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Abstract: The efficient regio- and stereoselective synthesis of (Z,Z)-3,3′-selanediylbis(2-propenamides)
in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2-
propynamides. (Z,Z)-3,3′-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds.
To date, not a single representative of 3,3′-selanediylbis(2-propenamides) has been described in the
literature. Studying glutathione peroxidase-like properties by a model reaction showed that the
activity of the obtained products significantly varies depending on the organic moieties in the amide
group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group,
exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to
other products in this respect.

Keywords: (Z,Z)-3,3′-selanediylbis(2-propenamides); 3-trimethylsilyl-2-propynamides; sodium
selenide; glutathione peroxidase-like activity; regioselective reactions; stereoselective reactions;
desilylation

1. Introduction

Vinyl selenides are important intermediates for organic synthesis [1–9]. These compounds have
been used for the preparation of a number of valuable products [4–9]. Vinyl selenides have found
application in the synthesis of functionalized ketones, (Z)-allyl alcohols, and unsaturated aldehydes [4].
The cross-coupling of vinyl selenides with terminal alkynes in the presence of a nickel/CuI catalyst at
room temperature proceeded with of retention of stereochemical configuration leading to (Z)- and
(E)-enyne derivatives in good yields [5]. The coupling reaction of vinyl selenides with Grignard
reagents provided corresponding functionalized alkenes [6,7]. The synthesis of resveratrol and
its methoxylated analogues—well known compounds due to their anti-inflammatory, anticancer,
antibacterial, and neuroprotective activity, has been proposed based on vinyl selenides [8]. An efficient
method for preparation of α-phenylselanyl lactones has been developed from α-(phenylseleno)vinyl
tozylates [9].

Some vinyl selenides exhibit antioxidant [10], antinociceptive [11], and hepatoprotective
activity [12].
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The main methods for the preparation of vinyl selenides include a transition metal catalyzed
coupling of vinyl halides with diselenides or selenols [13–16], reactions of thiols or chalcogenolates with
selenoalkynes [14,17,18], and addition of selenium-centered nucleophiles to acetylenes [8,14,19–23].

One of the most useful and atom-economic methods is based on addition reactions of selenoles
or selenolate anions with acetylenes [8,14,19–22]. Examples of these reactions refer mainly to vinyl
selenides containing aliphatic or aromatic substituents at the β-carbon atom of the double bond.
Examples of the synthesis of vinyl selenides bearing electron-withdrawing groups are scarce in the
literature. The synthesis of (Z,Z)-bis(2-acylvinyl) selenides by the addition reaction of sodium selenide
with organyl ethynyl ketones was developed [23].

There are only a few representatives of vinyl selenides containing the amide group [24–27].
The Pd-catalyzed four-component reaction between sulfonamide, alkyne, diphenyl diselenide, and carbon
monoxide afforded substituted 3-(phenylselanyl)propenamides in 65–90% yields [24]. Functionalized
3-(phenylselanyl)propenamides were obtained in 57–89% yields based on 3-(phenylselanyl)acrylic acid
which was synthesized in 65% yield from diphenyl diselenide and ethyl propiolate [25]. The reaction
of carbamoselenoate, PhSeC(O)NMe2, with 1-octyne in the presence of Pd(PPh3)4 gave 3-hexyl-3-
(phenylselanyl)propenamide in 40% yield [26].

There are no data in the literature about the biological activity of 3-selanylpropenamides. However,
it is known that vinyl sulfides bearing the amide group in the β-position exhibit anticancer [28] and
antifungal [29] activity (Figure 1). Containing the 2-amidovinylsulfonyl group methylgerambullone
(isolated from Glycosmis angustifolia) acts as the agonist of acetylcholine receptors [30]. Phenoxyquinolines
bearing a 2-amidovinylsulfonyl moiety shows the properties of c-Met kinase inhibitors [31] (Figure 1).
Taking into account the indicated biological properties of 3-sulfanylpropenamides, it can be assumed
that selenium analogs of these compounds can also display some kinds of biological activity. Moreover,
the vinylamide group, itself, is an important part of some biologically active natural compounds and
pharmaceuticals, which exhibit antitumor, anti-tuberculosis, and anticonvulsant activity [32–36].
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Figure 1. Known biologically active derivatives of vinyl sulfides containing the amide group 
(anticancer [28], antifungal [29], agonist of acetylcholine receptors [30], c-Met kinase inhibitor [31]). 

To date, considerable effort has been devoted to the discovery of compounds that mimic the 
action of selenium-containing glutathione peroxidase enzymes [37–47]. The presence of selenium in 
these enzymes largely determines the glutathione peroxidase activity. In particular, organoselenium 
compounds bearing amide groups have been shown to be good catalysts for the reduction of 
peroxides and hydroperoxides with thiols (Figure 2).  

Figure 1. Known biologically active derivatives of vinyl sulfides containing the amide group
(anticancer [28], antifungal [29], agonist of acetylcholine receptors [30], c-Met kinase inhibitor [31]).

To date, considerable effort has been devoted to the discovery of compounds that mimic the
action of selenium-containing glutathione peroxidase enzymes [37–47]. The presence of selenium in
these enzymes largely determines the glutathione peroxidase activity. In particular, organoselenium
compounds bearing amide groups have been shown to be good catalysts for the reduction of peroxides
and hydroperoxides with thiols (Figure 2).
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Ebselen, which contains the selenenamide function in the cycle, and its analog ethaselen and
propylselen show high glutathione peroxidase mimetic properties [37–41]. Additionally, ebselen
exhibits anti-inflammatory and neuroprotective activity. These properties combined with glutathione
peroxidase-like activity and relatively low toxicity of ebselen has led to therapeutic application of
this compound, which has undergone evaluation in clinical trials as an anti-inflammatory agent [42].
This compound is also used for the treatment and prevention of cardiovascular diseases and ischemic
stroke [41].

The range of bearing amide group organoselenium compounds, which exhibit glutathione
peroxidase activity, comprises 1,2-benzoselenazin-3-ones (including the homologue of ebselen, 2-phenyl-
1,2-benzoselenazin-3-one), 1,2-selenazolan-3-ones, benzoselenazolinones, and seleninic acid anhydride
(which has been synthesized based on salicylic acid amide and selenium tetrachloride) [41–44] (Figure 2).

Camphor-derived selenenamide was synthesized by action of bromine on corresponding camphor
diselenide, which was obtained based on the reaction of camphor enolate with selenium [42].
The glutathione peroxidase mimetic property of the camphor derived selenenamide was studied using
a model reaction of benzenemethanethiol oxidation by tert-butyl hydroperoxide in the presence of the
selenenamide as a catalyst (10% mol) in dichloromethane or deuterochloroform at room temperature.
A similar model reaction of benzenemethanethiol oxidation by hydrogen peroxide was applied to
examine the glutathione peroxidase-like activity of containing hydroxy group divinyl selenides as a
catalysts (10% mol) [45]. The progress of the reaction was monitored by 1H NMR spectroscopy.

Previously we developed efficient syntheses of vinyl and divinyl selenides based on the addition
of selenium-containing reagents, including sodium selenide, to the triple bond of acetylene and its
derivatives [23,27,48–57].

To date, the reactions of sodium selenide with neither 2-propynamides nor 3-(triorganylsilyl)-
2-propynamides have yet been described in the literature. It is known that the introduction of
electron-donating triorganylsilyl group at the triple bond changes the reactivity of acetylene derivatives
and deactivates the triple bond toward nucleophilic addition [58].

In order to develop the method for preparation of previously unknown divinyl selenides containing
amide groups we studied the reaction of sodium selenide with 3-(trimethylsilyl)-2-propynamides and
found the conditions for regio- and stereoselective addition. The obtained results are described in the
present work.

2. Results and Discussion

Recently we realized the addition of sodium benzeneselenolate to 3-(trimethylsilyl)-2-
propynamides containing morpholine and phenylamide moieties (Scheme 1) [27]. The reaction was
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carried out by addition of sodium borohydride to a stirred solution of 3-trimethylsilyl-2-propynamides
and diphenyl diselenide in a THF–water (4/1) system at room temperature and accompanied by
desilylation. The generation of sodium benzeneselenolate occurred in situ followed by nucleophilic
addition of this highly reactive intermediate to the triple bond.
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Scheme 1. Synthesis of containing the amide group vinyl selenides from diphenyl diselenide and
3-(trimethylsilyl)-2-propynamides.

The reaction proceeded in stereo- and regioselective manners affording (Z)-N-phenyl-3-
(phenylselanyl)prop-2-enamide (72% yield) and (Z)-1-morpholino-3-(phenylselanyl)prop-2-en-1-one
(70% yield), which were isolated as colorless crystalline compounds [27]. To the best of our knowledge,
these are first examples of the addition of organylselenolates to 3-silyl-2-propynamides.

The commonly used conditions for generation of organylselenolates from corresponding
diselenides and sodium selenide from elemental selenium consist in the application of sodium
borohydride as a reducing agent and carrying out the reaction in alcohols [59]. However, when the
reactions of sodium benzeneselenolate or sodium selenide with 3-(trimethylsilyl)-2-propynamides
proceeded in methanol or ethanol, the formation of 3-alkoxy-2-propenamides as by-products was
observed. The possibility of the formation of 3-alkoxy-2-propenamides from 3-(trimethylsilyl)-2-
propynamides in reactions with alcohols has been previously described [60].

We found that the THF–water system is preferable in addition reactions of selenium-centered
nucleophiles with 3-(trimethylsilyl)-2-propynamides compared to commonly used alcohol conditions.
The yields of the target products are higher and 3-alkoxy-2-propenamides are not formed as by-products.

The addition reactions of selenide anion with propynamides and 3-silyl-2-propynamides have not
yet been described in the literature. In order to obtain previously unknown divinyl selenides containing
amide groups we studied the addition of sodium selenide to 3-(trimethylsilyl)-2-propynamides bearing
various groups (phenyl, alkyl, cyclohexyl, morpholine and piperidine) in the amide moieties (Scheme 2).
Sodium selenide was efficiently generated from elemental selenium and sodium borohydride in water
and used without isolation in further nucleophilic addition reactions.

The conditions for the regio- and stereoselective reaction of 3-trimethylsilyl-2-propynamides 1a–i
with sodium selenide were found. The reaction proceeded in the THF–water system under argon
affording (Z,Z)-3,3′-selanediylbis(2-propynamides) 2a–i in 76-93% yields (Scheme 2).
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Scheme 2. Synthesis of divinyl selenides 2a–i from 3-(trimethylsilyl)-2-propynamides 1a–i, elemental
selenium, and sodium borohydride. Sodium selenide was obtained by addition of an aqueous solution
of sodium borohydride to a hot mixture of selenium and water (Methods A and B). [a] Method A:
THF/water~1:3. A solution of 3-(trimethylsilyl)-2-propynamide in THF was added to a hot aqueous
solution of sodium selenide and the mixture was refluxed for 10 min. Yields: 25–93%. [b] Method B:
THF/water~3:1. A solution of 3-(trimethylsilyl)-2-propynamide in THF was added to a hot aqueous
solution of sodium selenide and the mixture was refluxed for 10 min. Yields: 76–91%. [c] Method C:
sodium borohydride was added portionwise to a mixture of 3-(trimethylsilyl)-2-propynamide, selenium,
THF and water and the mixture was stirred at room temperature for 4 h (10 h for 2g). Yields: 50–73%.

Water is necessary for generating sodium selenide and reacting Na2Se with propynamides 1a–i
which are soluble in THF. The ratio of the solvents in the THF–water system was varied from 1/3
(method A) to 3/1(method B). In the method A and B, a solution of silylpropynamides in THF was
added to a hot aqueous solution of sodium selenide, which was obtained from elemental selenium
and sodium borohydride, and the mixture was refluxed for 10 min. In the case of method C, sodium
borohydride was added portionwise to a mixture of propynamides 1b–d,f–i and selenium in the
THF–water system (the ratio of the solvents 4/1) and the mixture was stirred at room temperature for
4 h (10 h for 2g).
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Best yields of the products were obtained when the reaction mixtures were refluxed for 10 min
in the THF–water system. When reaction was carried out at room temperature, the yields dropped
despite increasing the reaction duration. The divinyl selenides 2b–d,f–i were obtained in 50–73%
yields with 4 h stirring at room temperature under argon (Scheme 2, method C). Surprisingly, neither
unconverted 3-(trimethylsilyl)-2-propynamides 1b–d,f–i nor desilylated propynamides were detected
in the reaction mixture in these cases after completion of the reaction (method C). However, the yields
of the target products 2b–d,f–i were lower than in the methods A and B.

The reaction of sodium selenide with propynamide 1f bearing two phenyl substituents in
the amide group under the conditions of method A led to a mixture containing divinyl selenide
2f in 25% yield, unconverted silylpropynamide 1f (31% conversion) and the desilylated amide,
N,N-diphenyl-2-propynamide (1%). The reaction of sodium selenide with silylpropynamide 1g
containing two cyclohexyl moieties in the amide group also gave similar poor results. We supposed
that the reason of the insufficient yield of selenides 2f,g and low conversion of starting amides 1f,g may
be poor solubility of propyneamides 1f,g in the mixture water–THF (3/1, method A) due to lipophilic
organic moieties of the amide group. The silylpropynamides 1f,g are insoluble in water but soluble in
THF. Indeed, when the method B (THF–water 3/1) was applied, products 2f,g were obtained in 76–77%
yields. The method A was found to provide high yields of products 2c–e,h,i (85–93%) derived from
silylpropynamides 1c–e,h,i containing monophenyl, dialkyl, morpholine, and piperidine moieties in
the amide group.

The possible pathway for the formation of products 2a–i can include both the addition—desilylation
processes and the sequential desilylation—addition reactions via the generation of intermediate
propynamides 3a–i (Scheme 3). The addition of sodium selenide to the triple bond of silylpropynamides
1a–i is accompanied by the formation of sodium hydroxide, which acts as the catalyst for the desilylation
reaction. We suppose that the desilylation process can proceed on different stages of the reaction
including various intermediate species (Scheme 3).
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The formation of intermediate 2-propynamides 3a–i in very small amounts (before the isolation
of the reaction products 2a–i) was registered in the reaction mixture by NMR. The NMR data of the
intermediate propynamides 3a–i coincide with the spectral characteristics of the previously obtained
samples of these compounds, which were synthesized by desilylation of silylpropynamides 1a–i [60].

The formation of propynamides 3a–i in the reaction (Scheme 2) indicates the possibility of the
reaction pathway via desilylation of silylpropynamides 1a–i. It was previously established that
silylpropynamides 1a–i can be desilylated by the action of various reagents (potassium fluoride, alkali
metal hydroxides and other bases) and converted to corresponding propynamides 3a–i [60].

It is worth noting that the application of 3-trimethylsilyl-2-propynamides 1a–i as the initial
substrates in the preparation of the target vinyl selenides is preferable compared to 2-propynamides
with the terminal triple bond. The latter compounds are hardly available and the price for these
chemicals is very high. Their preparation is usually based on toxic and skin-irritating propynoic
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acid. The silylpropynamides 1a–i were synthesized in the present work by the method depicted in
Scheme 4 [61–63]. Inexpensive starting propargyl alcohol, good selectivity of these reactions and high
yield of the target products allowed to make silylpropynamides 1a–i readily available compounds and
to use them in the synthesis of valuable products [64–66].Molecules 2020, 25, x FOR PEER REVIEW 7 of 15 
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The obtained selanediylbis(2-propynamides) 2a–i are a novel class of organoselenium compounds.
Like ebselen and some organoselenium compounds, which exhibit glutathione peroxidase-like activity
(Figure 2), products 2a–i contain the amide function, and their activity deserved to be studied.

We studied glutathione peroxidase-like activity of the obtained products 2a–i using the model
reaction of benzenemethanethiol oxidation [42,45] by tert-butyl hydroperoxide (TBHP) in the presence of
compounds 2a–i as catalysts and the progress of this reaction was monitored by 1H NMR spectroscopy.
First experiments in the NMR tubes (TBHP, BnSH, 0.1 mmol, deuterochloroform) at room temperature
showed that the reactions proceeded too fast when 10% mol of the catalysts were used. In order to
realize the 1H NMR monitoring, the amounts of the catalysts were decreased to 0.5% mol. Diphenyl
diselenide was used as the standard compound (this compound is often used as the standard catalyst
for in these experiments [42–47]).

It was found that the activity of the obtained products 2a–i varies significantly depending on
the organic moieties in the amide group. The results of studying the compounds 2d,f,g,h,i, which
outperform diphenyl diselenide in the glutathione peroxidase-like activity, are presented in Figure 3
(a 24 h scale) and Figure 4 (a 90 min scale). In the control experiment, under the same reaction
conditions but in the absence of the catalyst, the conversion of phenylmethanethiol was only about 4%
after 24 h according to 1H NMR data.

Product 2g containing two lipophilic cyclohexyl substituents in the amide group shows highest
glutathione peroxidase-like properties (Figures 4 and 5). This compound is significantly superior to
other products in activity. The second most active product is compound 2i (Figure 4) bearing the
piperidine moieties in the amide function and the third is product 2d (the activity of which is presented
in both Figures 3 and 4). Compounds 2f,h containing the morpholine and phenyl moieties also exhibit
higher activity compared to diphenyl diselenide.

The obtained results are very promising. However, the interpretation of the influence of organic
moieties on the catalytic activity and discussion on possible intermediates of the catalytic cycle requires
additional data and further research.
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3. Experimental Section

3.1. General Information

The 1H (400.1 MHz), 13C (100.6 MHz) and 77Se (76.3 MHz) NMR spectra (Supplementary Materials)
were recorded on a Bruker DPX-400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany)
in CDCl3 and d6-DMSO 5–10% solutions and referred to TMS (1H, 13C) and dimethyl selenide (77Se).
The IR spectra were taken on a Bruker IFS-25 spectrometer (Bruker BioSpin GmbH, Rheinstetten,
Germany). Mass spectra were recorded on a Shimadzu GCMS-QP5050A (Shimadzu Corporation,
Kyoto, Japan) with electron impact (EI) ionization (70 eV). Elemental analysis was performed on a
Thermo Scientific Flash 2000 Elemental Analyzer (Thermo Fisher Scientific Inc., Milan, Italy). Melting
points were determined on a Kofler Hot-Stage Microscope PolyTherm A apparatus (Wagner & Munz
GmbH, München, Germany). The organic solvents were dried and distilled according to standard
procedures. Silica gel (Alfa Aesar, 0.06–0.20 mm (70–230 mesh)) and ethyl acetat–methanol (10:1) as an
eluent were used for column chromatography.

3.2. Method A (Preparation of Compounds 2c–f,h,i)

A mixture of elemental selenium (19 mg, 0.24 mmol) and degassed water (4.0 mL) was heated on
a water bath (90–95 ◦C) and a solution of NaBH4 (40 mg, 1.05 mmol) in degassed water (0.5 mL) was
added under argon. After dissolution of selenium and the formation of colorless mixture, a solution of
3-trimethylsilyl-2-propynamide (0.48 mmol) in THF (1.5 mL) was added to a hot aqueous solution of
the sodium selenide and the mixture was refluxed for 10 min (5 h for 1g) under argon. The mixture
was cooled by cold water bath and extracted with CH2Cl2 (3 × 7.0 mL). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pressure. General yields: 85–93%.

3.3. Method B (Preparation of Compounds 2a,b,f,g)

A mixture of elemental selenium (19 mg, 0.24 mmol) and degassed water (2.0 mL) was heated on
a water bath (90–95 ◦C) and a solution of NaBH4 (40 mg, 1.05 mmol) in degassed water (0.4 mL) was
added under argon. After dissolution of selenium and the formation of colorless mixture, a solution of
3-trimethylsilyl-2-propynamide (0.48 mmol) in THF (7.0 mL) was added to a hot aqueous solution of
the sodium selenide and the mixture was refluxed for 10 min (5 h for 1g) under argon. The mixture was
cooled by cold water bath and THF was removed by a rotary evaporator. The residue was extracted
with CH2Cl2 (3 × 7.0 mL). The organic phase was dried over Na2SO4 and the solvent was removed
under reduced pressure. General yields: 76–91%.

3.4. Method C (Preparation of Compounds 2a–i)

NaBH4 (30 mg, 0.79 mmol) was added portionwise to a stirred mixture of selenium (19 mg,
0.24 mmol), 3-trimethylsilyl-2-propynamide (0.48 mmol), degassed water (0.5 mL) and THF (2.0 mL).
The mixture was stirred at room temperature for 5 h under argon and degassed water (2 mL) was
added. The mixture was extracted with CH2Cl2 (3 × 7.0 mL). The organic phase was dried over Na2SO4

and the solvent was removed under reduced pressure. General yields: 50–74%.

3.5. Compounds 2a–i

(Z)-3-[(Z)-3-amino-3-oxo-1-propenyl]selanyl-2-propenamide (2a) was prepared by the method B (91% yield)
and the method C (72% yield). After refluxing for 10 min, the solvent was removed under reduced
pressure and product 2a was extracted from the residue by boiling acetone. The solvent was removed
under reduced pressure giving 2a (48 mg, 91%, method B); (38 mg, 72%, method C); yellowish powder;
mp 183–184 ◦C. 1H NMR (400 MHz, d6-DMSO): δ 6.38 (d, 3J = 9.5 Hz, 2H, =CHCO), 7.10 (s, 2H, NH2),
7.50 (s, 2H, NH2), 7.65 (d, 3J = 9.5 Hz, 2H, SeCH=). 13C NMR (100 MHz, d6-DMSO): δ 120.6 (=CCO),
145.3 (SeC=, 1JSe–C = 128.2 Hz), 168.1 (C=O). 77Se NMR (76 MHz, d6-DMSO): δ 507.4. IR (KBr): 3430,
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3389, 3180, 2929, 1654 (C=O), 1575 (C=C), 1558 (C=C), 1397, 1282, 1162, 1111, 1050, 928, 802, 729, 632,
589, 524 cm–1. MS (EI), m/z (%): 220 [M]+, 218 (13), 152 (4), 150 (24), 148 (12), 134 (6), 133 (9), 106 (9),
88 (100), 71 (9), 70 (22), 55 (6), 44 (54), 43 (6). Anal. calcd for C6H8N2O2Se (219.10): C 32.89, H 3.68,
N 12.79, Se 36.04%. Found: C 32.73, H 3.57, N 12.93, Se 35.89%.

(Z)-N-methyl-3-[(Z)-3-(methylamino)-3-oxo-1-propenyl]selanyl-2-propenamide (2b) was prepared by the
method B (80% yield) and the method C (71% yield). After addition of degassed water to the reaction
mixture, the precipitate was filtered and dried in vacuum giving product 2b (47.5 mg, 80%, method
B); (42 mg, 71%, method C); white powder; mp 215–216 ◦C. 1H NMR (400 MHz, d6-DMSO): δ 2.64
(d, 3J = 4.4 Hz, 6H, CH3), 6.35 (d, 3J = 9.6 Hz, 2H, =CHCO), 7.59 (d, 3J = 9.6 Hz, 2H, SeCH=), 8.01
(q, 3J = 4.4 Hz, 2H, NH). 13C NMR (100 MHz, d6-DMSO): δ 25.5 (CH3), 120.4 (=CCO), 144.0 (SeC=,
1JSe–C = 127.4 Hz), 166.8 (C=O). 77Se NMR (76 MHz, d6-DMSO): δ 502.7. IR (KBr): 3324, 3041, 2938,
1644 (C=O), 1580 (C=C), 1524 (C=C), 1413, 1240, 1184, 1057, 805, 725, 698, 653 cm–1. MS (EI), m/z (%):
248 (20) [M]+, 246 (9), 187 (6), 166 (9), 164 (43), 162 (30), 161 (25), 147 (92), 145 (45), 143 (22), 135 (9), 134
(15), 133 (10), 132 (7), 131 (7), 110 (11), 107 (13), 106 (15), 105 (8), 104 (9), 84 (100), 68 (17), 66 (7), 58 (96),
57 (7), 56 (15), 55 (15), 53 (13), 44 (14), 43 (9), 42 (19), 41 (10). Anal. calcd for C8H12N2O2Se (247.15): C
38.88, H 4.89, N 11.33, Se 31.95%. Found: C 38.91, H 4.86, N 11.57, Se 32.14%.

(Z)-N-phenyl-3-[(Z)-3-anilino-3-oxo-1-propenyl]selanyl-2-propenamide (2c) was prepared by the method A
(85% yield) and the method C (69% yield). After removing the solvent, the residue was dissolved in
THF and precipitated with cold hexane giving product 2c which was dried in vacuum (76 mg, 85%,
method A); (61 mg, 69%, method C); beige powder; mp 219–220 ◦C. 1H NMR (400 MHz, d6-DMSO):
δ 6.65 (d, 3J = 9.6 Hz, 2H, =CHCO), 7.06 (t, 3J = 7.7 Hz, 2H, Hp), 7.32 (dd, 3J = 7.7 Hz, 4H, Hm), 7.66
(d, 3J = 7.7 Hz, 4H, Ho), 7.94 (d, 3J = 9.6 Hz, 2H, SeCH=), 10.23 (s, 2H, NH). 13C NMR (100 MHz,
d6-DMSO): δ 119.0 (=CCO), 121.0 (Co), 123.4 (Cp), 128.9 (Cm), 139.1 (Ci), 146.7 (SeC=, 1JSe–C = 129.0 Hz),
164.9 (C=O). 77Se NMR (76 MHz, d6-DMSO): δ 518.8. IR (KBr): 3266, 3129, 3039, 2929, 1636 (C=O),
1603 (C=C, Ph), 1544 (C=C, Ph), 1499 (C=C, Ph), 1439, 1365, 1302, 1247, 1201, 1159, 979, 796, 744, 689,
594, 505 cm–1. MS (EI), m/z (%): 372 (8) [M]+, 224 (15), 211 (9), 209 (47), 207 (23), 206 (9), 205 (9), 187 (6),
161 (18), 159 (11), 147 (13), 146 (100), 145 (12), 133 (8), 132 (31), 131 (6), 128 (9), 120 (8), 117 (14), 106 (8),
104 (12), 94 (11), 93 (79), 92 (29), 91 (9), 77 (37), 66 (11), 65 (34), 64 (7), 51 (11), 39 (17). Anal. calcd for
C18H16N2O2Se (371.29): C 58.23, H 4.34, N 7.54, Se 21.27%. Found: C 58.50, H 4.29, N 7.48, 20.97%.

(Z)-3-[(Z)-3-(dimethylamino)-3-oxo-1-propenyl]selanyl-N,N-dimethyl-2-propenamide (2d) was prepared by
the method A (86% yield) and the method C (68% yield). After removing the solvent, the residue was
dissolved in CHCl3 and precipitated with cold hexane giving product 2d, which was dried in vacuum
(57 mg, 86%, method A); (46 mg, 68%, method C); white powder; mp 181–182 ◦C. 1H NMR (400 MHz,
CDCl3): δ 3.01, 3.06 (s, 12H, CH3), 6.74 (d, 3J = 9.7 Hz, 2H, =CHCO), 7.52 (d, 3J = 9.7 Hz, 2H, SeCH=).
13C NMR (100 MHz, CDCl3): δ 35.4, 37.2 (CH3), 116.8 (=CCO), 147.6 (SeC=, 1JSe–C = 132.6 Hz), 166.9
(C=O). 77Se NMR (76 MHz, CDCl3): δ 516.8. IR (KBr): 3024, 2925, 2861, 1624 (C=O), 1572 (C=C), 1492,
1403, 1324, 1261, 1146, 1065, 974, 868, 791, 649, 591, 523 cm−1. MS (EI), m/z (%): 276 (8) [M]+, 195 (10),
187 (8), 178 (25), 176 (12), 161 (7), 124 (8), 106 (6), 98 (71), 72 (100), 70 (9), 55 (9), 46 (12), 44 (29), 15 (42).
Anal. calcd for C10H16N2O2Se (275.21): C 43.64, H 5.86, N 10.18, Se 28.69%. Found: C 43.71, H 5.63,
N 10.29, Se 28.54%.

(Z)-3-[(Z)-3-(diethylamino)-3-oxo-1-propenyl]selanyl-N,N-diethyl-2-propenamide (2e) was prepared by the
method A (86% yield) and the method C (72% yield). After removing the solvent, residue was dissolved
in CHCl3 and precipitated with cold hexane in a refrigerator (−18 ◦C) giving product 2e which was
dried in vacuum (68 mg, 86%, method A); (57 mg, 72%, method C); pale yellow solid; mp 56–57 ◦C. 1H
NMR (400 MHz, CDCl3): δ 1.12 (t, 3J = 6.8 Hz, 12H, CH3), 3.32, 3.38 (q, 3J = 6.8 Hz, 8H, CH2), 6.64 (d,
3J = 9.7 Hz, 2H, =CHCO), 7.47 (d, 3J = 9.7 Hz, 2H, SeCH=). 13C NMR (100 MHz, CDCl3): δ 13.2, 14.8
(CH3), 40.6, 42.1 (CH2), 117.1 (=CCO), 147.5 (SeC=, 1JSe–C = 131.9 Hz), 166 (C=O). 77Se NMR (76 MHz,
CDCl3): δ 519.4. IR (KBr): 3027, 2975, 2930, 2901, 2873, 1618 (C=O), 1566 (C=C), 1481, 1448, 1428, 1376,
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1360, 1304, 1258, 1218, 1141, 1077, 949, 836, 791, 638, 592 cm−1. Anal. calcd for C14H24N2O2Se (331.31):
C 50.75, H 7.30, N 8.46, Se 23.83%. Found: C 50.56, H 7.10, N 8.31, Se 23.72%.

(Z)-3-[(Z)-3-(diphenylamino)-3-oxo-1-propenyl]selanyl-N,N-diphenyl-2-propenamide (2f) was prepared by
the method A (25% yield), the method B (76% yield) and the method C (66% yield). After removing
the solvent, the residue was dissolved in CHCl3 and precipitated with cold hexane giving product 2f
which was dried in vacuum (31 mg, 25%, method A); (96 mg, 76%, method B); (83 mg, 66%, method
C); beige powder; mp 201–203 ◦C. 1H NMR (400 MHz, CDCl3): δ 6.35 (d, 3J = 9.7 Hz, 2H, =CHCO),
7.23–7.30 (m, 12H, Ho,p), 7.32–7.40 (m, 8H, Hm), 7.48 (d, 3J = 9.7 Hz, 2H, SeCH=). 13C NMR (100 MHz,
CDCl3): δ 119.6 (=CCO), 125.1–128.6 (Co,p), 129.2 (Cm), 142.6 (Ci), 149.2 (SeC=, 1JSe–C = 133.9 Hz), 166.3
(C=O). 77Se NMR (76 MHz, CDCl3): δ 533.3. IR (KBr): 2929, 1635 (C=O), 1552 (C=C, Ph), 1492, 1370,
1269, 1164, 1082, 1035, 782, 756, 695, 543 cm−1. MS (EI), m/z (%): 523 (2) [M]+, 303 (6), 222 (14), 209
(20), 208 (100), 196 (9), 180 (29), 170 (9), 169 (61), 168 (38), 167 (44), 166 (6), 77 (19). Anal. calcd for
C30H24N2O2Se (523.48): C 68.83, H 4.62, N 5.35, Se 15.08%. Found: C 68.65, H 4.47, N 5.56, Se 15.04%.

(Z)-3-[(Z)-3-(dicyclohexylamino)-3-oxo-1-propenyl]selanyl-N,N-dicyclohexyl-2-propenamide (2g) was prepared
by the method B (refluxing for 5 h, 77% yield) and method C (stirring at room temperature for 10 h,
50% yield). After removing the solvent, the residue was recrystallized from benzene (101 mg, 77%,
method A); (66 mg, 50%, method C); white powder; mp 127–129 ◦C. 1H NMR (400 MHz, CDCl3): δ
1.03–1.38, 1.44–1.90 (m, 36H, H), 2.12–2.27 (m, 4H, H), 3.37–3.54 (m, 4H, H1), 6.70 (d, 3J = 9.7 Hz, 2H,
=CHCO), 7.39 (d, 3J = 9.7 Hz, 2H, SeCH=). 13C NMR (100 MHz, CDCl3): δ 24.4 (C3,4,5), 25.4 (C3,5),
29.4, 30.6, 31.0 (C2,6), 54.5, 56.0 (C1), 118.8 (=CCO), 145.0 (SeC=, 1JSe–C = 130.6 Hz), 165.4 (C=O). 77Se
NMR (76 MHz, CDCl3): δ 508.7. IR (KBr): 2926, 2852, 2663, 1614 (C=O), 1559 (C=C), 1465, 1439, 1389,
1366, 1342, 1291, 1264, 1233, 1181, 1141, 1126, 1053, 996, 896, 779, 714, 637, 619, 595, 504. MS (EI), m/z
(%): 549 (4) [M]+, 314 (20), 312 (10), 286 (6), 235 (19), 234 (89), 232 (9), 181 (8), 180 (44), 178 (6), 161 (10),
152 (47), 150 (19), 148 (7), 138 (19), 98 (69), 96 (11), 83 (49), 82 (9), 81 (18), 79 (8), 70 (12), 67 (9), 56 (21), 55
(100), 44 (10), 43 (8), 41 (42). Anal. calcd for C30H48N2O2Se (547.67): C 65.79, H 8.83, N 5.11, Se 14.42%.
Found: C 65.63, H 8.82, N 4.96, Se 14.38%.

(Z)-1-morpholino-3-[(Z)-3-morpholino-3-oxo-1-propenyl]selanyl-2-propen-1-one (2h) was prepared by the
method A (93% yield) and the method C (73% yield). After removing the solvent, residue was dissolved
in CHCl3 and precipitated with cold hexane (80 mg, 93%, method A); (63 mg, 73%, method C); white
powder; mp 196–197 ◦C. 1H NMR (400 MHz, CDCl3): δ 3.55 (br m, 4H, H3,5), 3.69 (br m, 12H, H3,5,
H2,6), 6.72 (d, 3J = 9.7 Hz, 2H, =CHCO), 7.59 (d, 3J = 9.7 Hz, 2H, SeCH=). 13C NMR (100.6 MHz,
CDCl3): δ 42.1, 46.0 (C3,5), 66.8 (C2,6), 116.0 (=CCO), 148.7 (SeC=, 1JSe–C = 132.2 Hz), 165.7 (C=O). 77Se
NMR (76 MHz, CDCl3): δ 520.2. IR (KBr): 2957, 2910, 1616 (C=O), 1563 (C=C), 1437, 1235, 1112, 1035,
964, 786, 602, 572 cm−1. Anal. calcd for C14H20N2O4Se (359.28): C 46.80, H 5.61, N 7.80, Se 21.98%.
Found: C 46.96, H 5.39, 7.95, Se 21.60%. MS (EI), m/z (%): 549 (4) [M]+, 279 (11), 220 (27), 218 (13), 187
(14), 166 (11), 159 (15), 161 (26), 159 (14), 141 (11), 140 (100), 135 (9), 134 (9), 133 (10), 132 (7), 131 (8), 124
(6), 114 (79), 107 (7), 106 (8), 88 (17), 87 (16), 86 (99), 82 (13), 70 (77), 57 (17), 56 (55), 55 (30), 54 (9), 53 (9),
45 (8), 44 (6), 43 (6), 42 (40), 41 (10).

(Z)-3-[(Z)-3-piperidino-3-oxo-1-propenyl]selanyl-1-piperidino-2-propen-1-one (2i) was prepared by the
method A (89% yield) and the method C (65% yield). After removing the solvent, residue was
dissolved in CHCl3 and precipitated with cold hexane (77 mg, 89%, method A); (55 mg, 65%, method
C); beige powder; mp 208–209 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.53–1.61 (m, 8H, H3,5), 1.61–1.70
(m, 4H, H4), 3.49, 3.61 (br m, 8H, H2,6), 6.75 (d, 3J = 9.8 Hz, 2H, =CHCO), 7.49 (d, 3J = 9.8 Hz, 2H,
SeCH=). 13C NMR (100 MHz, CDCl3): δ 24.7 (C4), 25.6, 26.7 (C3,5), 42.9, 46.8 (C2,6), 117.0 (=CCO), 147.1
(SeC=, 1JSe–C = 131.0 Hz), 165.5 (C=O). 77Se NMR (76 MHz, CDCl3): δ 508.7. IR (KBr): ν 2931, 2853,
1608 (C=O), 1562 (C=C), 1442, 1347, 1243, 1225, 1128, 1012, 955, 788, 658, 631, 602, 538 cm−1. MS (EI),
m/z (%): 556 (4) [M]+, 218 (7), 161 (9), 138 (47), 112 (14), 84 (100), 69 (17), 56 (12), 55 (14), 42 (9), 41 (23).
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Anal. calcd for C16H24N2O2Se (355.33): C 54.08, H 6.81, N 7.88, Se 22.22%. Found: C 53.81, H 6.82,
N 7.91, Se 22.03%.

4. Conclusions

The efficient regio- and stereoselective synthesis of a novel class of organoselenium compounds,
(Z,Z)-3,3′-selanediylbis(2-propenamides), based on the reaction of sodium selenide with 3-trimethylsilyl-
2-propynamides was developed. Not a single representative of 3,3′-selanediylbis(2-propenamides)
has yet been described in the literature. Studying their glutathione peroxidase-like properties by a
model reaction showed that compounds 2g,i,d exhibit high activity. It was found that the glutathione
peroxidase-like activity of the obtained products varies significantly depending on the organic moieties
in the amide group. Containing two lipophilic cyclohexyl substituents in the amide group compound
2g is significantly superior to other products in activity. The second most active product is compound
2i bearing the piperidine moieties in the amide function. Containing the morpholine and diphenyl
moieties compounds 2f,h also exhibit higher catalytic activity compared to diphenyl diselenide.

Supplementary Materials: The following are available online, the NMR spectra of the obtained compounds.
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