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Abstract Protein succinylation is a biochemical reaction in which a succinyl group (-CO-CH2-CH2-

CO-) is attached to the lysine residue of a protein molecule. Lysine succinylation plays important

regulatory roles in living cells. However, studies in this field are limited by the difficulty in experi-

mentally identifying the substrate site specificity of lysine succinylation. To facilitate this process,

several tools have been proposed for the computational identification of succinylated lysine sites.

In this study, we developed an approach to investigate the substrate specificity of lysine succinylated

sites based on amino acid composition. Using experimentally verified lysine succinylated sites col-

lected from public resources, the significant differences in position-specific amino acid composition

between succinylated and non-succinylated sites were represented using the Two Sample Logo pro-

gram. These findings enabled the adoption of an effective machine learning method, support vector

machine, to train a predictive model with not only the amino acid composition, but also the com-

position of k-spaced amino acid pairs. After the selection of the best model using a ten-fold cross-

validation approach, the selected model significantly outperformed existing tools based on an inde-

pendent dataset manually extracted from published research articles. Finally, the selected model

was used to develop a web-based tool, SuccSite, to aid the study of protein succinylation. Two pro-

teins were used as case studies on the website to demonstrate the effective prediction of succinyla-
nces and
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tion sites. We will regularly update SuccSite by integrating more experimental datasets. SuccSite is

freely accessible at http://csb.cse.yzu.edu.tw/SuccSite/.
Introduction

Post-translational modification (PTM) is a chemical form of
regulation that occurs after protein translation. This post-
translational regulation plays a vital role in a variety of cellular

processes including signaling networks, protein degradation,
gene transcriptional regulation, protein–protein interaction,
and metabolic pathways. The attachment and removal of
chemical groups catalyzed by enzymes underlie most PTMs

[1]. Protein succinylation is the biochemical reaction in which
a succinyl group (-CO-CH2-CH2-CO-) is attached to a lysine
residue of a protein molecule. Succinyl coenzyme A

(succinyl-CoA) is a cofactor for enzyme-mediated lysine suc-
cinylation [2,3]. Protein lysine succinylation plays important
regulatory roles in living cells. For instance, a previous study

[2] reported evidence for possible implications of docosahex-
omic acid (DHA) exposure in the central nervous system. In
a related work [4], Kawai et al. demonstrated the ability of

DHA to promote succinylation of lysine residues.
Mass spectrometry (MS), a high-throughput biotechnol-

ogy, is widely utilized to determine a large amount of site-
specific succinylated peptides [5,6]. Due to the labor-intensive

experiments of MS-based proteomics in identifying succiny-
lated sites, there is an increasing number of computational
tools dedicated to predicting potential succinylated lysine resi-

dues for further functional analyses [7–10]. Succinylation is a
site-specific modification that mainly occurs on lysine residues.
The process requires substrate specificity—recognition of a

succinylated site in accordance with the composition of
surrounding residues. Therefore, increasing the precision of
succinylation site prediction requires the detailed characteriza-
tion of substrate specificity.

Table 1 provides a summary of published methods used for
the identification of lysine succinylation sites based on protein
sequences. For example, a web-based tool developed by Zhao

et al. [8] incorporated support vector machine (SVM) with
multiple feature-encoding schemes to identify succinylated
y of the training datasets and lear

ation sites

rt vector machine. The method pro
sites. The iSuc-PseOpt [9] incorporates the random forest algo-
rithm with k-nearest neighbors cleaning (KNNC) [11] and the

Included Hypothetical Training Samples (IHTS) for the iden-
tification of protein succinylation sites. In addition, Xu et al.
[7] developed an approach to predict succinylated lysines

according to the biochemical property that PTM prefers a
specific composition of amino acids around the substrate site.
Various features, such as amino acid composition, a flexibility
scalar, aromatic content, the net charge, beta entropy,

hydrophobic moment, disorder information, and position-
specific scoring matrix (PSSM), were also investigated [12].
Despite several approaches and tools for the identification of

protein succinylation sites, the number, quality, and perfor-
mance of datasets were insufficient to meet current demand.
Moreover, the recent advancements in high-throughput

biotechnologies increased the available data of experimentally
verified succinylated sites. Therefore, we were motivated to
develop a new approach for identifying protein succinylation

sites primarily using the composition of amino acids [13] and
the informative k-spaced amino acid pairs (KSAAPs) [14].
Additionally, other sequence-based features such as the com-
position of dipeptides [15] are also taken into account. After

the selection of the best model based on the evaluation of
cross-validation, the proposed model can provide a better
independent testing result than existing online tools. Finally,

the proposed model has been adopted to implement a web-
based predictor, SuccSite, to accelerate the practical applica-
tions for functional proteomics.

Method

Data collection and preprocessing

With the advent of high-throughput MS or MS/MS-based

proteomics in protein succinylation, numerous resources were
developed for compiling experimentally confirmed PTM
peptides including lysine succinylated sites based on manual
ning methods of existing tools for the prediction

posed in the current study is highlighted in bold.

http://csb.cse.yzu.edu.tw/SuccSite/
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Figure 1 Flowchart of protein succinylation site prediction in this work

There are four major steps, including data collection and preprocessing, feature investigation, model training and evaluation, as well as

independent dataset testing.
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curation of MS/MS-related literature [16–18]. As presented in
Figure 1, the experimentally verified lysine succinylated site

dataset was extracted from UniProtKB [19] and CPLM [18].
In UniProtKB, the succinylated proteins are collected and fil-
tered to remove non-experimental entries represented by the

Evidence Code Ontology (ECO) codes ‘‘0000305”,
‘‘0000250”, ‘‘0000255”, and ‘‘0000256” [20]. This results in
1382 experimentally verified lysine succinylated sites from

419 proteins. The CPLM database 2.0 [18] has 189,919 modi-
fied lysines from 45,748 proteins for 12 different types of lysine
modifications. With the consideration of only experimentally
confirmed lysine succinylated sites, 2558 sites are collected

from 897 unique proteins. As a result, 1316 proteins with
3940 experimentally verified lysine succinylated sites are col-
lected from UniProtKB and CPLM. After removing the dupli-

cated and redundant data using the CD-HIT program [21]
with a cut-off threshold of 40%, we obtain 1169 unique pro-
teins with 2509 lysine succinylated sites (positive data). In

order to prepare the training and independent testing datasets
for model training and evaluation, respectively, we randomly



Kao HJ et al / Identification of Protein Succinylation Sites using SuccSite 211
select 1000 unique proteins for the training dataset. The
remaining 169 unique proteins are the independent testing
dataset.

For the identification of lysine succinylation sites, a
(2n + 1)-mer window size was adopted to extract fragmented
sequences centered on modified sites with n left-hand and n

right-hand neighboring amino acids. Given a specific number
of succinylated proteins, the negative dataset is generated from
non-succinylated sites, which are those fragmented sequences

centered on lysine residues without annotation of succinyla-
tion. Related works [7–10,22,23] revealed that models trained
using a 31-mer window size (n = 15) perform best in the pre-
diction of lysine succinylation sites. Owing to the possibility of

over-fitting originating from the training dataset, the predictive
power of the generated models might be overestimated. Thus,
the independent testing dataset, which is blind to the training

dataset, is necessary for further evaluation of real cases. In
addition, the fragmented sequences may be homologous
among datasets used for model training. Therefore, the CD-

HIT software is used again to eliminate fragmented sequences
with high similarity between the training and testing datasets.
As displayed in Table S1, based on a sequence identity thresh-

old of 40%, the final dataset for model training consists of 998
positive and 2729 negative instances; the final dataset for inde-
pendent testing contained 115 positive and 2673 negative
instances. In this work, the positive and negative testing data

are further utilized to compare the proposed model with other
prediction schemes for predictive performance.

Amino acid composition

This study focuses on the sequence-based characterization of
substrate site specificity for protein succinylation. Amino acid

composition (AAC) is a typical attribute used to examine sub-
strate site motifs. AAC determines the probability of amino
acids occurring in the flanking region of PTM sites [24]. Given

a fragmented sequence x with a 31-mer string length, nx(k) is
the number of a specific amino acid, k, occurring in the frag-
ment, where k denotes the 20 amino acids. Consequently, the
probability Px kð Þ of specific amino acid k is [25]

Px kð Þ ¼ nxðkÞP20
k¼1nxðkÞ

k ¼ 1; 2; � � � ; 20 ð1Þ

Then, the composition of the 20 amino acids can be trans-
formed to a 20-dimensional numeric vector Vx for the frag-

mented sequence x:

Vx ¼ Px 1ð Þ;Px 2ð Þ; � � � ;Pxð20Þ½ � ð2Þ
In order to observe the position-specific AAC for lysine

succinylated sites, WebLogo [26] is utilized to create frequency

plots of sequence logos for visualizing the potential amino acid
motifs surrounding succinylated sites (at position 0). In addi-
tion, a web-based program, Two Sample Logo [27], is adopted

to further discover the differences in the position-specific com-
position of amino acids between succinylated sites (positive
data) and non-succinylated sites (negative data).

Amino acid pair composition

The dipeptides surrounding the succinylated sites are explored
by calculating the occurring probability of each amino acid
pair (dipeptide) around the substrate sites. The probabilities
of 400 dipeptides are compared between succinylated and
non-succinylated data to determine the significant dipeptides

for model construction. For a fragmented sequence x, fk(x)
represents the occurrence frequency of a specific amino acid
pair. The occurrence frequency of an amino acid pair pk(x)

is defined as follows:

pk xð Þ ¼ fkðxÞP400
i¼1fiðxÞ

i; k ¼ 1; 2; � � � ; 400 ð3Þ

Then, the composition of the 400 amino acid pairs for a

fragmented sequence x is

P xð Þ ¼ p1 xð Þ; p2 xð Þ; � � � ; p400ðxÞ½ � ð4Þ

In order to provide a better observation of amino acid pair
composition (AAPC), a 20 � 20 matrix is illustrated with red

and green colors to represent over-expression and under-
expression of dipeptides, respectively, around succinylated
sites. Along with generating sequence logos for lysine succiny-

lated sites and creating the heatmap of AAPC between suc-
cinylated and non-succinylated sites, the different value of
each amino acid pair as well as its P value are determined.
All the dipeptides are ranked according to their P values,

and the dipeptides having a probability difference value
>0.02 and a P value <0.05 are selected as significant attri-
butes for the classification between positive and negative

instances.

Composition of informative KSAAPs

In recent years, the composition of k-spaced amino acid pairs
(CKSAAPs) [28–30], represented as a numeric vector in the n-
dimensional Gaussian space feature, has been widely adopted

for the prediction of functional sites on proteins [14,16,24,31–
36]. In this work, we utilize the CKSAAP-based encoding
scheme to transform the fragmented sequences into n-
dimensional numeric vectors. The CKSAAPs are extracted

from the flanking amino acid sequences of succinylated sites.

As presented in Figure 2, when k = 1, AixAj

� �
denotes the pair

of amino acids Ai (i = 1, . . ., 20, corresponding to 20 amino
acids) and Aj (j = 1, . . ., 20, corresponding to 20 amino acids)

that are separated by one amino acid; when k = 2, AixxAj

� �
denotes the pair of amino acids Ai and Aj that are separated

by two amino acids. Thus, Nð AixAj

� �Þ is the number of occur-

rences of the one-spaced amino acid pair AixAj

� �
in the train-

ing dataset and the conditional probability P AixAj

� �
is

P AixAj

� � ¼ Nð AixAj

� �Þ
Nð AixA�½ �Þ ; ð5Þ

where N AixA�½ �ð Þ ¼ P
j¼1;���;20N AixAj

� �� �
. The strength of the

one-spaced amino acid pair [AixAj] between positive and neg-
ative datasets is given by

C AixAj

� � ¼ log
Pþ AixAj

� �
P� AixAj

� � ; ð6Þ

where Pþ AixAj

� �
and P� AixAj

� �
are the conditional probabil-

ities of the one-spaced amino acid pair AixAj

� �
in positive and

negative datasets, respectively. If C AixAj

� �
> 0, then AixAj

� �
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Figure 2 Composition of k-spaced amino acid pairs

Given 400 (20 � 20) amino acid pairs and five values for k (k = 1–5), there are 2000 attributes generated for the CKSAAP feature. The

number of occurrences of each k-spaced amino acid pair is determined by sliding through the fragmented sequence one by one. CKSAAP,

composition of k-spaced amino acid pair.
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is enriched in the positive dataset; otherwise, the AixAj

� �
is

depleted in the positive dataset if C AixAj

� �
< 0. The high value

of C AixAj

� ��� �� indicates that the one-spaced amino acid pair

AixAj

� �
is the more significant attribute for classifying between

positive and negative datasets. Applying this approach, which
is similar to previous work [28–30], for CKSAAP features, this
study has examined the KSAAPs with k ranging from one to
five. Given 20 � 20 amino acid pairs and five values for k,

2000 attributes are used to train the predictive model. How-
ever, the higher dimensions of feature vectors could induce a
lower efficiency of model learning and evaluation. Therefore,

all 2000 features should be tuned to obtain optimal CKSAAPs
for providing better predictive performance.

In order to extract informative features prior to the con-

struction of the predictive model, each attribute (e.g.,
KSAAPs) is evaluated according to the index score calculated
by the minimum redundancy–maximum relevance (mRMR)

[37] algorithm, which ranks all attributes according to each
attribute’s relevance value corresponding to the dataset as well
as each attribute’s redundancy index among all 2000 examined
KSAAPs. An attribute having maximum relevance and mini-

mum redundancy will contain the best discriminating power
between positive and negative instances [38]. The scoring func-
tion of mRMR is

scorej ¼ I fj; c
� �� 1

m

Xm
i¼1

I fi; fj
� � ð7Þ
wherein fj � Sn; fi � Sm; Sm ¼ S� Sn in which Sm, Sn, and S

are the attribute sets (m and n were the attribute sizes). The
classification variable c stands for two classes corresponding

to positive and negative datasets in this work. Additionally,
the mutual information I x; yð Þ is defined as

I x; yð Þ ¼ pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dxdy; ð8Þ

where pðx; yÞ, pðxÞ, and pðyÞ are regarded as the probabilistic
density functions between attributes x and y. Herein, all the

KSAPPs were examined by the mRMR criteria. Furthermore,
an incremental strategy for extracting useful features, called
sequential forward selection (SFS), is applied to conduct a

final CIKSAAP with best predictive performance. There are
five main steps in this investigation:

1. Choose a classifier (e.g., SVM) and determine an evaluation
benchmark (e.g., ten-fold cross-validation).

2. Among all unselected attributes, choose the attribute
(KSAAPs) with lowest mRMR index score and combine

it into the set of selected attributes.
3. Construct the classifier based on the set of selected

attributes.

4. Evaluate the predictive performance of the constructed
classifier based on the evaluation benchmark.

5. Repeat steps 2–4 until a sufficient number (default 30) of

attributes has been selected, or until predictive performance
has been optimized.
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Model construction for succinylation site prediction
This study involves a binary classification between succiny-
lated and non-succinylated sites on lysine residues. The posi-
tive and negative datasets are labeled with +1 and �1,

respectively, for the two classes. The training dataset is
X ¼ xt; ctf g where ct ¼ þ1 if xt 2 positive dataset and
ct ¼ �1 if xt 2 negative dataset. Thus, w and w0 were identified
such that

wTxt þ w0 � þ1 for ct ¼ þ1 and wTxt þ w0 	 �1 forct ¼ �1;

which can be rewritten as

ctðwTxt þ w0Þ � þ1

This can be used to find an optimal separating hyperplane

that can maximize the margin between the two classes [39].
The distance of xt to the discriminating hyperplane is

wTxt þ w0j j
kwk

and the distance should be higher than a specific value h:

ctðwTxt þ w0Þ
kwk � h; 8t and ct 2 fþ1;�1g

The SVM is an advanced algorithm used to identify a
hyperplane between two classes with maximum margin
based on n-dimensional vector space [39] with an attempt

to maximize h, however, an unlimited number of possible
values could be elucidated by tuning w. Hence, the hkwk
is defined as one to minimize kwk using the following solu-

tion [35]:

min
1

2
kwk2 subject to ct wTxt þ w0

� � � þ1; 8t

The SVM can determine a hyperplane for discriminating

between succinylated and non-succinylated instances with
maximal margin in a vector space containing n dimensions
(size of attribute set). The sequence-based features are trans-

formed into numeric vectors in an n-dimensional vector space,
which are the input values for SVM. A SVM public resource,
LIBSVM [40], has been downloaded and installed for iterative

training of multiple SVMs in accordance with various feature
sets. In the machine learning problem, if the best discriminant
is nonlinear, instead of enabling nonlinear modeling, we can

map all n-dimensional vectors to new vector space with higher
dimension m, where m > n, using nonlinear kernel functions.
As demonstrated in previous methods [31,41–44], the radial
basis function (RBF) is typically chosen as the specified kernel

function on learning for SVM models. The RBF function is as
follows:

K xt; xð Þ ¼ exp �kxt � xk2
2s2

" #

where xt is the center and s is the radius, which should be pro-

vided by the programmer. When using LIBSVM, cost (c) and
gamma (r) are two supporting parameters used to optimize the
radius of kernel function and softness of hyperplane, respec-

tively. To achieve the feasible values of gamma (r) and cost
(c) in model learning, an optimization program, written in
Python, was provided by LIBSVM.

Kao HJ et al / Identification of Prot
Performance measurement

In this work, the ten-fold cross-validation (10-fold CV)
method is performed to measure classifying power of the con-
structed SVM models. In 10-fold CV, all positive and negative

training instances are split into ten subsets with approximately
equal data size. After obtaining ten subsets, nine are used as
the training dataset, whereas the remaining one subset is used
as the test dataset. Each subset, selected from the ten subsets, is

regarded as the test dataset until all ten subsets are tested in a
10-fold CV. The performance of the trained models is esti-
mated according to the following metrics:

Sensitivity Snð Þ ¼ TP

TPþ FN
;

Specificity SPð Þ ¼ TN

TNþ FP
;

Accuracy Accð Þ ¼ TPþ TN

TPþ FPþ TNþ FN
;

Matthews correlation coefficientðMCCÞ

¼ TP� TNð Þ � ðFN� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞp
in which the predictions of true positives, false negatives, true
negatives, and false positives are denoted as TP, FN, TN, and

FP, respectively. Accuracy is typically chosen as a benchmark
for determining the best predictive model. However, in this
investigation, accuracy is not a good benchmark because the
size of positive and negative datasets is skewed [36]. Given

unbalanced positive and negative datasets in this study, the
MCC is used as a reasonable benchmark for taking both pre-
diction rate of TP (sensitivity) and prediction rate of TN

(specificity) into account. After 10-fold CV evaluation, the
SVM classifier containing the best MCC value is regarded as
the best predictor. Finally, a testing dataset, which is indepen-

dent from the training dataset, is utilized to examine the best
model and compare the predicted results with other available
online tools.

Results and discussion

Composition of amino acids and dipeptides around succinylated

sites

The AAC is a feasible scheme to explore the potential motif of
conserved residues around the succinylated sites based on the
fragments with 31-mer sequence length. When comparing the

AAC between positive and negative datasets, the residues hav-
ing significant differences are useful attributes for succinylated
site prediction. Figure 3 shows that, for succinylated sites, the
positively charged lysine residue appears to have the highest

frequency around the substrate sites. In addition to AAC,
the position-specific AAC neighboring the succinylated sites
can be displayed using the frequency plots of WebLogo [26].

As illustrated in Figure 4A, no amino acid has significantly
high frequency near the succinylated sites, but the slightly
prominent amino acid residues include leucine, lysine, alanine,

and valine. Without conserved motifs observed in the fre-
quency plot, the Two Sample Logo [27] program was further
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applied to compare the differences of position-specific AAC
between flanking regions of succinylated and non-
succinylated sites. As displayed in Figure 4B, the most con-

served motifs appear to be associated with charged residues,
in particular the positively charged lysine residue at positions
�15~�1, +6~+12. In addition, the depletion of negatively

charged amino acids, such as glutamic acid, at positions �5,
�4, �3, and +5, is predictive. The results reveal that amino
acids situated further away in the sequence but closer in the

three-dimensional structure to the succinylated sites had nota-
ble differences between succinylated sites and non-succinylated
sites.

The amino acid pairs surrounding lysine succinylated sites

are also explored using the detection of remarkable amino acid
pairs with significant differences between positive and negative
datasets. In this investigation, a 20 � 20 matrix is adopted to

represent the over-expressed and under-expressed amino acid
pairs as red and green colors, respectively. As shown in Fig-
ure S1, the dipeptides involving a lysine residue in first posi-

tion, such as KA, KE, KG, and KL, are over-represented
around succinylated sites. Interestingly, the dipeptides involv-
ing lysine residue in the second position, such as AK, GK,

and LK, are also over-represented around succinylated sites.
By sorting the amino acid pairs according to their P values,
the dipeptides with P < 0.05 and with a probability difference
>2% are extracted and combined into an attribute set with

statistical significance.

Investigation of informative k-spaced amino acid pairs

To support the identification of lysine succinylation sites, we
have counted and ranked the frequencies of all k-spaced amino
acid pairs that appeared in the positive and negative training

datasets. In this study, top 30 significant KSAAPs, based on
sequential forward selection in accordance with their mRMR
scores, are selected for the identification of succinylated sites.

Figure S2 provides violin plots of selected KSAAPs with their
corresponding distributions, ranging from �15 to 15, around
succinylated and non-succinylated sites (position 0). This
investigation has indicated that most of the selected KSAAPs

prefer to locate in the upstream and downstream regions of
succinylated sites, whereas in non-succinylated sites these
selected KSAAPs have concentrated distribution only in the

downstream region. For instance, KA prefers to locate in the
upstream and downstream regions of succinylated sites, but
for the non-succinylated sites it only prefers to locate in the

downstream region. Due to the difference of KSAAPs’ distri-
butions between succinylated and non-succinylated sequences,
these top 30 KSAPPs are then incorporated into the construc-
tion of SVM models.

Cross-validation evaluation of characteristics flanking succinyla-

ted sites

To obtain the optimal window lengths that generate the best
performance, we have investigated and assessed various win-
dow lengths using 10-fold CV. In accordance with the differ-

ence of position-specific AACs between succinylated and
non-succinylated sites as well as our preliminary evaluation,
the window size of 31 (�15 ~ +15; with the centered residue

at lysine) provides the best performance in the prediction.
Based on the investigated features, the corresponding SVM
models are built to determine the effectiveness of those features
in the identification of succinylated sites. As displayed in

Table S2, the AAC-based SVM model has 64.6% accuracy
and an MCC value of 0.27. The AAPC-based SVM model
yields 63.2% accuracy and an MCC value of 0.24. In addition,

the CKSAAP-based SVM model (K = 5) obtains 61.9% accu-
racy and an MCC value of 0.22.

In a binary classification between succinylated and non-

succinylated sites, it is feasible to incorporate two or more dif-
ferent attribute sets in modeling. Therefore, in addition to the
single attribute set, a hybrid combination of different attribute
sets are also considered in this study. Based on the three attri-

bute sets that were investigated (AAC, AAPC, and CKSAAP),
four combinations (‘‘AAC + AAPC”, ‘‘AAC + CIKSAAP”,
‘‘AAPC + CIKSAAP”, and ‘‘AAC + AAPC + CIKSAAP”)

are analyzed for the identification of succinylated sites.
Table S2 presents the performance of the hybrid features-
based models when evaluated using 10-fold CV. The results

reveal that most hybrid features-based models can obtain bet-
ter performance, wherein the ‘‘AAC + CIKSAAP”-based
model performs the best, with 71.4% accuracy and an MCC

value of 0.40. Thus, the hybrid features of AAC and CIK-
SAAP yield the most promising predictions. In addition, the
ROC curve is generated to compare different predictive mod-
els. As displayed in Figure S3, the results show the SVM model

trained from the combination of AAC and CKSAAP attribute
sets gave the best predictive power.

Evaluation of the selected models using independent test set

In the classification between positive and negative instances,
there is a potential risk to over-estimate the predictive perfor-

mance because of over-fitting in model training. Therefore, an
independent testing dataset was constructed to assess the mod-
el’s ability and stability in practice. As mentioned previously,

the independent testing dataset comprised 115 positive and
2673 negative sites. To assess the practical ability of our pro-
posed model, the comparison between our model and several
existing prediction tools is performed using the testing dataset.

As displayed in Table 2 and Figure S4, our proposed model
achieves higher values on both accuracy and MCC value,
reaching 82.9% accuracy and a MCC value of 0.18. In addi-

tion, to provide an overview of the models’ predictive ability,
ROC curves are used to compare our proposed model with
existing succinylation sites prediction tools in independent test-

ing. As displayed in Figure 5, our proposed model outperforms
other available prediction tools.

A web-based predictor of the proposed method

An effective prediction tool can help biologists save time and
accelerate the functional study of protein succinylation sites.
In this work, a web-based predictor (called SuccSite) is

designed for users to analyze protein succinylation sites effi-
ciently. Figure S5 shows the main functions such as predict,
documentation, and dataset of SuccSite. Figure 6 shows the

prediction information (the prediction results with a bar-
chart of AAC for each fragmented sequence having succiny-
lated sites). To demonstrate the effectiveness of the SuccSite

predictor, two case studies are provided on the website. The



Table 2 Performance comparison of SuccSite and other existing tools using an independent testing

dataset
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Figure 5 Comparison of ROC curves between SuccSite and other succinylation site prediction tools
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first case study predicts succinylation sites for the ES1 protein
homolog, mitochondrial (UniProtID: ES1_MOUSE). The ES1
consists of 266 AA residues, including 19 lysine residues. Six

lysine residues are experimentally verified as succinylated sub-
strate sites at positions 149, 155, 162, 186, 201, and 221. As dis-
played in Figure 6, the SuccSite can predict five succinylation
sites at positions 149, 152, 155, 162, and 201. However, posi-
tion 152 has not yet been experimentally confirmed as a suc-
cinylated site. Hence, the estimating TP, FN, FP, and TN of

the SuccSite are 4, 2, 1, and 12, respectively. The SuccSite
can achieve 84% accuracy, 67% sensitivity, and 92% speci-
ficity for this case study. The second case study is the predic-



Figure 6 A case study of succinylation site prediction on ES1 protein homolog, mitochondrial

The prediction result includes the predicted positions of succinylation sites, flanking amino acids (from �15 to 15), and amino acid

composition.
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tion of Rho GDP-dissociation inhibitor 1 (UniProt ID:
GDIR1_MOUSE), which consists of 204 AA residues, includ-

ing 19 lysine residues. Two lysine residues are experimentally
verified as succinylated substrate sites at positions 52 and
141. The SuccSite can predict a succinylation site at 141.

Hence, the estimating TP, FN, FP, and TN were 1, 1, 0, and
17, respectively. The SuccSite yields 95% accuracy and 100%
specificity for this case study.

With reference to the case study of Wang et al. [45], the
computational identification of the top 10 potential succinyla-
tion sites has been conducted to determine novel succinylated
lysines for biochemical communities. This investigation reveals

that these potential succinylation sites occur in different pro-
teins. As displayed in Table S3, the potential substrate site hav-
ing the highest score (0.720) is at lysine 167 of histone H1

protein (UniProt ID: I7HFT9_MOUSE). Interestingly, this
site is succinylated, as reported in a previous study [46]. The
literature evidence indicates the reliability of the proposed

method, SuccSite.
Conclusion

This work develops a new predictor, SuccSite, to investigate
and identify lysine succinylation sites based on AAC and CIK-
SAAPs. Pipelined analyses of various attributes in the neigh-
borhood of succinylated sites are performed on the large-
scale succinyl-proteome data. The Two Sample Logo investi-

gation has revealed that the most remarkable finding is the
enrichment of lysine residues within the flanking regions of
succinylated sites. According to the 10-fold CV evaluation,

the proposed method could yield a promising performance.
The independent testing performed demonstrates that the
selected SVM model (AAC + CIKSAAP) is comparable to

other existing prediction tools. We believe that our proposed
approach will help facilitate the determination of succinylated
targets on lysine residues of proteins. In addition, to support
research involved in the characterization of lysine succinylated

sites, a web-based tool named SuccSite has been designed and
implemented. The SuccSite is free for use and will be updated
regularly.

Availability

SuccSite is available at http://csb.cse.yzu.edu.tw/SuccSite/.
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