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Abstract
Perfusion bioreactors are commonly used for the continuous production of monoclonal antibodies (mAb). One potential 
benefit of continuous bioprocessing is the ability to operate under steady-state conditions for an extended process time. 
However, the process performance is often limited by the feedback control of feed, harvest, and bleed flow rates. If the 
future behavior of a bioprocess can be adequately described, predictive control can reduce set point deviations and thereby 
maximize process stability. In this study, we investigated the predictive control of biomass in a perfusion bioreactor inte-
grated to a non-chromatographic capture step, in a series of Monte-Carlo simulations. A simple algorithm was developed 
to estimate the current and predict the future viable cell concentrations (VCC) of the bioprocess. This feature enabled the 
single prediction controller (SPC) to compensate for process variations that would normally be transported to adjacent units 
in integrated continuous bioprocesses (ICB). Use of this SPC strategy significantly reduced biomass, product concentration, 
and harvest flow variability and stabilized the operation over long periods of time compared to simulations using feedback 
control strategies. Additionally, we demonstrated the possibility of maximizing product yields simply by adjusting perfusion 
control strategies. This method could be used to prevent savings in total product losses of 4.5–10% over 30 days of protein 
production.
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Abbreviations
CSPR	� Cell-specific perfusion rate;
ICB	� Integrated continuous bioprocess
IV	� Inconstant variable
MPC	� Model predictive control
SPC	� Single prediction control
FC	� Feedback control
MV	� Manipulated variable
MVC	� Million viable cells
Nc	� Control horizon
Np	� Prediction horizon
PAT	� Process analytical technology
PUI	� Pump update interval
PV	� Process value

qp	� Cell-specific productivity
SISO	� Single input single output
SP	� Set point
VCC	� Viable cell concentration
VVD	� Volume per volume per day

Introduction

Advancements of perfusion culture have enabled the realiza-
tion of integrated continuous and intensified bioprocesses 
[1–6]. In perfusion culture, a cell retention device retains 
cells in the bioreactor, while medium is continuously fed 
and product constantly harvested [7–10]. This enables con-
tinuous cell cultivation, with achievement of a high titer 
and consistent product quality [11, 12]. Perfusion cultures 
are particularly attractive for multi-production sites, as they 
necessitate lower capital investment costs, and enable the use 
of smaller equipment and flexible ways of working [13–15]. 
Systemic development of media is lowering its costs, which 
will further reduce the concerns regarding the cost of goods 
(COG) [16, 17].

http://orcid.org/0000-0001-8182-7728
http://crossmark.crossref.org/dialog/?doi=10.1007/s00449-022-02759-z&domain=pdf


1500	 Bioprocess and Biosystems Engineering (2022) 45:1499–1513

1 3

The challenge of perfusion culture is to maintain a con-
stant biomass over a long period of time because cell growth 
cannot be fully arrested. Continuous perfusion cultures are 
complex systems with multiple inputs and outputs, and 
therefore require appropriate process control. However, 
most experimental applications and reported studies are 
based on simple models and follow single input and output 
strategies (SISO), like feedback control algorithms [18–20]. 
Closed-loop systems are designed to achieve and maintain 
the desired output conditions through comparison with the 
actual state. Such control strategies are sometimes limited 
in their use for stable long-term control as they can intro-
duce disturbances into other control loops. This is especially 
undesired in the context of process integration of perfusion 
with continuous downstream processing.

Simulation studies have successfully demonstrated differ-
ent approaches—based on the principle of model predictive 
control (MPC)—to address the multivariable nature of such 
processes [21]. Moreover, the implementation of process 
analytical technology (PAT) in an automation framework 
develops a well-controlled process using sensor feedback 
signals that enable model predictive control strategies at an 
advanced level [14, 22]. Use of the MPC control scheme, 
in which a mathematical model is used to predict its future 
trajectory, can minimize the generated error signal. This 
has been addressed, for example, by novel control schemes 
in perfusion and continuous systems [23, 24] by support-
ing continuous bio production in downstream purifications 
[25] or by controlling product quality attributes in antibody 
manufacture [26, 27]. A so-called single prediction control-
ler (SPC) anticipates the future behavior based on only one 
prediction of the system output. Consequently, it improves 
system performance through reduction of disturbances and 
fluctuations [28].

The present study extends the previous analyses of inte-
grated continuous bioprocesses [1, 5, 11, 22, 29–33] with 
particular focus on simulating the error propagation from 
perfusion control concepts to downstream units. Papathana-
siou et al. successfully overcame this issue with the imple-
mentation of a multiparametric model predictive control 
in a semi-continuous purification process to overcome this 
issue. They were able to efficiently deal with measured dis-
turbances originating from the upstream process, which, in 
this case, could not be controlled by the user [25]. However, 
this method can have limitations, especially when a truly 
continuous mass flow is applied and the unit is directly con-
nected to the upstream unit. We have developed a different 
solution and exemplified this with a simulated showcase for 
commercial antibody manufacture. Different strategies were 
developed to control perfusion processes under constant and 
varying harvest flow, using a single prediction control strat-
egy. The strategies were applied in Monte-Carlo simulation 
studies and compared with feedback control.

In the field of continuous biomanufacturing, the pro-
posed approach makes several novel contributions: (i) it 
defines the requirements of global process control strat-
egies for integrated continuous bioprocesses compared 
to single perfusion processes; (ii) it provides a straight-
forward solution to stably controlled perfusion systems 
that are directly connected to downstream unit operations 
(without mass flow interruptions); and (iii) it thereby mini-
mizes the control burden in the downstream process while 
being sensitive to product concentration and harvest flow 
variations. We propose that a predictive control structure 
can efficiently manipulate the bleed rate, which is par-
ticularly important for efficient operation in a perfusion 
process as it influences other parameters. Moreover, our 
proposed framework is simple to implement and is not lim-
ited to a specific process, but may be extensively applied 
in integrated continuous biomanufacturing.

Methods

Perfusion process model for steady‑state conditions

To study the error propagation of a perfusion system to 
subsequent downstream units, we developed a simplified 
process model solely based on the mass balance equa-
tion and the assumption that the volume exchange per day 
(VVD) remains constant.

In a perfusion system the in- and output flow rates 
should equal zero for maintaining a constant bioreactor 
hold-up volume using Eq. (1):

with V̇P , V̇B and V̇H depicting the volumetric flowrate of the 
perfusion feed, the bleed and the harvest, respectively, and 
with

Equation (2) can be further simplified to

which is the major boundary condition for this process 
model. The perfusion rate P is the sum of the bleed rate 
B and the harvest rate H. The perfusion rate at which new 
medium is supplied to the vessel is usually expressed as 
specific rate (P) in volumes of medium per vessel volume 
per day and Vin represents the media flow rate per day 
(Lmedia d−1).
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Conclusively, the change of biomass (X) over time in 
a perfusion system is described as the sum of grown and 
bleeded out cells. Hence,

with µ depicting the growth rate. Solving the integration 
results in

The term (µ − B) depicts the apparent growth rate and 
shall approach 0 under steady-state conditions in an opti-
mal running perfusion process. A schematic representation 
of the perfusion process is shown in Fig. 1. The cells are 
remained in the bioreactor by a cell retention device, assum-
ing 100% retention. After the initiation phase (batch mode), 

(4)P =
Vin

V
r

(5)
dX

dt
= � ⋅ X − B ⋅ X,

(6)∫
Xi

X0

1

X
dX = ∫

t

0

�dt − ∫
t

0

Bdt,

(7)ln
Xi

X0

= (� − B)Δt,

(8)Xi = X0 ⋅ e
(�−B)Δt.

a continuous flow of feed and effluent is started, causing the 
cell concentration to approach its maximum. Equilibrium 
is established and cell and substrate concentrations become 
invariant. The culture is then regarded as having reached 
a steady state, as the key state variables no longer change. 
Hence, the boundary condition for the simulation which 
is performed under steady-state conditions is, therefore, 
defined as:

When equilibrium is reached, we assume that the specific 
substrate consumption rate is proportional to the growth rate. 
Hence, if the same perfusion rate and feed concentration are 
applied, the culture will reach the same steady state. There-
fore, the growth rate was modeled being independent of the 
availability of the substrate concentration, as the bleed con-
trol is only active in the steady-state phase when equilibrium 
is present. To mimic the influence of biological behavior, 
we applied large uncertainties of ± 20% to the cell-specific 
growth rates with respect to its nominal value, according 
to the probability density function by means of the python 
function numpy.random.normal(). The noise randomization 
was performed in each round of iterations.

The input parameters for the study were dependent on 
the control algorithm used (see “Monte-Carlo simulation” 
section). Product concentration and harvest flow rate were 

(9)
dX

dt
=

ds

dt
= 0.

Fig. 1   Schematic illustration of a state-of-the-art automated perfusion system with two feedback control loops for biomass and level control of 
the bioreactor
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defined as output parameters since they can be considered 
as critical process parameters for subsequently connected 
downstream units. Simulations were performed using 
PyCharm 2021.3.2 (numpy, pandas, bokeh, scipy packages) 
by solving the differential mass balance equations.

Implemented control strategies

To fulfill the objective of maintaining biomass in steady 
state in a perfusion process, two simple control strategies 
can be used. In control strategy A (Eq. 10), the perfusion rate 
was set constant and only increased when cells grew. The 
bleed rate is the adjusting parameter and mass balance was 
closed by the resulting variable, the harvest rate:

In control strategy B (Eq. 11), the harvest flow rate is the 
constant parameter and bleed rate again adjusts according 
to cell growth. The perfusion rate is the resulting parameter 
and varies to fulfill the boundary condition.

Feedback and single prediction control

Two major control strategies have been applied to keep the 
biomass in steady state via regulation of the bleed pump as 
stated above. In feedback control algorithms, the objective 
function is to reduce the error signal to zero where

 and e(t) is the error signal, Xsp the set point (SP) of the vari-
able and Xm(t) the measured value of the controlled variable 
or equivalent signal from the sensor. The feedback signal is 
transmitted via an online biomass sensor and accordingly 
the bleed pump is corrected to reach the target VCC (SP). 
It is assumed that the predicted biomass equals VCC, hence

The PUI is defined as the time difference between the 
measured value and the SP, representing the time interval for 
error signal calculation of the controller. To set the specific 
bleed rate in relation to the controller and the bleed pump, 
the bleed flow rate of the bleed is considered in the following 
control algorithm by:

Hence, the current VCC can be calculated as followed:

(10)H = P(const.) − B(�)

(11)P = H(const.) − B(�)

(12)e(t) = Xsp − Xm(t),

(13)Xm(t) = VCC = X.

(14)b
m
= V

r
⋅ B

where Xm(t) is the measured VCC at time point t and 
Xm(t − 1) the previous VCC, Vr the bioreactor volume, 
bm(t − 1) the bleed rate during the last time interval, µ is the 
cell-specific growth rate and Δt the time interval.

As a result, the calculated bleed rate (bm(t)) in the previ-
ous time interval [t − 1;t] (or corresponding PUI) is used 
for derivation of the predictive algorithm (Eqs. 17–19) and 
results in:

Application of a predictive control algorithm on top of 
the feedback control signal (single prediction control) uses 
Eq. (15) in a similar way. A prediction value that would 
be reached if no future control action is taken is calcu-
lated as the difference value (Xdiff) between predicted value 
(Xm(t + 1)) and target (Xsp) within the prediction horizon Np, 
which is also defined as the length of optimization window:

In a next step, the controller solves the optimization prob-
lem by designing the best control parameter vector ΔU. In 
this way, the error function between the set point and pre-
dicted output can be minimized. The cost function J, there-
fore, is defined as:

where Xdiff(t + 1) is the predicted error, ΔU(t) is the optimal 
sequence of changes in the input, R is the design parameter 
and Nc is the control horizon. After fitting to this simulation 
study, the MPC has a prediction horizon of 12 h, a control 
horizon (PUI) of 6 h and the weighting in the optimization 
problem is R = 5.

The optimal solution is linked to set point signal bm and 
to the state variable Xm, where the predicted bleed rate 
(bm(t + 1) can be calculated until the next pump update 
interval as described in Eq. (19), allowing a correction of 
the value, if bm(t + 1) is not equal to bm(t). Hence, the bleed 
rate (bm) can be corrected to a minimized error signal before 
being transmitted to the controller:
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The logic of the two different control algorithms are 
summed up in Table 1 and described in several steps.

Monte‑Carlo simulation

The simulations, statistical analysis and visualization were 
done in python 3.8 using Monte-Carlo simulations. The pro-
cess time was defined up to 30-day steady state production. 
The Monte-Carlo simulation setup consists of several model 
parameters (see Table 2) for individual simulations that loop 
through different target set points in various iterations. The 
altered variables were taken partly from the literature or 
from empirical values. Process volume was defined being 
constant 10 L (Vr = constant), cell-specific productivities (qp) 
were set constant to 20 pg/cell/day, maximum of bleed rate 
(Bmax) was limited to 40% of the perfusion rate and the range 
of other variables is given in Table 2.

Note that the simulated specific growth rate deviates by 
± 20% from its nominal value to illustrate large uncertainty 
in a biological environment. This is in good agreement with 
the behavior of steady state growth rates in experimentally 
performed perfusion processes (data not shown).

Measures of skewness and kurtosis

The data set was further characterized of location and vari-
ability by including skewness and kurtosis. A data distribu-
tion is measured by symmetry by the value of skewness:

where g1 is referred to as the Fisher–Pearson coefficient of 
skewness, Y  is the mean, s is the standard deviation and N 
is the number of data points. The skewness for a normal 
distribution is zero, therefore symmetric data should have a 
skewness near zero.

(21)
g1 =

∑N

i=1

�

Yi−Y
�3

N

s3
,

Kurtosis is a measure of whether data are heavy-tailed 
(presence of outliers) or light-tailed (paucity of outliers) 
relative to normal distribution. For univariate data, the for-
mula for kurtosis therefore is:

where Y  is the mean, s is the standard deviation and N is the 
number of data points.

Results

Design of control strategies

The main objective of this study was to design and simu-
late perfusion control strategies that can be integrated to a 
continuous downstream unit. The simulations can be used 
to assess the degree of error propagation from the control 
algorithms of the upstream unit to the downstream unit, 
and to what extent it can be prevented or minimized. Two 
control strategies were designed in this study to investigate 
the different requirements for a single perfusion unit com-
pared to an ICB. Strategy A was a simplified control strategy 
designed to control only one perfusion unit over 30 days by 
maintaining constant perfusion rate (Fig. 2a). The bleed rate 
is defined as a manipulated variable (MV) since it is con-
trolled in a feedback loop based on the signal from an online 
biomass probe. The harvest rate is the inconstant variable 

(22)
kurtosis =

∑N

i=1

�

Yi−Y
�4

N

s4
,

Table 1   Logic for control actions and algorithms for feedback (FC) and single prediction control (SPC)

Step Actions for FC Actions for SPC

1 Calculate Xm(t) = VCC from biomass soft sensor at time point t
2 Calculate the error signal e(t) according to Eq. (12) Calculate the bleed rate bm(t) in the previous time interval (PUI)
3 Take corrective action and send to controller Perform optimization problem and minimize error function 

between set point and predicted output (Eqs. 17–19)
3 Operate for defined PUI Calculate predicted bleed rate bm(t + 1) using Eq. (19)
4 Go back to step 1 Correct the bleed rate bm(t) if it is unequal to bm(t + 1) (Eq. 20)
5 Set the new bleed rate bm

6 Operate the process for the defined Np

7 Go back to step 1

Table 2   Overview of iteration parameters in Monte-Carlo simulations

Model parameters Set point

Target biomass (XSP) (MVC/mL) 20 40 80
Cell-specific growth rate (µ) (1/d) 0.1 0.2 0.3
Perfusion rate (P) (L/L/d) 1 2 3
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(IV), responsible for closing the mass balance. Thus, the per-
fusion and bleed rate, as well as the growth rate and viable 
biomass, serve as input values for this model, and the harvest 
rate is the calculated output.

The alternative control strategy B was applied as an 
approach to control an integrated continuous bioprocess 
over the same time period (Fig. 2b). In strategy B, a defined 
harvest rate (SP) together with the manipulated bleed vari-
able results in the output parameter of a flexible perfusion 
rate to fulfill the boundary conditions.

A state-of-the-art feedback controller (FC) was used to 
stably control the biomass in a closed-loop system (Fig. 3a). 
On the other hand, we applied a derived straightforward 
method that is based on feedback control, the so-called 
single prediction control (Fig. 3b). Notably, this method is 
always one-step ahead: a single predictive control algorithm 
(prediction model) is applied as a control action on the error 
signal prior to its transmission to the controller. In other 
words, the SPC observes the value that would be reached by 
the system output if no future control action is taken.

Potential of SPC for VCC control

The use of feedback controllers for controlling bioprocesses 
is state of the art, and is widely applied to fast reactions and 
processes [18, 20, 34]. We performed a simulation study 
with pump update intervals (PUI) of 6 h for feed, bleed and 
harvest pumps with both control strategies A and B. As 
an example, Fig. 4 shows the progression of VCC over a 
30-day process time simulated with FC (Fig. 3a) and SPC 
(Fig. 3b). Models were calculated in a closed-loop control 
using strategy A (Eq. 10) for maintaining an SP of 40 MVC/
mL in steady state at a cell-specific growth rate of µ = 0.2 1/d 

in a perfusion bioreactor with a 10 L working volume and 
perfusion rate of P = 2VVD. The mean VCC values were 
calculated over all iterations (n = 100). Additionally, con-
fidence intervals of the main values (yellow area) and of 
future values (red area) were calculated with a probability of 
95%. In Fig. 4a, the simulated VCC values show fluctuations 
with increasing amplitude when an FC is applied. The confi-
dence and prediction band widen as the process progresses. 
Moreover, the deviation from the target value increases over 
time, with the maximum deviation in the VCC prediction 
being ± 0.2 MVC/mL.

The SPC uses the time interval of the PUI as control 
horizon Nc and a prediction horizon of 12 h to compute the 
corresponding future error. After solving the optimization 
problem and implementation of a design parameter to adjust 
transient behavior, the error function between set point and 
predicted output could be minimized. In Fig. 4b, the simu-
lated VCC yields a very stable process compared to FC. We 
chose to use different figure scaling between FC and SPC 
to fully illustrate the precision of the method. The fluctua-
tions of the VCC are negligible, with a maximum range of 
± 0.02 MVC/mL. The confidence interval remains in same 
range throughout the entire process time. The same perfor-
mance was obtained for higher time intervals (PUI of 24 h, 
48 h, or 72 h) (see Appendix Fig. 9).

Error histograms were conducted to present the error dis-
tribution of the simulated data set from the feedback and 
predictive control strategies (Fig. 4). With the FC strategy, 
the SP of 40 MVC/mL did not coincide with the most fre-
quent value (Fig. 4c). The center of the data was near the 
SP value, the distribution was symmetrical and the minimal 
and maximal values were between 37 and 43 MVC/mL. As 
shown in Fig. 4c, the distribution of deviations from SP did 

Fig. 2   Flowchart overview of perfusion control strategies. (a) Control 
strategy A: constant perfusion rate, adapting bleed rate, and result-
ing harvest rate. (b) Control strategy B: constant harvest rate, adapt-

ing bleed rate, and resulting perfusion rate. Flowchart elements are 
described in the figure legend
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not follow a normal distribution curve. On the other hand, 
the SPC strategy resulted in a normally distributed deviation 
of the VCC values (Fig. 4d) from the SP. The distribution 
only deviated ± 0.03 MVC/mL from the target VCC. The 
most frequent value coincided with the target SP.

We set up a data set of 30 different perfusion runs, simu-
lating combinations of various set points, including perfu-
sion rates of 1–3 VVD, a target VCC of 20, up to 80 MVC/
mL, and growth rates of 0.1–0.3 1/d. For all simulated FC 
conditions, we observed high skewness and kurtosis values 
of the distribution of the deviation from the SP (Fig. 5a, c). 
The contour plots for the FC strategy generally showed val-
ues greater than 0. The error increased with the growth rate. 
With the SPC, errors followed a normal distribution, were 
independent of the growth and perfusion rates, and scattered 
narrowly around 0 (Fig. 5b, d).

Error propagation to downstream

The product concentration (Appendix Fig. 8) and the flow 
of the harvest (Fig. 6) followed a similar trend as that 

observed for the VCC. With the FC, we observed a propa-
gation of the error and fluctuation with increasing ampli-
tude over time. With the SPC, both the product concentra-
tion in the harvest and the flow rates were stable, and the 
deviations from the set points were normally distributed. 
With the FC strategy, the error of biomass became increas-
ingly large as the process progressed and the system lost 
its equilibrium, such that steady-state conditions were no 
longer 100% given. These fluctuations were observed to 
the same extent in the product concentration when the 
process was simulated with a constant qp of 20 pg/cell/
day and a normally distributed error of ± 20% (Appendix 
Fig. 8a). The maximum variations in product concentra-
tions were ± 0.04 g/L. With the SPC (Appendix Fig. 8b), 
the product concentration could be kept constant (steady 
state) over a long process duration, and fluctuated in only 
very small amounts, with very narrow confidence and pre-
diction intervals. Moreover, the maximum deviation of the 
harvest flow rate (± 0.35 mL/min) with traditional feed-
back control loops could be reduced by half (± 0.17 mL/
min) by applying predictive control strategies (Fig. 6a, b).

Fig. 3   Flowcharts of feedback and model predictive controller. (a) 
Feedback controller (FC): control of biomass in the perfusion system 
via upregulation and downregulation of bleed rate. Feedback signal 
is derived from an online capacitance sensor. (b) Single prediction 

controller (SPC): model predictive controller as one-step-ahead con-
trol strategy for biomass in a perfusion system. A prediction model is 
applied as a control action on the error signal prior to its transmission 
to the controller
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Product yield and losses with different control 
strategies

The differences and (dis)advantages of the control strate-
gies of the perfusion unit (Fig. 2) in an integrated con-
tinuous process can be assessed in detail when the mass 
balance is closed over the entire process time. We simu-
lated the differences in the total amounts of either har-
vest, bleed, or total product loss with strategy A compared 
to B, between 1 and 2 VVD and two different VCC set 
points (Fig. 7). When total feed was normalized, strategy 
B resulted in greater total product harvest, regardless of 
the biomass SP or perfusion rate compared to strategy A. 
Additionally, less total bleed was discarded. Conversely, 
this means that more product could be generated via har-
vest, but also that less product was lost in bleed when 

using strategy B over A. The total product loss was pro-
nounced when using strategy A.

Discussion

In a perfusion process, different control strategies can be 
applied to close the mass balance of input and output flow 
rates. In a basic strategy, the perfusion rate is kept constant 
(Eq. 10) and increased depending on the observed growth 
rate of the cells. In this scenario, the resulting variable is the 
harvest rate, which varies depending on the need to close 
the mass balance (Fig. 2a). However, this is not advanta-
geous for controlling an integrated process, as there may 
arise many variations in the product stream from the bio-
logical deviation. Additionally, the resulting process will 

Fig. 4   (a) Simulated VCC progression with feedback controller (FC) 
algorithm using strategy A. (b) Single prediction control (SPC) algo-
rithm for calculation of VCC using strategy A. (c) Error distribution 

histogram of VCC response variable by FC. (d) Error distribution his-
togram of simulated VCC by SPC
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likely consume higher amounts of media (high cell-specific 
perfusion rates, CSPR). In contrast, we have presented an 
approach that meets the requirements of an ICB in which 
harvest flows are kept constant (Eq. 11) throughout the pro-
cess (Fig. 2b). In this case, the perfusion rate is the varying 
parameter, which is changed to close the mass balance. This 
necessitates lower media consumption, as the perfusion rates 
are only increased when growth rate increases.

Particularly, the robust operation of units become more 
complex in an ICB when the first unit, the perfusion reactor, 
produces a highly fluctuating output with a tendency that the 

conditions derail with time. For example, the metabolism 
of animal cells is complex and can be influenced by vari-
ous mechanisms of metabolite activation. Predictive control 
strategies can be used to better emulate this biological com-
plexity [23, 35]. Besides the transient nature of animal cell 
culture bioprocesses, Zupke et al. also mentions interactions 
between CQAs and their control levers and delays associ-
ated with analytics as strong drivers for MPC [27]. Here, 
we implemented a single prediction control strategy (Fig. 3) 
for biomass control to overcome these issues. A stable set 
point control is possible without the need for time-delayed 

Fig. 5   Contour plots of kurtosis and skewness variables related to 
perfusion and growth rates of simulated viable cell concentrations. 
Relationship between kurtosis for the feedback control FC (a) and (b) 

for the single prediction control SPC. Relationship between skewness 
for the FC (c) and (d) for the SPC
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compensation due to noisy signals. For coping with long 
time delays in difficult process dynamics, predictive con-
trol has shown better performance compared to classical 
control algorithms [24–26, 35]. In this study, the control 
of biomass profoundly differed with FC and SPC strategies 
(Fig. 4). As shown in Fig. 4a, the FC caused oscillation of 

the SP value by constantly adjusting the bleed pump speed. 
The strategy attempted to compensate for the error through 
pump upregulation and downregulation, resulting in an error 
increase over time. This was particularly evident in the pre-
diction interval, which widened with longer process times. 
In contrast, the SPC was capable of smoothly controlling 
the biomass in a continuous process by reducing the error 
differences between actual and target values (Fig. 4b).This 
control strategy combines the predictive capability with the 
classical use of feedback information, which improves the 
system performance in disturbance rejection. The predicted 
mean values were very close to the SP, and the same applied 
to the confidence and prediction intervals. The bands were 
very narrow to the mean, and showed no widening over time. 
This provided full steady-state behavior over 30 days of pro-
duction, and the previously framed boundary conditions for 
an ICB were achieved. In addition, the model was confronted 
with larger prediction times. It has been shown that similar 
performance was achieved with longer pump update inter-
vals (Appendix Fig. 9). Time delays and interactions can be 
compensated by already being one step ahead.

Furthermore, the model presented was evaluated by error 
distribution histograms (Fig. 4). The shape of the distribu-
tion of deviations provides an information regarding the 
quality of FC and SPC strategies. Only the error distribu-
tion in a SPC-controlled perfusion reactor was normally dis-
tributed, providing additional strong evidence that the FC 
is not optimally suited for controlling a perfusion reactor. 
The leptokurtic shape of the error distribution results from 

Fig. 6   Simulated harvest flow rates in an integrated continuous bioprocess using (a) feedback and (b) single prediction control strategies

Fig. 7   Quantity differences of control strategy A versus B. The total 
mass balances of total bleed, harvest volume, product yield and loss 
was calculated as difference between strategy A and B. Simulation 
was performed with two different perfusion rates and target cell con-
centrations (gray bar—1  VVD and 40  MVC/mL and white bar—2 
VVD and 60 MVC/mL)
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the increasing fluctuations of the difference between SP and 
process values (PV) over time. In addition, skewness and 
kurtosis results were considered in relation to perfusion and 
growth rates from a total of 30 different perfusion runs to 
identify combinations that result in low biomass prediction 
errors (Fig. 5). In the graphs, the valleys in the left cor-
ners (blue and green) represent growth and perfusion rate 
combinations that resulted in low prediction errors of VCC 
using FC (Fig. 5a, b). These widely distributed values were 
not seen in the contour plots of response values from model 
predictive control (Fig. 5c, d). Rather, all skewness and kur-
tosis values scattered very narrow around 0, as in a normal 
distribution. Neither growth nor perfusion rates seemed to 
influence the error distribution. With SPC biomass control, 
a stable process is always ensured, no matter how fast the 
cells grow or how high the pump rates are set.

In an integrated continuous process, it is important to also 
consider the output parameters (product concentration and 
harvest flow rates), as these can have an enormous impact on 
the connected downstream units. Due to the linear relation-
ship between the specific product formation rate (qp) and 
biomass, the same picture emerges when the product con-
centration (g/L) is simulated (Appendix Fig. 8). The devia-
tions propagate into the product stream via fluctuations in 
the cell concentrations. The difference of 0.04 g/L of prod-
uct due to variations in the feedback control strategy would 
result in 5% lower product yield or 24 g less product for a 
30-day ICB (P = 2VVD; 40 MVC/mL; qp = 20 pg/cell/day).

If a strategy is chosen to regulate the perfusion pro-
cess via the resulting harvest rates, an enormous challenge 
arises for the downstream capture step. In this case, the 
downstream unit must be able to react to fluctuations and 
errors to compensate for them. In Fig. 6a, the fluctuations 

in harvest flow are pronounced, and build up over a longer 
process duration. Steady state observance can no longer 
be assured. In contrast, with SPC, the process is in state of 
control, although the input and output flow rates adapt to 
cell growth and will change over time. However, as shown 
in Fig. 6b, when predictive control is applied, nearly the 
same harvest flow performance can be achieved as if a 
different control strategy (constant harvest flow rate) was 
applied by design (Fig. 2b).

Control strategy B addresses the opportunities and 
challenges of an ICB, with the aim of proposing an ideal 
control strategy. Simulation of a process with strategy B 
(P = 1 VVD; 40 MVC/mL) in Fig. 7 resulted in a total 
product loss of about 20 g and 32 g (P = 2 VVD; 60 MVC/
mL) less compared to that with strategy A (total protein 
production of 240 and 700 g). The advantage is the perfu-
sion rate as adjusted parameter according to cell growth, 
and the harvest rate is a fixed parameter independent of 
cell growth. In any case, this would lead to slightly less 
medium consumption, since the perfusion rate can be kept 
low if cell growth is slow (minimum CSPR).

Finally, Table 3 presents a global control strategy for 
a perfusion process directly connected to a downstream 
unit without mass flow interruption using multiple control 
stages. A constant perfusion rate (feedback control) has 
the advantage of being simple to implement, but requires 
prior knowledge of the relationship between the growth 
and perfusion rate of the culture. However, when the single 
prediction control strategy is applied to the bleed loop, 
stable and satisfactory control can be ensured for long 
process times.

In this scenario, the harvest rate is less affected, as a 
resultant variable from the global mass balance. Therefore, 

Table 3   Proposed ideal global control strategy for a perfusion process integrated to downstream unit without mass flow interruptions

Constant perfusion rate—MPC bleed control and resultant stable harvest flow with minimal fluctuations and disturbances

Number Control loop Measurement (online) Input variable Control algorithm Manipulated variable

i Bleed Biomass sensor/Soft sensor Viable cell density MPC-Single prediction control 
(Eqs. 14–19)

Bleed rate setpoint
VCC setpoint
Growth rate
Pump update interval

ii Bleed rate Flow sensor or scale Actual PV Feedback control Cell bleed rate
Bleed rate setpoint

iii Feed rate Flow sensor or scale Actual PV Feedback control Perfusion rate
Setpoint (const.)

iv Harvest Cell bleed rate Mass balance equation (Eq. 10) Harvest rate setpoint
Perfusion rate

v Harvest rate Flow sensor or scale Actual PV Feedback control Harvest rate
Harvest rate setpoint
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a mass flow that does not fluctuate and is not subject to 
disturbances is transported to the downstream unit. This 
supports a general facilitation of the control regime, and 
is, thus, proposed as the optimal solution for the integra-
tion of the two units.

Conclusion

The perfusion process is the most common way to con-
tinuously cultivate mammalian cells. This method ena-
bles cells to be continuously feed with medium, while 
they are retained in a bioreactor. Since it is not pos-
sible to fully arrest the growth of cells in the bioreac-
tor, excess cells must be removed, also known as bleed. 
Proper control of the bleed rate is essential for a stable 
process. In an integrated continuous bioprocess, the har-
vest is directly processed further to downstream opera-
tions. For process integration, model predictive control 
is important, particularly when the capture step is sensi-
tive to fluctuations in product concentration and product 
streams. Including a simple model—assuming a linear 
relationship between the bleed rate and growth rate of 

cells—can significantly improve the performance of the 
process. With the application of this algorithm, harvest 
flow and product titer do not fluctuate compared to with 
a conventional feedback controller. This will reduce 
control efforts in the subsequent units. The technology 
of using model predictive control in perfusion processes 
can be considered as a paradigm shift. With MPC, the 
potential of ICB can be fully exploited, since both prod-
uct quality and process robustness can be directly con-
trolled. Simply by adding a different control strategy, a 
process can also be made more economic with regards 
to better media utilization and reduced total product 
loss (via bleed). However, for robust and reliable next-
generation processes, much work remains to be done, 
especially in the area of ICB conform automation and 
digitalization solutions.

Appendix

See Figs. 8, 9.

Fig. 8   Simulated product concentration in an integrated continuous bioprocess using (a) feedback and (b) single prediction control strategies
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Fig. 9   Simulated viable cell concentrations (VCC) and error distribution via single prediction control (SPC) using a pump update interval (PUI) 
of 24 h (a, b) and a PUI of 48 h (c, d) with parameters set to 60 MVC/mL, growth rate of 0.3 1/d and perfusion rate of 2 vessel volumes per day 
(VVD). Another simulation was performed with a PUI of 72 h (e, f) and with parameters set 40 MVC/mL, growth rate of 0.2 1/d and perfusion 
rate of 1 VVD
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