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Deep neural network is a complex pattern recognition network system. It is widely favored by scholars for its strong nonlinear
fitting ability. However, training deep neural network models on small datasets typically realizes worse performance than shallow
neural network. In this study, a strategy to improve the sparrow search algorithm based on the iterative map, iterative per-
turbation, and Gaussian mutation is developed. -is optimized strategy improved the sparrow search algorithm validated by
fourteen benchmark functions, and the algorithm has the best search accuracy and the fastest convergence speed. An algorithm
based on the iterative map, iterative perturbation, and Gaussian mutation improved sparrow search algorithm is designed to
optimize deep neural networks.-emodified sparrow algorithm is exploited to search for the optimal connection weights of deep
neural network. -is algorithm is implemented for the esophageal cancer dataset along with the other six algorithms. -e
proposed model is able to achieve 0.92 under all the eight scoring criteria, which is better than the performance of the other six
algorithms. -erefore, an optimized deep neural network based on an improved sparrow search algorithm with iterative map,
iterative perturbation, and Gaussian mutation is an effective approach to predict the survival rate of esophageal cancer.

1. Introduction

Esophageal cancer is a malignant tumor with high incidence,
high mortality, and high recurrence rate [1]. -e way of
cancer patient treatment is mainly based on physicians’
experience, which inevitably leads to physicians’ treatment
errors [2]. How to effectively forecast the survival time of
esophageal cancer patients to decrease the misdiagnosis rate
of physicians is a current research hotspot [3–6]. In recent
years, the quick advancement of artificial intelligence has
enabled the construction of intelligent systems, a simple and
easy task [7]. Artificial intelligence has been able to simulate
human intelligence more accurately to learn and make
predictive actions on medical datasets [8, 9]. In particular,
deep learning excels at complex machine learning tasks by
building multilayer neural networks [10, 11]. Deep learning
has made remarkable progress and excellent performance in

areas such as medical image process, biological image
process, and target inspection completion [12–15]. Since
deep learning is adept at handling complex nonlinear
problems, it can perform comparably or even better than
professional physicians in the fields of disease identification
and disease prediction [16, 17]. -erefore, survival predic-
tion models based on deep learning will hopefully provide a
scientific basis for clinical medical decisions in esophageal
cancer.

Neural network [18] is the basis of deep learning, a
mathematical simplification of single-layer perception of
human nerve cells. Deep neural network (DNN) has been
continuously trained by researchers regarding the explo-
ration of the human nervous system with multiple implicit
layers [19, 20]. DNN has been used to identify different ECG
abnormalities, and its identification results are better than
hospitalists with heart disease and emergency medical
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medicine [21]. DNNmodel is effective in identifying tumors
or hyperplastic polyps, and the identification time of the
model is shorter than endoscopy [22]. 3D-DNN has
achieved progress in automated lung cancer diagnosis by
computed tomography. -e model can identify all suspi-
cious lung pathologies and evaluate the grades of lung
malignancies [23]. DNN has exhibited state-of-the-art
performance in areas such as medical image recognition
[24], cancer diagnosis, pathology examination [25], stock
price prediction [26], and daily plant transpiration esti-
mation [27]. However, the DNN model trained on small
datasets typically exhibits poorer properties than traditional
machine learning approaches, such as shallow neural net-
works and support vector machines.

Gradient descent is a common optimization approach
for neural network learning, which cleverly utilizes gradients
to find function minima [28]. Nevertheless, when gradient
descent is used as an optimization method for DNN, it is
usually difficult to get rid of the local minimum value and
slow convergence speed. -e metaheuristic algorithm can
effectively eliminate the above problem by obtaining the
optimal solution through global search [29]. Metaheuristic
algorithm is extensively implemented in function optimi-
zation, fuzzy logic system, and image treatment [30–32].-e
DNN model optimized by the Gray Wolf Optimization
(GWO) algorithm has been applied to extract and classify
features from the CAD image dataset of diabetic retinopathy
[33]. -e model has advantages in terms of accuracy, pre-
cision, recall, sensitivity, and specificity. Gravitational search
algorithm (GSA) plays an essential role in enhancing the
prediction accuracy of DNN models [34]. -e model can
more precisely differentiate between benign and malignant
nodules in CT scan lung images. Whale Optimization Al-
gorithm (WOA) of DNN has achieved significant results
[35]. Dimensionality reduction by principal component
analysis (PCA) and firefly algorithm is performed on the
diabetic retinopathy dataset [36]. -e simplified dataset is
sent to the DNNmodel for classification. -e DNNmodel is
shown to outperform other machine learning algorithms in
accuracy, precision, recall, sensitivity, and specificity. Op-
timization algorithm for feature dimensionality reduction is
a common neural network optimization method. However,
the impact of dimensionality reduction on data results is
significant, which may result in DNN performing even
worse than traditional methods on small sample datasets
[37]. -is makes the application of DNN to small sample
datasets a challenge. In this study, a method based on a
metaheuristic algorithm for reducing the mean square de-
viation difference of DNN models and changing the in-
terlayer connection weights makes the accuracy of models
for small datasets improved.

In this study, the chaotic map is introduced into the
sparrow search algorithm (SSA), which allows the sparrow
population to be increased in sample diversification and
improved in even distribution. -e ability to escape local
optimum and increase convergence speed is obtained by the
SSA. Gaussian mutation and chaotic perturbations are also
introduced into the SSA, which makes it possible to adjust
the aggregated sparrow individuals. -e local search ability

of SSA in the focal search region is enhanced by Gaussian
mutation and chaotic perturbation. -e iterative map is
employed in the SSA to verify its optimal performance by
fourteen benchmark functions. Iterative map, iterative
perturbation, and Gaussian mutation optimized SSA
(IIGSSA) are proposed. IIGSSA is adopted to find the
connection weights of DNN. To evaluate the algorithm
performance, IIGSSA-DNN is applied to the esophageal
cancer dataset along with eight predictive classification al-
gorithms, which are DNN, PSO-DNN, GSA-DNN, GWO-
DNN,WOA-DNN, SSA-DNN, IIGSSA-K Nearest Neighbor
(KNN), and IIGSSA-Support Vector Machine (SVM). -ey
also use 26 metrics as input and survival time as output. Due
to the small samples used in this paper, five-fold cross-
validation is selected to evaluate the authenticity of the
model performance. Ten scoring criteria are used as judging
criteria, which are accuracy (Acc), false positive rate (FPR),
recall rate (REC), true positive rate (TPR), precision (PRE),
true negative rate (TNR), area under the curve (AUC), F1-
measure (F1-M), and pooled mean (G-M) [38].-e IIGSSA-
DNNmodel has an FPR value of 0.1, aP-value of 0.01, and all
other scoring criteria have a value of 0.92. -e model is
evidenced to possess superior predictive accuracy and sta-
tistical value. -erefore, IIGSSA-DNN is an algorithm to
accurately predict the survival time for esophageal cancer
patients. IIGSSA-DNN is expected as a novel approach for
the future clinical treatment of esophageal cancer.

A mixed metaheuristic algorithm is formulated to im-
prove the prediction algorithm of the DNN network
structure. -e iterative map, iterative perturbation, and
Gaussian mutation optimized SSA (IIGSSA) is developed.
-e optimum network structure of DNN can be defined by
IIGSSA. IIGSSA-DNN is expected to be an enabling in-
strument for the clinical diagnosis and treatment of
esophageal cancer. -is is also an innovation of IIGSSA-
DNN applied to nonimage datasets of esophageal cancer.
-e primary contributions of this study can be summarized
as follows:

(1) -e iterative map, iterative perturbation, and
Gaussian mutation optimized SSA with the fastest
convergence rate and best accuracy are validated in
fourteen benchmark functions.

(2) IIGSSA is used as an optimization strategy to im-
prove the model accuracy by optimizing the optimal
connection weights for the DNN model.

(3) IIGSSA-DNN is presented to the esophageal cancer
dataset, and IIGSSA can predict the survival time of
esophageal cancer patients more precisely than other
algorithms.

-e remainder of this study is structured as follows.
Section 2 introduces the SSA and improvement ideas and
identifies the iterative map, iterative perturbation, and
Gaussian variation as the best optimization strategy on
fourteen benchmark functions. Section 3 describes the
principles and improvement ideas of DNN and applies
IIGSSA-DNN to the esophageal cancer dataset. -e con-
clusions are described in Section 4.
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2. Development and Validation of an Improved
SSA Based on Iterative Map, Iterative
Perturbation, and Gaussian Mutation

2.1. SSA. SSA [39, 40] is a swarm intelligence optimization
algorithm that simulates sparrow foraging behavior and
antipredation behavior. -e sparrow population achieves
foraging behavior through three task divisions, which are
discovery, follow, and alert. Discoverers are leaders in the
population due to their high fitness. -is is associated with
their capacity to seek and provide the location and direction
of food resources. Epigones follow and forage around the
discoverers for greater fitness. Epigones in a population
supervise the behavior of other individuals, and they
compete with high-intake peers for food resources to im-
prove their predation rates. When the whole population is
threatened by predators or perceives danger, the sparrows
immediately counter-hunt. -e sparrows in the outer circle
of the population are vulnerable to predators, and they need
to constantly relocate to the center of the population. -e
sparrow in the center of the population adjusts its position to
keep its distance from others as short as possible. SSA
simulates the foraging process of sparrows to obtain the
solution for the optimization problem.

Suppose a population of N sparrows searches in D di-
mensional search space; then, the position of the ith sparrow
in D dimensional search space is Xi � [xi1, xi2, · · · , xid,

· · · , xiD], i � 1, 2, · · · , N. xid stands for the position of the ith
sparrow in $D$ dimension. SSA takes 10%∼20% of the
finders in the sparrow population as constraint conditions,
and the position update equation is as follows:

x
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t
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where t is the current iteration number. T is the maximum
number of iterations. α is the uniform random number
between (0, 1]. Q is a random number that follows the
standard normal distribution. L is a 1 × D dimensional
matrix composed of element 1. R2 ∈ [0, 1] is the warning
value. ST ∈ [0.5, 1] is the safety value. If R2 < ST, predators or
other hazards are not near the population, and the current
search environment is safe. Discoverers conduct extensive
searches to guide the population to obtain higher fitness. If
R2 ≥ ST, epigones are keen to spot predators and quickly
release danger signals for reminding the population to act
immediately against predation. -e population adjusts its
search strategy and quickly moves towards the safe area.

-e update equation for follower position is as follows:

x
t+1
id �

Q · exp
xw

t
d − x

t
id

i
2􏼠 􏼡, i >

n

2
,

xb
t+1
d + x

t
id − xb

t+1
d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌A

+
· L, i ≤

n

2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where A+ is 1 × D vector allocation with the value 1 or -1,
andA+ � AT(AAT)− 1. xwt

d is the worst position of sparrows
in the Ddimension in the t iteration. xbt+1

d is the optimal
position of sparrows in the Ddimension at the t + 1 iteration.
If i > n/2, the ith epigone is starving without food. To obtain
higher fitness, the epigone shifts to the area for food. If
i ≤ n/2, the ith epigone has a better fitness at the current best
location, and the epigone randomly seeks a location near the
best location for foraging. 10%∼20% of the population is
responsible for reconnaissance, and their positions are
updated as follows:
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where β is a step size control parameter with the mean value
of 0 and variance of 1, which satisfies normal distribution
random number. K is a random step size control parameter
in the interval [−1, 1], referring to the orientation of the
sparrow’s flight. e is a minimum constant to prevent the
numerator being zero. fi is the fitness value of the ith
sparrow. fg is the optimal fitness value of the current
sparrow population. fw is the worst fitness value of the
current sparrow species. If fi ≠fg, sparrows on the edge of
the population are vulnerable to predator attack, and they
need to position themselves to avoid the attack. If fi � fg,
the sparrow is in the middle of the population. To avoid
being attacked by predators, sparrows in this area adjust
their search strategy by approaching other sparrows in time
after realizing the threat of predators.

2.2. Chaotic Map, Chaotic Perturbation, and Gaussian Mu-
tation Strategies. Chaotic [41] is a complex nonlinear mo-
tion type ubiquitous in nature. -is nonlinear phenomenon
usually occurs under certain conditions, which makes the
ordered trajectory deviates from the original path suddenly
into a disorderly form. -e chaotic map is favored by
scholars because of its randomness, ergodicity, and regu-
larity. -is is associated with its capacity to sustain a rich
population variety. -e chaotic map optimization meta-
heuristic algorithm enables the algorithm to escape local
optimum while gaining higher global search capability. Nine
common chaotic maps are listed in this study to optimize
SSA.

(1) Tent map [42]:

Zk+1 �
Zk/β, Zk ∈ (0, β],

1 − Zk( 􏼁/(1 − β), Zk ∈ (β, 1],
􏼨 (4)

where β indicates the mapping parameter for the
tent. If β � 0.7, the obtained sequence distribution is
more uniform.

(2) Chebyshev map [43]:

Zk+1 � cos ϕcos− 1
Zk􏼐 􏼑, (5)
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where ϕ is the order of the Chebyshev map. When ϕ
is bigger than 2, the Lyapunov exponent is non-
negative and the system is chaotic.

(3) Circle map [44]:

Zk+1 � mod Zk + 0.2 −
0.5
2π

sin 2πZk( 􏼁, 1􏼒 􏼓, (6)

where a � 0.5b � 2.2.
(4) Iterative map [45]:

Zk+1 � sin
aπ
Zk

􏼠 􏼡, (7)

where a ∈ (0, 1) is the iterative map control
parameter.

(5) Sine map [46]:

Zk+1 �
4
a
sin πZk( 􏼁, (8)

where the sine map is a single-peak map, whose
range is [−1, 1], and the sine map parameter is
a ∈ (0, 4].

(6) Singer map [47]:

Zk+1 � μ 7.86Zk − 23.31Z
2
k + 28.75Z

3
k − 13.302875Z

4
k􏼐 􏼑,

(9)

where μ is the singer parameter whose value range is
(0.9, 1.08). WhenZk ∈ [0, 1], the singer map is
distributed in the range [0, 1], which can make a
more uniform distribution of Zk.

(7) Sinusoidal map [48]:

Zk+1 � aZ
2
k sin πZk( 􏼁, (10)

where a � 2.3, Z0 � 0.7.
(8) Logistic map [49]:

Zk+1 � μZk 1 − Zk( 􏼁, (11)

where μ is a logistic parameter whose value range is
[0, 4]. When Zk ∈ [0, 1], the logistic map operates in
chaos. -e nearer the μ value gets to 4, the more
uniformly Zk is dispersed between 0 and 1.

(9) Cubic map [50]:

Zk+1 � ρZk 1 − Z
2
k􏼐 􏼑, (12)

where ρ ∈ (0, 1) is the Cubic map control parameter.
Cubic map is one of the most common chaotic maps.

Chaotic perturbation is the introduction of a random
perturbation quantity obeying chaotic distribution based on
the original solution. A chaotic variant is derived from the
chaotic map, and the chaotic variant is brought into the
solution space by (13).

X
d
n � mmin + C mmax − mmin( 􏼁 , (13)

where mmin is the minimum value of the variable Xd
n in dth

dimension.mmax is the maximum value of the variable Xd
n in

dth dimension. Xd
n is the amount of chaotic perturbation

generated by the solution in the m dimension. C is chaotic
variable. -e chaotic perturbation equation is

Xn
′ �

X′ + Xn( 􏼁

2
, (14)

where X′ is the individual requiring chaotic perturbation.
Xn is the amount of chaotic perturbation generated.Xn

′ is the
individual after chaotic perturbation.

Gaussian mutation [51] is an optimized strategy mod-
ified from a genetic algorithm mutation operation. Gaussian
mutation operation generates random numbers obeying
normal distribution to generate new positions by acting on
the original position vector. It implements neighborhood
search instruction in a small range to distribute most of the
variational operators in the original position.-e advantages
of high optimization accuracy and the difficulty of falling
into local optimization are gained by the optimization al-
gorithm. A small fraction of mutation operators away from
the current position makes the potential region search more
advantageous and the population diversity richer. -erefore,
Gaussian mutation is exploited to modify the algorithm,
which will result in a much faster search speed and a much
faster convergence trend. -e Gaussian probability density
equation is as follows:

M(x) � x(1 + G(0, 1)), (15)

where x is the initial parameter value and G is the Gaussian
normally displaced stochastic number with an expectation
value of 0 and a standard deviation of 1.

2.3. An Improved SSA. SSA is an algorithm with simple
structure, easy implementation, few control parameters, and
strong local searchability. It obtains the initial position of the
sparrow based on the random initialization method. Al-
though this approach ensures the randomness of the initial
positions, the optimal values of the initial positions of some
individuals are too different from the actual optimal values,
which reduces the convergence speed and the accuracy of the
solution.-e blind production of initial positions is prone to
the phenomenon of overlapping aggregation of initial so-
lutions. It will lead to a low probability of solution space
coverage and a low rate of change of population individuals.
-e pseudorandom number generator is an ideal infor-
mation source with excellent statistics and stochastic
properties. -e chaotic map has high randomness and easy
implementation, and it can randomly generate chaotic
numbers between 0 and 1. -erefore, chaotic maps are ideal
for pseudorandom number generators. -e introduction of
chaotic map in SSA can effectively improve the initialization
population blindness problem of the algorithm. -e intro-
duction of the chaotic map can effectively increase the global
search capability of SSA. Gaussian mutation optimization
strategy can strengthen the local search capability of the
population and improve search accuracy. To protect against
the solution stagnation phenomenon caused by the
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emergence of local optimum, the chaotic perturbation
strategy is introduced into SSA. Some local optimal indi-
viduals are endowed by chaotic perturbations with a “new
dynamism” capable of stepping outside the local optimum.
-e optimization strategy in SSA directly affects the con-
vergence precision, search capability, and velocity. Strategy
selection is crucial to the performance of SSA. In this study, a
chaotic Gaussian sparrow search algorithm (CGSSA) based
on a multistrategy fusion mechanism is developed by in-
troducing a chaotic map, Gaussian mutation, and chaotic
perturbation strategies. -e detailed steps of the CGSSA
execution are described below.

Step 1. Initialize the population size N, the number of
discoverers Pa, the number of scouting warning sparrows Sa,
the dimensionality of the objective function D, the upper
bound ub, lower bound lb of the initial value, and the
maximum number of iterations T.

Step 2. Initialize the sparrow population by chaotic se-
quences to generate N∗D dimensional vectors Z. Each
component of Z is brought into a defined range of values by
equations (4)–(12).

Step 3. Calculate the fitness fi of each sparrow, select the
current optimal fitness fb and its correspondent position Xb

of each sparrow.

Step 4. Select the top Pa sparrows with the best fitness as
discoverers and the rest as followers. Update the positions of
discoverer and follower according to (1) and (2).

Step 5. Randomly select Sa sparrows from the sparrow
population as reconnaissance alerts. Update their positions
according to (3).

Step 6. Recompute the fitness value of individual sparrows
and the average fitness value of the sparrow population after
each iteration.

Step 7. If fi <fa, perform a Gaussian mutation operation
on the aggregated sparrow population according to (15).
Compare the postmutation individuals with the pre-
mutation individuals. Determine whether to accept the
position of the postmutation sparrow individual. If fi ≥fa,
perform a chaotic perturbation operation on the dispersed
population of sparrows by (4)–(12). Compare post-
disturbance individuals with predisturbance individuals.
Determine whether to accept the location of the post-
perturbation individual sparrows.

Step 8. Get the current state of the sparrow population.
Update the optimal position Xb and its fitness fb by the
whole sparrow population.

Step 9. If the algorithm runs to the maximum number of
iterations, end the loop and output the search results.
Otherwise, return to Step 4.

Chaotic map strategy is used by CGSSA to initialize the
population to improve the population diversity. Both
Gaussian mutation and chaotic perturbation strategies are
introduced into the SSA, targeting to solve the sparrow
divergence and aggregation problems. -e local search
ability of SSA in the focal search region is enhanced by
Gaussian mutation and chaotic perturbation. To find the
optimal chaotic map and chaotic perturbation strategies, this
study tests the performance of nine chaotic map and chaotic
perturbation strategies combined with the Gaussian muta-
tion strategy to optimize SSA, respectively. -e benchmark
functions are chosen for the test functions, respectively.

2.4. Benchmark Functions Test. To select the chaotic map
with the highest adaptation to the SSA, fourteen benchmark
functions [52–54] are selected in this study.-e original SSA
and the nine improved algorithms are validated. -e
fourteen benchmark functions are given in Table 1. -e
solution space diagram of the fourteen benchmark functions
is illustrated in Figure 1.-e parameters of the 10 algorithms
are set as follows.

-e number of populations is 30.-emaximum number
of iterations is 500. -e dimension of the objective function
and the range of initial values are kept consistent with
Table 1. -e number of discoverers and followers is set to
20% of the sparrow population size. To avoid contingency in
the search outcomes, each benchmark function is examined
20 times individually.-e optimal value, mean, and standard
deviation of the run results are assessed to determine the
robustness of each algorithm. Test outcomes of fourteen
benchmark functions are listed in Table 2.-e bolded data in
the table indicate the best value of each function. A com-
parison of convergence curves of 10 algorithms on bench-
mark functions is illustrated in Figure 2.

From Table 2 and Figure 2, no matter which chaotic
strategy is chosen to improve SSA, its convergence accuracy
is better than the traditional SSA. CGSSA is proved to be
effective and feasible. Seven functions obtained theoretical
optimal values in ten algorithm tests, which are F1, F2, F3,
F7, F9, F11, and F14. Ten algorithms fall into the same local
optimum when testing functions F8 and F10. In addition to
this, the Chebyshev map achieves a minimum optimum on
function F6. -e iterative map obtains a minimum optimum
on functions F4 and F5. -e sine map reaches a minimum
optimum on two functions, which are F12 and F13. -e
iterative map and sine map strategies have the highest
number of minimum optimums, whichmeans that these two
strategies perform best in terms of optimal solutions.

-e mean and standard deviation are a pair of statistical
indicators describing the overall characteristics of the data.
-e mean reaction dataset trend is the standard deviation
reaction dataset trend. -e overall characteristics of the data
can be obtained more comprehensively and accurately by
means and standard deviations. From the mean and stan-
dard deviation analysis, ten algorithms acquire the smallest
mean and standard deviation when testing function F10.
Except for the sinusoidal map, the remaining nine algo-
rithms obtain the smallest standard deviation on function
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F11. Seven algorithms obtained the smallest standard de-
viation on F1, which are SSA, Chebyshev map, circle map,
iterative map, sine map, singer map, and logistic map. Five
algorithms obtained the smallest standard deviation on
function F11. Seven algorithms obtained the smallest stan-
dard deviation on F1, which are SSA, Chebyshev map, circle
map, iterative map, sine map, singer map, and logistic map.
Five algorithms obtained the smallest standard deviation on
F9, which are Chebyshev map, circle map, iterative map,
logistic map, and cubic map. Six algorithms obtained the
smallest standard deviation on F14, which are SSA, Che-
byshev map, iterative map, sine map, logistic map, and cubic
map. In addition to this, the Chebyshev map reaches a
smallest standard deviation on F8. Sine map acquires the
smallest standard deviation on two functions, which are F7
and F11. Iterative map acquires the smallest standard de-
viation on seven functions, which are F2, F3, F4, F5, F6, F12,
and F13. Eight algorithms fall into the same mean when
testing functions F8, which are Chebyshev map, circle map,
iterative map, sine map, singer map, sinusoidal map, logistic
map, and cubic map. In addition to this, the Chebyshev map
reaches a smallest mean on F11. Circle map acquires the
smallest mean on F1. Sine map acquires the smallest mean
on F7. Iterative map acquires the smallest standard deviation
on nine functions, which are F2, F3, F4, F5, F6, F9, F12, F13,
and F14. -e minimum means and minimum standard
deviations of iterative map strategy are the highest. Iterative
map strategy is best played in the standard deviation of the
average value. -erefore, iterative map, iterative perturba-
tion, and Gaussian mutation optimized SSA (IIGSSA) are
identified for subsequent studies.

3. Development and Evaluation of IGSSA-DNN
Model for Esophageal Cancer Dataset

3.1.DeepNeuralNetwork. DNN is a method for learning the
neural structure of the brain to mimic the processing of

information [55, 56]. -e DNN structure is comprised by
multiple perceptrons, also known as multilayer feedforward
neural network. DNN has strong learning capability, self-
learning capability, and self-adaptive capability. DNN is a
complex pattern recognition network system capable of
simulating more complex models or representing more
abstract relationships of things. DNN is appropriate for big
data analysis, which is reflected in disease prediction,
medical image recognition, cancer diagnosis, etc.

From the structural observation, DNN can be divided
into an input layer, a multilayer hidden layers, and an output
layer, as illustrated in Figure 3. I1, I2, ..., Ih stands the input
layer, which is intended to accept messages from exterior
devices or systems. -e j layer hidden layer effectively as-
sumes the task of the computational engine in the entire
network. O1,O2, ...,Oz stands for the output layer, which
enables to take decisions on the inputs. h indicates the
amount of the input layer’s neurons. z means the amount of
the output layer’s neurons. -e output of each vector in the
network layer is expressed by (16).

Ym,n � f WT
m,nXm−1 + BHm−1􏼐 􏼑, (16)

where Ym,n is the output value of the n biased neurons at
layer m, andWT

m,n is the weight value of the n biased neurons
at layer m. Xm−1 is the output value of all neurons of m − 1
layer, B is the biased neuron of m − 1 layer, and f(•) is the
activation function.

To enhance the representativeness and versatility of the
model, activation functions are introduced into DNN to
perform nonlinear transformations on the inputs. In this
study, the Sigmoid function as the activation function of the
DNN is elected to prevent data scattering during trans-
mission [57]. x is set as the input. -e Sigmoid function is
expressed in (17).

Sigmoid(x) �
1

1 + e
x. (17)

Table 1: Fourteen benchmark functions.

Function name Function Dimension Search space Optimal value
Sphere F1(x) � 􏽐

d
i�1 x2

i 30 [−100, 100] 0

Schwefel 2.21 F2(x) � max |xi|, 1≤ i≤d􏼈 􏼉 30 [−100, 100] 0

Schwefel 2.22 F3(x) � 􏽐
d
i�1 |xi| + 􏽑

d
i�1 |xi| 30 [−10, 10] 0

Rosenbrock F4(x) � 􏽐
d−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30, 30] 0

Step F5(x) � 􏽐
d
i�1([xi + 0.5])2 30 [−100, 100] 0

Quartic F6(x) � 􏽐
d
i�1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Alpine F7(x) � 􏽐
d
i�1 |xi sin(xi) + 0.1xi| 30 [−10, 10] 0

Rastrigin F8(x) � 􏽐
d
i�1(x2

i − 10 cos(2πxi) + 10) 30 [−5.12, 5.12] 0

Sum squares F9(x) � 􏽐
d
i�1 ix2

i 30 [−10, 10] 0

Ackley F10(x) � −20 exp(−0.2
��������
1
d

􏽐
d
i�1 x2

i

􏽱

) − exp(−0.2
��������������
1
d

􏽐
d
i�1 cos(2πxi)

􏽱

) + 20 + e 30 [−100, 100] 0

Maytas F11(x) � 0.26(x2
1 + x2

2) − 0.48x1x2 2 [−10, 10] 0

Levi F12(x) � sin2(3πx1) + (x1 − 1)(1 + sin2(3πx2)) + (x2 − 1)(1 + sin2(2πx2)) 2 [−10, 10] 0

Booth F13(x) � (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [−10, 10] 0

-ree-Hump F14(x) � 2x2
1 − 1.05x4

1 +
x6
1
6 + x1x2 + x2

2 2 [−10, 10] 0
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-e training procedure of DNN follows the five steps:

(1) Define the network structure including the features
of the input and output layers, the number of nodes
in the network layer, and the implicit layer.

(2) Randomly generate initialized weights and biases.
(3) Forward propagation to obtain the predicted values.
(4) Calculate the loss function and prediction error for

forwarding propagation.

(5) Reverse propagation to update the weights and
biases.

Until the loss function is minimized and the training
data is not trained by overfitting, the optimal model is
obtained. -erefore, weights play a crucial role in DNN
training. -e loss function is a fundamental criterion to
judge the performance of a neural network.-e loss function
is sensitive to small changes in weights and biases. -e
susceptibility of the loss function renders it the best way to

100

100

20000
17500
15000
12500
10000
7500
5000
2500
0

75

75

50

50

25

25

0

0

–25
–25

–50 –50–75
–75

–100

–100

(a)

200
175
150
125
100
75
50
25
0

1007550250–25–50–75–100

100
75

50
25

0
–25

–50
–75

–100

(b)

4000

6000

8000

10000

2000

0

100755025
0–25–50–75–100

100
75

50
25

0
–25

–50
–75

–100

(c)

400
600
800
1000
1200
1400

200
0

0.75

0.75

0.50

0.50

0.25

0.25

0.00

0.00

–0.25
–0.25–0.50 –0.50

–0.75

–0.75

–1.00

–1.00

(d)

3

3

30

25

20

15

10

5

2

2

1

1
0 0

0

–1
–1

–2

–2

–3

–3

(e)

–1.5

–1.5

–1.0 –1.0–0.5
–0.5

0.0

0.0

0.5

0.5

1.0

1.0

1.5

1.5

30

25

20

15

10

5

0

(f )

–15

–15

–10
–10–5

–5

0

0

5

5

10

10

15

15

30

25

20

15

10

5

0

(g)

100

80

60

40

20

0

0

0

2

2

4

4

–2–2
–4

–4
–6

(h)

30

25

20

15

10

5

0

1.5

1.5

2.0

2.0

1.0

1.0

0.5

0.5

0.0

0.0

–0.5

–0.5
–1.0 –1.0–1.5

–1.5

–2.0

–2.0

(i)

–4

–4
–2 –2

0

0

2

2

4

4

14

10
12

8
6
4
2
0

(j)

10.0

10.0

7.5

7.5

5.0

5.0

2.5

2.5

0.0

0.0

–2.5
–2.5

–5.0 –5.0–7.5
–7.5

–10.0

–10.0

100

80

60

40

20

0

(k)

10.0

10.0

7.5

7.5

5.0

5.0

2.5

2.5

0.0

0.0

–2.5
–2.5

–5.0 –5.0
–7.5

–7.5

–10.0

–10.0

450
400
350

300
250
200
150
100
50
0

(l)

10.0
7.55.02.50.0–2.5–5.0–7.5

–10.0

10.0
7.5

5.0
2.5

0.0
–2.5

–5.0
–7.5

–10.0

3000

2500

2000

1500

1000

500

0

(m)

–4

–4
–2 –2

0

0

2

2

4

4

2000
1750
1500
1250
1000
750
500
250
0

(n)

Figure 1: Solution space diagram for nineteen benchmark functions. (a) Sphere function. (b) Schwefel 2.21 function. (c) Schwefel 2.22
function. (d) Rosenbrock function. (e) Step function. (f ) Quartic function. (g) Alpine function. (h) Rastrigin function. (i) Sum squares
function. (j) Ackley function. (k) Maytas function. (l) Levi function. (m) Booth function. (n) -ree-Hump function.
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Table 2: Examine outcomes for fourteen benchmark functions.

Function Algorithms Optimal
value

Mean
value

Standard
deviation

F1

SSA 0 8.037E-
114 3.594E-113

Tent 0 5.311E-
202 0

Chebyshev 0 7.017E-
245 0

Circle 0 0 0

Iterative 0 4.101E-
183 0

Sine 0 1.298E-
198 0

Singer 0 7.994E-
212 0

Sinusoidal 0 1.202E-
160 5.376E-160

Logistic 0 4.07E-257 0

Cubic 0 3.662E-
163 2.223E-162

F2

SSA 0 3.856E-45 1.724E-44

Tent 0 8.548E-
155 3.823E-154

Chebyshev 0 4.031E-
130 1.803E-129

Circle 0 1.481E-
127 6.621E-127

Iterative 0 1.235E-
156 4.303E-156

Sine 0 1.985E-
136 8.877E-136

Singer 0 9.621E-
140 5.524E-140

Sinusoidal 0 1.4722E-
122 2.2693E-128

Logistic 0 2.154E-
133 1.312E-132

Cubic 0 2.934E-
133 2.0752E-79

F3

SSA 0 1.673E-27 7.483E-27

Tent 0 2.714E-
122 1.214E-121

Chebyshev 0 9.729E-96 4.351E-95
Circle 0 1.564E-74 6.994E-74

Iterative 0 5.909E-
129 2.643E-129

Sine 0 2.99E-109 1.337E-108

Singer 0 7.224E-
105 3.231E-104

Sinusoidal 0 1.316E-65 5.887E-65

Logistic 0 1.106E-
122 4.946E-122

Cubic 0 1.165E-
117 5.209E-117

Table 2: Continued.

Function Algorithms Optimal
value

Mean
value

Standard
deviation

F4

SSA 1.223E-05 1.142E-03 2.778E-03
Tent 4.321E-08 5.348E-06 8.617E-06

Chebyshev 5.946E-07 7.212E-05 8.992E-05
Circle 1.033E-05 3.929E-04 5.017E-04
Iterative 2.255E-08 4.452E-06 6.736E-06
Sine 2.714E-07 1.764E-05 1.828E-05
Singer 1.128E-06 7.727E-05 8.092E-05

Sinusoidal 2.735E-04 1.373E-05 2.526E-04
Logistic 1.344E-07 1.124E-05 1.206E-05
Cubic 3.213E-08 1.333E-05 1.568E-05

F5

SSA 3486E-04 6.432E-03 5177E-03
Tent 4.018E-07 9.14E-05 9.994E-05

Chebyshev 1.981E-08 1.796E-05 1.97E-05
Circle 4.387E-08 8.52E-04 9.895E-05
Iterative 3.0466E-08 1.774E-05 1.711E-05
Sine 1.496E-06 9.726E-04 9.667E-05
Singer 1.618E-06 7.313E-04 8.238E-05

Sinusoidal 3.918E-06 1.317E-04 1.371E-04
Logistic 9.34E-06 7.424E-04 6.168E-04
Cubic 7.205E-06 1.032E-04 1.236E-04

F6

SSA 3.1E-03 3.399E-02 2.059E-02
Tent 2.912E-04 6.554E-03 4.036E-03

Chebyshev 7.183E-05 4.367E-03 4.201E-03
Circle 8.295E-04 8.557E-03 6.841E-03
Iterative 3.63E-04 4.008E-03 2.842E-03
Sine 1.218E-03 6.723E-03 4.694E-03
Singer 5.581E-05 7.878E-03 5.441E-03

Sinusoidal 5.971E-04 8.378E-03 7.758E-03
Logistic 2.541E-04 7.907E-03 6.586E-03
Cubic 4.965E-04 7.344E-03 4.835E-03

F7

SSA 0 5.837E-60 2.611E-59
Tent 0 3.32E-119 1.485E-118

Chebyshev 0 8.955E-90 4.005E-89
Circle 0 1.03E-140 4.608E-140

Iterative 0 9.454E-
138 4.228E-137

Sine 0 2.375E-
212 0

Singer 0 1.417E-
102 6.335E-102

Sinusoidal 0 3.156E-99 1.412E-98
Logistic 0 5.296E-85 2.368E-84

Cubic 0 3.802E-
100 1.701E-99

F8

SSA 1.008E-01 2.237E-01 1.688E-01
Tent 1.008E-01 1.011E-01 3.295E-02

Chebyshev 1.008E-01 1.009E-01 5.37E-05
Circle 1.008E-01 1.009E-01 1.034E-04
Iterative 1.008E-01 1.009E-01 1.323E-04
Sine 1.008E-01 1.009E-01 1.323E-04
Singer 1.008E-01 1.009E-01 1.502E-04

Sinusoidal 1.008E-01 1.009E-01 1.408E-04
Logistic 1.008E-01 1.009E-01 1.608E-04
Cubic 1.008E-01 1.009E-01 1.407E-04
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find the best weight parameter for DNN [58]. -e interlayer
weights of the DNN model are optimized by adjusting the
error rate, and the adaptability of the model to the current
dataset is adjusted, which has a substantial gain on the
accuracy of the DNN model output. Mean square error,
cross-entropy error, and root mean square error are com-
mon loss functions. In this study, the mean square error
(MSE) is employed to calculate the error rate, as shown in

MSE �
1
m

􏽘

m

k�1
Ok − Ak( 􏼁

2
, (18)

where m is the sample number in the training dataset. ok is
the model output produced by the kth input. Ak is the Kth

actual output.-e DNNmodel is trained by data inputs, and
the weight values are obtained to predict the output results.

4. An Improved DNN Based on IGSSA

-e optimal weights of a DNN have a direct correlation with
the prediction results of the model. In this study, the ac-
curacy of IGSSA has been verified in Section II, and thus a
method to improve DNN based on IIGSSA is proposed.
DNN mixed with the proposed IIGSSA is applied to de-
termine the optimal weights of DNN, which will help to
enhance the efficiency of the model. -e optimum solution
of all sparrows in IIGSSA algorithm is exploited to renew the

Table 2: Continued.

Function Algorithms Optimal
value

Mean
value

Standard
deviation

F9

SSA 0 6.364E-
105 3.486E-104

Tent 0 5.818E-
162 3.19E-161

Chebyshev 0 2.456E-
195 0

Circle 0 1.067E-
198 0

Iterative 0 2.373E-
244 0

Sine 0 3.023E-
112 1.656E-111

Singer 0 2.521E-
141 1.381E-140

Sinusoidal 0 5.721E-
140 3.133E-139

Logistic 0 3.719E-
203 0

Cubic 0 3.758E-
173 0

F10

SSA 4.441E-16 4.441E-16 0
Tent 4.441E-16 4.441E-16 0

Chebyshev 4.441E-16 4.441E-16 0
Circle 4.441E-16 4.441E-16 0
Iterative 4.441E-16 4.441E-16 0
Sine 4.441E-16 4.441E-16 0
Singer 4.441E-16 4.441E-16 0

Sinusoidal 4.441E-16 4.441E-16 0
Logistic 4.441E-16 4.441E-16 0
Cubic 4.441E-16 4.441E-16 0

F11

SSA 0 4.594E-
182 0

Tent 0 1.434E-
245 0

Chebyshev 0 0 0

Circle 0 5.773E-
238 0

Iterative 0 6.493E-
226 0

Sine 0 1.862E-
243 0

Singer 0 4.438E-
315 0

Sinusoidal 0 2.401E-
145 1.074E-144

Logistic 0 2.014E-
282 0

Cubic 0 1.378E-
190 0

F12

SSA 2.324E-06 2.009E-05 9.768E-05
Tent 1.093E-07 1.083E-05 1.845E-05

Chebyshev 4.92E-07 5.578E-06 6.295E-06
Circle 9.458E-08 6.071E-06 6.68E-06
Iterative 1.19E-08 3.015E-06 3.344E-06
Sine 5.444E-09 5.002E-06 4.757E-06
Singer 2.386E-08 5.343E-06 5.608E-06

Sinusoidal 4.846E-08 6.556E-06 5.957E-06
Logistic 1.144E-07 6.205E-06 5.926E-06
Cubic 2.044E-07 6.126E-06 8.436E-06

Table 2: Continued.

Function Algorithms Optimal
value

Mean
value

Standard
deviation

F13

SSA 2.647E-06 2.611E-05 2.979E-05
Tent 9.904E-07 7.571E-04 8.334E-04

Chebyshev 8.105E-07 1.441E-05 1.482E-05
Circle 5.826E-07 1.133E-05 1.619E-05
Iterative 5.674E-07 1.009E-05 8.207E-06
Sine 1.501E-08 1.272E-05 1.293E-05
Singer 1.144E-07 1.387E-05 1.481E-05

Sinusoidal 2.314E-08 1.504E-05 2.021E-05
Logistic 3.14E-08 1.363E-05 1.683E-05
Cubic 2.296E-07 1.36E-05 1.427E-05

F14

SSA 0 4.752E-
133 2.125E-132

Tent 0 5.872E-
268 0

Chebyshev 0 7.727E-
268 0

Circle 0 2.862E-
152 1.28E-151

Iterative 0 0 0

Sine 0 2.875E-
311 0

Singer 0 2.985E-
122 1.335E-121

Sinusoidal 0 1.003E-
159 4.487E-159

Logistic 0 9.108E-
224 0

Cubic 0 1.866E-
260 0
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Figure 2: Continued.
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Figure 2: Comparison of convergence curves of 10 algorithms on benchmark functions. (a) Sphere function. (b) Schwefel 2.21 function. (c)
Schwefel 2.22 function. (d) Rosenbrock function. (e) Step function. (f ) Quartic function. (g) Alpine function. (h) Rastrigin function. (i) Sum
squares function. (j) Ackley function. (k) Maytas function. (l) Levi function. (m) Booth function. (n) -ree-Hump function.
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location, and the optimum solution can be reached by the
highest number of iterations. -e initial weight values are
stochastically produced depending on the specified range.
-e amount of weights of the DNN stands for the number of
dimensions of IIGSSA. MSE is chosen as the fitness function
of IIGSSA. -e training phase of the proposed IGSSA for
DNN is displayed in Figure 4. -e AUC values are used to
test the performance of the evaluated DNN.

4.1. Dataset Analysis. -e clinical dataset and biological
sample dataset of esophageal cancer patients are selected for
this study. -e dataset is obtained from the State Key
Laboratory of Esophageal Cancer Control in Henan Prov-
ince. A total of 398 patients in the available dataset have
complete information, and they are all diagnosed with
esophageal cancer in 2007. Continuousmetrics in the dataset
are shown in Table 3. Discrete metrics in the dataset are
indicated in Table 4.

4.2. Performance Evaluation. In this study, a modeling
method of optimizing DNN through IIGSSA is proposed.
Seventeen blood indicators are provided in the existing
esophageal cancer dataset, namely WBC, LY, MONO,

NEUT, EOS, BASO, RBC, HB, PLT, TP, ALB, GLB, PT,
APTT, TT, and FIB. Seven items of tumor information are
supplied, namely tumor length, tumor width, tumor
thickness, degree of differentiation, tumor location, transfer
situation, and TNM stages. -e two physical characteristics
are age and gender. Use these 26 features as the input dataset,
and the IIGSSA-DNN algorithm is used to build a prog-
nostic model. -e overall flow chart of IIGSSA-DNN is
illustrated in Figure 5. -e robustness and accuracy of
IIGSSA-DNN are validated by this study. -e IIGSSA-DNN
is evaluated against existing scoring criteria to measure the
strengths and weaknesses of the proposed algorithm. -e
most commonly available rubrics [59] are Acc, FPR, REC,
TPR, PRE, TNR, AUC, F1-M, and G-M. To avoid the
limitations and specificity of fixed division datasets, five-fold
cross-validation is employed for objective evaluation of the
model.

-e survival time of esophageal cancer patients is
predicted by the proposed IIGSSA-DNN. Five optimization
algorithms have been achieved well in the field of neural
networks [60–63], which are particle swarm algorithm
(PSO), GWO, GSA, WOA, and SSA. Five optimization
algorithms are also used to optimize the DNN and tested on
the esophageal cancer dataset in comparison with IIGSSA-
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Figure 4: Training phase of the proposed IGSSA for DNN.
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DNN. To further verify the classification performance of
IIGSSA-DNN, SVM and KNN are used to compare with
IIGSSA-DNN. KNN and SVM are two machine learning
algorithms widely used in the diagnosis of breast cancer
[64]. Python is the operating platform of algorithms
mentioned in this paper. -e deep learning framework
PyTorch is employed to implement DNN partial training.
26 features are set as the input dataset, survival time, and
survival state as the output dataset, and a DNN model with
10 layers and 128 nodes is constructed. -e Sigmoid
function is adopted as the activation function of the DNN.
-e learning rate of the model is fixed to 0.001 [65]. -e
learning rate is adaptively and randomly adjusted by Adam
algorithm. -e first-order moment estimates and second-

order moment estimates of the gradient are calculated by
Adam algorithm [66] to adjust the learning rates of the
different parameters. In each iteration, the learning rate is
limited to a rough range, which makes the parameters more
stable. IIGSSA is employed to enable minimizing the MSE
to find the optimal weight value. -e population size is set
to 30, and the maximum number of iterations is set to 1000.
-e results of the predictive model assessment are shown in
Table 5. -e five ROC curves of nine models are displayed
in Figure 6. Five ROC curves of DNN are expressed in
Figure 6(a). Five ROC curves of PSO-DNN are indicated in
Figure 6(b). Five ROC curves of GSA-DNN are illustrated
in Figure 6(c). Five ROC curves of GWO-DNN are depicted
in Figure 6(d). Five ROC curves of WOA-DNN are

Table 4: Discrete metrics in the dataset.

Project Category Number of population Percentage of population (%)

Gender Male 247 62
Female 151 38

Degree of differentiation
Poorly differentiated 158 40

Moderately differentiated 217 54
Highly differentiated 23 6

Tumor site
Lower thoracic 78 20
Mid thoracic 267 67
Upper thoracic 53 13

Transfer situation Negative 200 50
Positive 198 50

TNM stages

I 39 10
II 172 43
III 166 42
IV 21 5

Survival status Live 101 25
Dead 297 75

Table 3: Continuous metrics in the dataset.

Variable Mean Median (range) Variance
Tumor length 4.112 4 (1–11) 3.208
Tumor width 2.649 2.5 (0.3–9) 1.148
Tumor thickness 1.1776 1 (0.1–8) 0.471
WBC 6.5366 6.2 (2.5–13.6) 3.6958
LY 1.7622 1.8 (0–4) 0.3652
MONO 0.3899 0.4 (0–1.4) 0.06661
NEUT 4.0011 3.7 (0–9.8) 2.8097
EOS 0.1238 0.1 (0–0.9) 0.0198
BASO 0.04163 0 (0–5) 0.005549
RBC 4.43 4.48 (2.73–5.75) 0.2289
HB 137.4347 138 (64–169) 223.7577
PLT 236.8518 231 (100–448) 52.606
TP 71.0377 71 (50–92) 54.4092
ALB 42.0201 42 (26–59) 25.1281
GLB 29.1533 29 (16–45) 28.8656
PT 10.2271 10.2 (7–16.6) 2.4610
APTT 35.9095 35.1 (15.4–62.2) 52.9934
TT 15.3420 15.5 (10.9–21.3) 2.9607
FIB 387.3433 378.3960 (167.613–774.433) 985.7021
Age 60 60 (38–82) 70.099
Survival time 4 3 (0–11) 12.873
-e unit of tumor length, tumor width, tumor thickness is centimeter.-e unit of WBC, LY, MONO, NEUT, EOS, BASO, RBC, and PLT is 109/L.-e unit of
HB, TP, ALB, and GLB is g/L. -e unit of PT, APTT, and TT is second(s). -e unit of FIB is mg/dL. -e unit of survival time is year.
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Table 5: Results of the predictive model evaluation.

Algorithms Acc FPR REC PRE TNR F1-M AUC P

DNN 0.76 0.16 0.76 0.76 0.76 0.76 0.76 0.03
PSO-DNN 0.79 0.133 0.79 0.79 0.79 0.79 0.79 0.04
GSA-DNN 0.83 0.133 0.83 0.83 0.83 0.83 0.83 0.04
GWO-DNN 0.81 0.117 0.81 0.81 0.81 0.81 0.81 0.01
WOA-DNN 0.86 0.140 0.86 0.86 0.86 0.86 0.86 0.01
SSA-DNN 0.89 0.147 0.89 0.89 0.89 0.89 0.89 0.04
IIGSSA-KNN 0.75 0.21 0.75 0.75 0.75 0.75 0.75 0.04
IIGSSA-SVM 0.82 0.18 0.82 0.82 0.82 0.82 0.82 0.04
IIGSSA-DNN 0.92 0.100 0.92 0.92 0.92 0.92 0.92 0.01
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Figure 6: Continued.
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demonstrated in Figure 6(e). Five ROC curves of SSA-DNN
are seen in Figure 6(f ). Five ROC curves of IIGSSA-KNN
are expressed in Figure 6(g). Five ROC curves of IIGSSA-
SVM are indicated in Figure 6(h). Five ROC curves of
IIGSSA-DNN are represented in Figure 6(i). Test accuracy
of nine models is shown in Figure 7.

From Table 5, the performance of IIGSSA-DNN for
training esophageal cancer dataset is proved to be better than
other optimization algorithms. -e accuracy of the proposed
IIGSSA-DNN is 0.92. -e accuracy of IIGSSA-DNN is
outperformed by other optimization algorithms of hybrid
DNN.-e patient’s survival time is well predicted by IIGSSA-
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Figure 6: Five ROC curves of nine models. (a) Five ROC curves of DNN. (b) Five ROC curves of PSO-DNN. (c) Five ROC curves of GSA-
DNN. (d) Five ROC curves of GWO-DNN. (e) Five ROC curves of WOA-DNN. (f) Five ROC curves of SSA-DNN. (g) Five ROC curves of
IGSSA-KNN. (h) Five ROC curves of IGSSA-SVM. (i) Five ROC curves of IGSSA-DNN.
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DNN. REC is the probability of correctly classifying positive
samples. PRE is the proportion of samples with positive
classification results versus those which are actually positive.
REC and PRE are a good way to determine the number of
accurate samples for classification. -e IIGSSA-DNN’s REC
and PRE are 0.92 outperformed by other algorithms. -e
IIGSSA-DNN is proven to be better at identifying positive
samples. FPR is the rubric for judging percentage of correct
positive samples. TPR is the accuracy rate for evaluating the
correct classification of positive samples. FPR is a scale for
judging the percentage of correct positive samples. PRE is an
assessment of the accuracy of classifying positive samples
correctly. -e value of IIGSSA-DNN is 0.92 on all these
rubrics, and the model is confirmed to have a strong per-
formance in distinguishing between negative and positive
samples. F1-M is a synthesis assessment index to assess the
quality of the model. -e F1-M value of IIGSSA-DNN is 0.92
higher than the other indexes.-emodel is confirmed to have
higher model quality than the other models listed in this
study. -e AUC and P-values are represented in Figure 6. In
Figure 6, the average ROC curve for each algorithm model is
plotted as the blue curve. -e AUC of IIGSSA-DNN has
approached 1 and the P value is less than 0.05. -e model has
great statistical significance and better classification perfor-
mance. Consequently, IIGSSA-DNN is exhibited to be a
reliable classification model with much higher performance
than the other models listed in this study.

5. Conclusion

DNN is a complex pattern recognition network system. -e
network structure and optimal weights have a drastic impact
on the classification results of DNN. How to value the
network structure and connection weights is a daunting task.
In this study, a new chaotic map and Gaussian mutation are
proposed to improve the optimal search strategy of SSA.-e
iterative chaotic map is validated by fourteen benchmark
functions, and the iterative chaotic map improves SSA to a
better rate than other chaotic maps. IIGSSA is identified as
the best strategy to find the optimal fully connected weights
of DNN. IIGSSA-DNN is contrasted with seven algorithms
on the esophageal cancer dataset, and the seven algorithms
are DNN, PSO-DNN, GSA-DNN, GWO-DNN, SSA-DNN,
IIGSSA-KNN, and IIGSSA-SVM. -e IIGSSA-DNN is
proven to possess optimal performance in predicting the
survival time of esophageal cancer patients. -e accuracy of
IIGSSA-DNN is substantially improved by the self-learning
capability of DNN and the efficient search capability of
IIGSSA. -erefore, IIGSSA-DNN gains more than tradi-
tional machine learning algorithms in dealing with complex
issues. It is more accurate to solve the classification and
recognition problems. According to this model, doctors can
more keenly monitor the progress of each patient, thereby
establishing a more benign diagnosis and treatment system.
-e parameters of the IIGSSA-DNNmodel rely on empirical
selection, which limits the accuracy of prediction. -e
dataset sample samples used in this institute are relatively
small, and the future period is verified in a large number of
datasets and clinical trials. Taking the IIGSSA-DNN model

as an opportunity, a secure smart device application is ex-
pected to be developed by researchers in the future. -e
application can bind the preliminary and retraining infor-
mation of each patient, enabling doctors to customize
personalized diagnosis and treatment schemes for each
patient.
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