SOMTE-generated
samples couldn’t effectively identify S-type heartbeats, with both the recall and
precision rates being lower than 30%. The poor result is not surprising because
the SMOTE method is designed for featurized data oversampling. Thus, data
like previous- RR-interval sequences with internal connections between elements
will disable the SMOTE method. By contrast, using the medical rules as a guide,
the proposed rule-based data augmentation method can generate high-quality
synthetic sequences that reflect the true distribution of the real-world data to
support the CLSM.

Table 5. The impact of data augmentation method on CLSM’s performance

Method ACC(%) |N S
REC(%) | PRE(%) | REC(%) | PRE(%)
CLSM + Rule-based Method | 97.7 98.2 99.4 85.6 65.7
CLSM + SMOTE 94.7 97.7 96.8 19.6 25.5

3.6 Discussion

Experimental results achieved on the three real-world ECG databases have
proven the effectiveness and the robustness of the proposed framework and
indicated that the proposed framework has the potential to make a substan-
tial clinical impact. In particular, the proposed CLSM structure distinguishes
our framework from the others. It provides a promising solution for separating
S-type heartbeats from normal heartbeats which is one of the most problematic
tasks for existing arrhythmia detection methods.

While CLSM has provided a novel idea of how to incorporate heart rhythm to
help individual heartbeat classification, we have also implemented experiments
to investigate how the input neighborhood range, NeRan, influence CLSM’s
performance. The default value for NeRan is 25. In our experiment, we try dif-
ferent NeRan values from 2 to 35. The results show a growing trend of CLSM
performance with NeRan increasing from 2 to 16. CLSM stably maintains in
its optimal performance when NeRan is greater than 20. This means an input
previous- RR-interval sequence of approximately 35 s is the minimum require-
ment for CLSM to accurately capture useful information from heart rhythm.

Although CLSM is initially designed as the second-step structure in the pro-
posed framework, it is a general and flexible binary classifier. For those works
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suffering from the confusion of S-type and normal heartbeats, CLSM can be
easily integrated as a complement without changing their original structures.
This is why we define CLSM as a supportive model.

4 Conclusion

This work presents a two-step DNN-based classification framework to identify
arrhythmia-related heartbeats from ECG recordings. The framework consists
of a deep dual-channel convolutional neural network (DDCNN) and a central-
towards LSTM supportive model (CLSM). In step-1, DDCNN incorporates both
temporal and frequent patterns to identify V, F and Q-type heartbeats. In step-
2, CLSM distinguishes S-type heartbeats from normal ones by taking advantage
of the central-towards LSTMs to learn and abstract hidden temporal informa-
tion of each heartbeat. The experimental results obtained on three real-world
databases show that the proposed framework has the potential to make a sub-
stantial clinical impact.
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