
Molecules 2014, 19, 3909-3925; doi:10.3390/molecules19043909 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Comparison of Physicochemical Properties and 
Immunomodulatory Activity of Polysaccharides from  
Fresh and Dried Litchi Pulp 

Fei Huang 1,2, Ruifen Zhang 2, Yang Yi 3, Xiaojun Tang 2, Mingwei Zhang 2,*, Dongxiao Su 1,2, 

Yuanyuan Deng 2 and Zhencheng Wei 2 

1 Department of Food Science and Technology, Huazhong Agricultural University,  

Wuhan 430070, China 
2 Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, 

Guangzhou 510610, China 
3 College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China 

* Author to whom correspondence should be addressed; E-Mail: mwzhh@vip.tom.com;  

Tel.: +86-20-8723-7865; Fax: +86-20-8723-6354. 

Received: 17 February 2014; in revised form: 20 March 2014 / Accepted: 21 March 2014 /  

Published: 31 March 2014 

 

Abstract: Drying is commonly used for preservation and processing of litchi. However, its 

polysaccharide structure may be altered by the drying process, resulting in biological 

activity changes. Polysaccharides from fresh and dried litchi pulp (denoted as LPF and 

LPD, respectively) were isolated, investigated by GC-MS, GPC and UV/IR spectrum 

analysis and their antitumor and immunomodulatory activities were evaluated in vitro. 

LPD, the molecular weight of which was lower than that of LPF, contained more protein, 

uronic acid, arabinose, galactose and xylose. Compared with LPF, LPD exhibited a higher 

inhibitory effect on the proliferation of HepG2, Hela and A549 cells from 50–750 μg/mL. 

LPD was also a better stimulator of spleen lymphocyte proliferation, NK cells cytotoxicity 

and macrophage phagocytosis from 50–400 μg/mL. In summary, drying could change the 

physicochemical properties and enhance the bioactivity of polysaccharides from litchi 

pulp. This finding is supported by the fact that dried litchi pulps are used in Traditional 

Chinese Medicine. 
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1. Introduction 

Litchi (Litchi chinensis Sonn.), originating from China, is widely planted in warm climates around 

the World. Because of its attractive appearance and delicious flavor, litchi is becoming increasingly 

popular. Besides providing sensory satisfaction, litchi fruit extracts have been reported to have 

antioxidant properties [1,2], proinflammatory effects [3], anticancer activity [4], anti-apoptotic 

activities [5] and immune-stimulating activities [6]. Many bioactive compounds have been identified 

from litchi pulp, including polysaccharides which exhibit antioxidant activities [7].  

Litchi is a seasonal and highly perishable fruit that is commonly dried for long term storage and 

further processing. However, the drying process has been shown to have a significant effect on the 

physicochemical properties and characteristic components of the material. A previous study showed 

that drying changed the content of dietary fiber in orange by-products [8], as well as the content of 

total phenolics, flavonoids and lycopene in tomatoes [9]. Furthermore, drying may cause irreversible 

modifications to the chemical composition and structure of polysaccharides. For example, a sun-drying 

process caused the modification of monosaccharide composition and FT-IR characteristics  

of polysaccharides from pear pulp [10]. The molecular size distribution and proportions of  

(1→3,6)-linked galactose residues of pectin polysaccharides from Japanese persimmon fruit were also 

changed during the sun-drying process [11].  

It is well known that the bioactivities of native polysaccharides are closely related to their chemical 

composition and structure. The crude polysaccharides from the dried fruit body of Lentinus polychrous Lév 

contained more proteins, total polysaccharides and reducing sugar and showed stronger antioxidant 

activity and cytotoxicity against MCF-7 tumor cells [12] than those from fresh fruit bodies. 

Furthermore, thermal drying could change the structure of mushroom polysaccharides and result in 

aggregation of polysaccharides due to removal of the hydration layer. The aggregated polysaccharides 

were larger, but had lower antioxidant activity compared with polysaccharides from freeze dried 

material [13]. Although the structure and activity of litchi polysaccharides have been reported in 

previous research [1,7,14,15], little is known about the effects of drying on the polysaccharides in 

litchi. Therefore, the polysaccharides from fresh and hot-air dried litchi pulp were analyzed in the 

present study. The objectives were: (1) to reveal the differences in the physicochemical properties of  

the polysaccharides from fresh and hot-air dried litchi pulp; (2) to compare their antitumor  

and immunomodulatory activity in vitro; (3) to elucidate the relationships between their structure  

and bioactivity. 

2. Results and Discussion 

2.1. Preliminary Characterization of Litchi Polysaccharides 

2.1.1. The Chemical Compositions of Litchi Polysaccharides 

Two hundred grams fresh pulp and 50 g dried pulp of litchi were used to obtain litchi 

polysaccharides. The yield of polysaccharides was 1.15% from fresh litchi pulp and that from dried 

litchi pulp was 3.58%. The amount of neutral sugar, uronic acid and protein, as well as molecular 

weight distribution and monosaccharide composition of LPF and LPD are summarized in Table 1. 
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Obviously, LPD contained more uronic acid and binding protein than LPF (p < 0.05). The result was 

consistent with Thetsrimuang’s report in which the protein content of polysaccharides from dried 

Lentinus polychrous Lév was significantly higher than in fresh ones [12]. The difference in protein 

content of LPF and LPD could be due to thermal effects which could induce conformational changes 

in the polysaccharides and proteins that may result in the formation of protein-polysaccharide 

complexes by electrostatic interactions [16], since free but not binding protein could be removed from 

the polysaccharides by the Sevag method [17]. Moreover, Asgar reported the uronic acid content in 

polysaccharides from Japanese persimmon fruit increased after sun-drying compared with fresh 

material [11], which was consistent with our results. 

Table 1. The chemical compositions of litchi polysaccharides LPF and LPD. 

Samples LPF LPD 

Neutral sugar (W%) 66.85 ± 1.12 65.73 ± 1.76 
Uronic acid (W%) 2.09 ± 0.48 4.72 ± 0.27 * 

Protein (W%) 3.94 ± 0.16 6.48 ± 0.24 * 
Molecular weight (Da) 970085 370365; 8207 

Monosaccharide composition (%)   
Rhamnose 0.31 1.86 
Arabinose 5.44 17.62 

Xylose 0.71 3.21 
Mannose 15.18 10.56 
Glucose 66.1 20.82 

Galactose 11.58 41.18 

* p < 0.05. 

LPF had a large molecular weight (Mw) of 970,085 Da, while LPD was observed to be composed of 

two components with relatively small molecular weights (Table 1). The results were similar to the 

change of molecular weight of polysaccharides from Inonotus obliquus which decreased with thermal 

treatment [18]. It was inferred that the cleavage of the polysaccharides chain accounted for the 

decrease of Mw value upon thermal treatment. 

LPF and LPD had the same monosaccharide composition, but their monosaccharide molar ratios 

had apparent differences. Compared with LPF, the molar ratio of glucose in LPD exhibited a 45.28% 

decrease, while galactose and arabinose were increased by 29.6% and 12.18%, respectively. 

Mirhosseini et al. reported freeze-drying and spray-drying processes resulted in the significant 

reduction of glucose, galactose and arabinose in gum polysaccharides while they were increased by an 

oven drying process [19]. Asgar et al. found the galactose content of pectin polysaccharides decreased 

while the arabinose content increased with sun-drying [20]. It can be concluded that temperature and 

method for drying materials are important factors influencing the monosaccharide composition  

of polysaccharides in them. The differences among our study and others could result from different 

processing conditions and materials. 

The amount of neutral sugar and uronic acid were individually determined by a phenol-sulfuric acid 

method and an m-hydroxydiphenyl method, respectively. The protein content and monosaccharide 

composition were determined by Bradford’s method and a GC-MS method, respectively. The average 
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molecular weight of the polysaccharides was determined by gel permeation chromatography (GPC). 

The values for neutral sugar, uronic acid, and protein are expressed as the mean ± SD (n = 3). * p < 0.05. 

2.1.2. UV and IR Spectra Analysis 

The UV absorptions of LPF and LPD are shown in Figure 1. The absorption of polysaccharides 

treated with sodium hydroxide was higher than that of the non-treated control at 240 nm in LPD, but 

not in LPF, indicating the presence of O-glycosidic bonds in LPD. This may be attributed to the 

formation of protein-polysaccharide complexes by electrostatic interactions between polysaccharides 

and proteins with thermal effects [21]. When immersed in a weak alkali solution, the O-glycosidic 

bonds between serine or threonine and sugars would produce α-aminoacrylic acid and  

α-aminobutenoic acid, which results in an increase of absorbance at 240 nm [22]. The absorbance at 

280 nm in LPD was higher than that in LPF, which indicated the content of protein in LPD was higher 

than that in LPF, which was consistent with the result obtained from the Bradford determination. 

Figure 1. UV spectra of the β-elimination reactions of the litchi polysaccharides LPF and 

LPD. A dotted line represents the absorption of polysaccharide treated with sodium 

hydroxide, and a solid line represents the absorption of non-treated polysaccharide. 

 

The absorption peaks, functional groups and structural characteristics of LPF and LPD are 

summarized in Table 2. Both LPF and LPD had hydroxyl groups (3397.4, 3405.6 cm−1), alkyl groups 

(2928.0, 2926.1 cm−1) and carboxyl groups (1654.5, 1637.6 cm−1), which are characteristic of 

polysaccharides. In addition, the amino group bands (3397.4, 3405.6; 1654.5, 1637.6 cm−1) indicated 

the presence of protein in LPF and LPD. However, there were some differences between the spectra of 

LPF and LPD. LPF lacked the absorption peaks at 1541.4 cm−1 and 1458.8 cm−1 which represented the 

stretching vibration of C=O, and bending vibration of C-H, respectively. Moreover, the absorption 

peaks at 1156.0, 917.9 and 848.9 cm−1 indicating the ether -C-O-C-, D-glucopyranose ring and α-type 

glycosidic linkage, respectively, only existed in LPF. 
  



Molecules 2014, 19 3913 

 

 

Table 2. FTIR spectra of litchi polysaccharides LPF and LPD. 

Absorption (cm−1) a 
Functional group b Structural characteristics 

LPF LPD 

3397.4 3405.6 hydroxyl group (-OH) O-H stretching vibration 

amino group (-NH2) N-H stretching vibration 

2928.0 2926.1 alkyl group (-CH2-) C-H stretching vibration 

1654.5 1637.6 carbonyl group (-C=O or -CHO) C=O stretching vibration 

amide group (-NH2 or –COR) N-H bending vibration or C=O 

stretching vibration 

amino group (-NH2)  N-H bending vibration 

bound water  

1541.4  amino group (-NH2) or amide group (-NH2) N-H bending vibration 

carbonyl group (-C=O) C=O stretching vibration 

1458.8  alkyl group (-CH2- or –CH3) C-H bending vibration 

1420.0 1420.8 carboxyl group (-COOH) C-O stretching vibration 

1364.0 1375.8 carboxyl group (-COOH) C=O symmetrical stretching 

vibration 

1270.8 1275.1 carboxyl group (-COOH) O-H bending vibration 

1156.0  ether (-C-O-C-) C-O stretching vibration 

1017.0 1074.7 hydroxyl group (-OH) O-H bending vibration 

917.9  D-glucopyranose ring Antisymmetrical ring vibration 

848.9  α-type glycosidic linkage C-H bending vibration 

764.8 777.4 D-glucopyranose ring symmetrical ring vibration 
a The FTIR spectra of litchi polysaccharides LPF and LPD were determined using a Fourier-transform 

infrared spectrophotometer over the frequency range of 4,000–400 cm−1; b The functional group and 

structural characteristics were obtained from [22]. 

2.2. In Vitro Inhibition Effects of Tumor Cell Proliferation of Litchi Polysaccharides 

The inhibitory activities of litchi polysaccharides on the proliferation of HepG2, Hela, and A549 

cells are shown in Figure 2. No cytotoxicity was observed toward three tumor cell lines treated at 

concentrations ≤ 1000 μg/mL of LPF and LPD (data not shown). Both LPF and LPD inhibited the 

proliferation of three tumor cell lines in a concentration dependent manner at the tested concentrations. 

HepG2 cells were inhibited from −0.57% to 24.12% by LPF, while the percent inhibition for LPD 

ranged from 3.11% at 50 μg/mL to 41.37% at 750 μg/mL (Figure 2a). LPD showed a significantly 

higher inhibitory effect on the proliferation of HepG2 cells than LPF at the tested concentrations, 

except 200 μg/mL (p < 0.05). Similarly, the proliferation of Hela cells were inhibited 4.61%–28.04% 

and 5.17%–35.65% by LPF and LPD, respectively, in the dose range of 50–750 μg/mL (Figure 2b). 

The differences between LPF and LPD in their inhibition of Hela cells growth were exhibited at high 

concentrations (450, 600 and 750 μg/mL) (p < 0.05). Moreover, the growth of A549 cells decreased 

2.59%–30.07% and 2.56%–27.17% by the incubation of LPF and LPD at the tested concentrations, 

respectively (Figure 2c). The differences between LPF and LPD in their inhibition of A549 cells 

growth were exhibited only at 450 μg/mL (p < 0.05). 
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Figure 2. The inhibition of proliferation of cancerous cells by the litchi polysaccharides 

LPF and LPD. HepG2 (a), Hela (b), and A549 (c) cells were incubated at different 

concentrations (50, 150, 300, 450, 600 and 750 μg/mL). The percent inhibition were 

assessed by the methylene blue method and expressed as the mean ± standard deviation  

(n = 6). Bars labeled with different letters represent a statistical difference at p < 0.05 

among different concentrations of the same sample. (*) 0.01 < p < 0.05 and (**) p < 0.01 

compared with LPF. 

 

The anti-tumor cell line activity of crude polysaccharides with free protein was also determined. 

The results showed that polysaccharides without free protein showed better anti-tumor cell line 

activities whether for LPF or for LPD (data not shown), which implied that the potential active 

component was the polysaccharides. The bioactivity of polysaccharides is closely related with their 

chemical composition and structure. LPD, which had higher uronic acid, showed stronger anti-tumor 

cell line activity in vitro than LPF in this study. It was previously reported that polysaccharides rich in 

uronic acid exhibited high biological activities because uronic acid residues may alter the properties of 

polysaccharides and modify their solubility [23,24]. Furthermore, LPD exhibited higher anti-tumor cell 

line than LPF may due to its molecular weight and monosaccharide composition. Ouchi et al. reported 

that galactomannan was specifically recognized by a galactose receptor on the HepG2 cellular  

surface, thus polysaccharides rich in galactose had high anti-tumor cell line activities [25]. ASP-3 

polysaccharide from Amomum villosum, which contained more galactose than did ASP-1 and ASP-2, 

showed the stronger anti-tumor cell line activity [26]. 
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2.3. In Vitro Immunostimulatory Activity of Litchi Polysaccharides 

2.3.1. Effects of Litchi Polysaccharides on Splenocyte Proliferation in Vitro 

Lymphocyte proliferation is a crucial event in the activation cascade of both cellular and humoral 

immune responses. Spleen lymphocyte proliferation induced by ConA in vitro was used as a method  

to evaluate T lymphocyte activity, while that induced by LPS was used to examine B lymphocyte  

activity [27,28]. The stimulatory effects of LPF and LPD on mouse splenocyte proliferation  

are presented in Figure 3a. LPF and LPD stimulated the proliferation of mouse splenocyte in a  

dose-dependent manner. Both LPF and LPD exhibited the highest proliferation indexes (PI) of 20.6% 

and 58.45% at 400 μg/mL, respectively. LPD exhibited stronger stimulatory activity toward splenocyte 

proliferation than LPF at the same concentrations (p < 0.05). 

Figure 3. Effects of the litchi polysaccharides LPF and LPD on the proliferation index of 

splenocytes (a), ConA-induced splenocytes (b) and LPS-induced splenocytes (c) at different 

concentrations (0, 50, 100, 200 and 400 μg/mL). The proliferation indexes were assessed by 

the MTT assay and expressed as the mean ± standard deviation (n = 6). Bars labeled with 

different letters represent a statistical difference at p < 0.05 among different concentrations of 

the same sample. (*) 0.01< p < 0.05 and (**) p < 0.01 compared with LPF. 

 

Moreover, both LPF and LPD showed stimulation toward the proliferation of splenocytes with and 

without LPS (Figure 3a,c). LPD showed stronger proliferative stimulation than LPF. It was indicated 

that LPD exhibited stronger stimulation in inducing the proliferation of B lymphocyte than LPF. 

However, addition of litchi polysaccharides attenuated ConA-induced proliferation of splenocytes 

(Figure 3b). ConA activated T lymphocyte by binding to the specific receptor on T lymphocyte cell 

membranes [29]. Litchi polysaccharides may compete with ConA for the specific receptor, which 

resulted in the attenuation of the ConA-induced splenocytes proliferation. Furthermore, the stronger 
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inhibition of LPD to ConA-induced splenocytes proliferation gave a clue that LPD may show stronger 

competition for receptor binding than LPF. The results were similar to another report where 

polysaccharides from the stems of Ephedra sinica Stapf exhibited inhibitory effects on the proliferation 

of ConA-stimulated mouse splenocyte [30]. However, our results were inconsistent with Jing’s report 

that the purified litchi polysaccharides LCP50W had the potential of promoting the lymphocyte 

proliferation along with Con A [15]. This discrepancy could, at least partly, be attributed to the 

different purity of the tested polysaccharides. Crude, not purified polysaccharides were analyzed in this 

study. In another word, LPD and LPF were composed of different polysaccharide fractions. Therefore, 

the bioactivity of these crude polysaccharides should be a combined effect of all the fractions. And 

some fractions unavoidably had different activity from the others. 

To date, the effects of polysaccharides from different materials on lymphocyte proliferation were 

variously reported. Misgurnus anguillicaudatus polysaccharides activated T cells via the binding of the 

polysaccharides to receptors specifically expressed on T cells [31]. Polysaccharides from Ganoderma 

lucidum mediated mouse splenic B cells activation by the induction of Blimp-1, a master regulator 

capable of triggering the changes of a cascade of gene expression during plasmacytic differentiation [32]. 

In addition, polysaccharides from evening primrose [27], Trametes robiniophila Murr [33] and 

Armillaria mellea [34] exhibited stimulating effects on both ConA and LPS-induced lymphocyte 

proliferation. The mechanism of which polysaccharides exhibited cell specificity in stimulating 

lymphocyte proliferation is unclear up till now. The monosaccharide composition and structural 

characteristic of these polysaccharides were deduced to be important influencing factor. 

2.3.2. Effects of Litchi Polysaccharides on NK Cells Cytotoxicity 

The effects of LPF and LPD on the cytotoxicity of NK cells against YAC-1 cells are shown in 

Figure 4. The percent lysis of target cells was 64.95%–78.36% when the splenocytes were stimulated 

with 50–400 μg/mL LPF and reached a maximum value at 200 μg/mL. The percent lysis of target cells 

ranged from 74.64% to 87.72% when the splenocytes were stimulated with 50–400 μg/mL LPD, with 

a maximum value at 100 μg/mL. Furthermore, compared with LPF, LPD showed stronger stimulation 

on the NK cells cytotoxicity at the same concentrations in the dose range of 50–400 μg/mL (p < 0.05). 

2.3.3. Effects of Litchi Polysaccharides on Phagocytosis of RAW264.7 Mice Macrophages 

The phagocytic activity of RAW264.7 mice macrophages stimulated with LPS or different 

concentrations of litchi polysaccharides are shown in Figure 5. The phagocytosis indexes induced by 

LPF were from 26.19% to 37.34% at the concentrations from 50 to 400 μg/mL with a maximum  

value at 200 μg/mL. In addition, the phagocytosis indexes induced by LPD were in the range of 

27.57%–46.12% at the tested concentration range and exhibited the highest at 200 μg/mL. The effect 

of LPD was significantly better than that of LPF (p < 0.05) at 200 μg/mL, but no significant difference 

was observed at other doses. Compared with LPS (40.76%), 200 μg/mL of LPD (46.12%) exhibited 

stronger stimulation on phagocytosis of macrophages (p < 0.01).  
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Figure 4. Cytotoxicity of NK cells stimulated by litchi polysaccharides LPF and LPD 

toward target cells. Cytotoxicity of NK cells was assessed by the MTT assay and expressed 

as the mean ± standard deviation (n = 6). Bars labeled with different letters represent  

a statistical difference at p < 0.05 among different concentrations of the same sample.  

(*) 0.01 < p < 0.05 and (**) p < 0.01 compared with LPF. 

 

Figure 5. Effects of the litchi polysaccharides LPF and LPD on the phagocytosis of 

RAW264.7 macrophages. Their phagocytosis indexes were evaluated by measuring the 

phagocytosis against neutral red and expressed as the mean ± standard deviation (n = 6). 

Bars labeled with different letters represent a statistical difference at p < 0.05 among 

different concentrations of the same sample. (*) 0.01 < p < 0.05 and (**) p < 0.01 

compared with LPF. 

 

Polysaccharides bind immune cells via membrane receptors, resulting in stimulation of intracellular 

signaling cascades for immunologic responses. The stimulating activities of polysaccharides triggered 
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by the recognition of the cell receptors depend on monosaccharide species and monosaccharide  

content [35]. Lo et al. reported that arabinose, mannose, xylose and galactose played an important role 

in the stimulation of macrophage from Lentinula edodes polysaccharides, but not glucose [36]. In 

addition, mannose played a key role in the immunomodulatory activity of polysaccharide from Longan 

pulp [28]. The better activities of LPD might be partly related to its monosaccharide proportion and 

chemical compositions. 

3. Experimental 

3.1. Materials and Chemicals 

3.1.1. Chemicals and Reagents 

Standard dextrans, rhamnose (Rha), arabinose (Ara), glucose (Glc), xylose (Xyl), galactose (Gal), 

mannose (Man), penicillin–streptomycin solution, concanavalin A (ConA), lipopolysaccharide (LPS) 

and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma 

Chemical Co. (St. Louis, MO, USA). RPMI-1640 medium, new bovine calf serum and Hank’s 

balanced salt solution (HBSS) were purchased from Gibco Life Technologies (Grand Island, NY, 

USA). Other regents were analytical grade. 

3.1.2. Cells and Animals 

Human hepatocellular carcinoma cell line, HepG2; Human uterine cervix carcinoma cell line, Hela; 

Human lung adenocarcinoma epithelial cell line, A549; YAC-1 mice lymphoma cell line and 

RAW264.7 mice macrophage cell line were purchased from the Experimental Animal Laboratory of 

Sun Yat-Sen University (Guangzhou, China). Cells were cultured in RPMI-1640 medium containing 

10% fetal calf serum, 100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C and 5% CO2. 

BALB/c mice (male, 20.0 ± 2.0 g), 6–8 w old were provided by the Experimental Animal Laboratory 

of Sun Yat-Sen University. The mice were acclimatized for 1 w before being used for the study. All 

the treatments to animals were performed in accordance with the Guide for the Care and Use of 

Laboratory Animals. 

3.1.3. Preparation of Litchi Fruit 

Fresh fruits of litchi (cv. Gui-wei) were offered by Pomology Research Institute of Guangdong 

Academy of Agricultural Sciences (Guangzhou, China). Ripened fruits were selected based on their 

uniform size and lack of visual defects. Some of the litchi fruits were dried by intermittent hot air drying 

with 2.0 m/s flow velocity at 70 °C for 72 h. The intermittent time was 12 h for rewetting, and 12 h for 

drying time. Dried litchis were peeled and the pulp portion was kept in sealed polyethylene bags at  

−20 °C for further use. The leftover litchi was used as the fresh fruit for the polysaccharide extraction. 
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3.2. Preparation of Crude Litchi Pulp Polysaccharides 

Fresh and dried pulp were cut into small pieces and soaked in 80% ethanol (final concentration in 

the system) at 4 °C for 24 h, to remove the pigments, monosaccharides and oligosaccharides. After 

filtration through a Whatman No. 1 paper, the residues were homogenized and then extracted twice 

with distilled water (1:20, g/mL) at 85 °C for 4 h. The water extracts were filtered, and concentrated to 

one-fifth of the initial volume in a vacuum evaporator (Eyela, Tokyo, Japan) at 55 °C. The proteins in 

the extracts were removed using the Sevag reagent [37], and then the polysaccharides were 

precipitated with four volumes of absolute ethanol for 24 h at 4 °C. The precipitates were collected by 

centrifugation at 3000 g for 20 min, and washed successively with acetone and petroleum ether. Then 

the precipitates were lyophilized to obtain fresh and dried litchi pulp polysaccharides, named as LPF 

and LPD, respectively. The litchi polysaccharides were kept in desiccator at room temperature for 

further use. 

3.3. Preliminary Characterization of Litchi Polysaccharides 

3.3.1. Analysis of the Chemical Characteristics of Litchi Polysaccharides 

Neutral sugar content was determined by the phenol-sulfuric method using glucose as the  

standard [38]. The protein content was measured according to Bradford’s method with a standard 

curve using bovine serum albumin (BSA) [39]. The uronic acid content was determined by the  

m-hydroxydiphenyl method with D-glucuronic acid as the standard [40]. 

The monosaccharide composition of the litchi polysaccharides were determined by GC-MS. 

Briefly, polysaccharide samples (40 mg) were dissolved in 2 mol/L H2SO4 (10 mL) and hydrolyzed at 

100 °C for 6 h. After neutralizing the residual acid with BaCO3, the hydrolysate was filtered through 

0.2 μm syringe filters (Whatman, Sanford, ME, UK) and dried under a stream of N2, then dissolved in 

pyridine (5 mL) with hydroxylamine (70 mg) at 90 °C for 30 min. The samples were cooled and acetic 

anhydride (1 mL) was added and the mixture was incubated at 90 °C for 30 min. The acetylated 

hydrolysate was extracted by trichloromethane, following by evaporation under a stream of N2. The 

final product was analyzed by GC-MS, using an Agilent 6890 GC instrument (Agilent Technologies 

Co., Ltd., Colorado Springs, CO, USA) equipped with a DB-1 column and an Agilent 5973 MS 

detector. Six monosaccharides (arabinose, mannose, rhamnose, galactose, xylose, and glucose) were 

used as the external standards to identify the composition of the polysaccharides. 

3.3.2. Determination of Molecular Weights of Litchi Polysaccharides 

The average molecular weights of the litchi polysaccharides were determined by gel permeation 

chromatography (GPC), which was performed on a Sephacryl S-300HR column (1.6 × 70 cm). 

Standard dextran including T-4 (molecular mass, 4 × 103 Da), T-10 (1 × 104 Da), T-40 (4 × 104 Da),  

T-70 (7 × 104 Da), T-500 (5 × 105 Da), and T-2000 (2 × 106 Da) were used as molecular mass markers. 
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3.3.3. UV and IR Spectra Analysis 

-Elimination reaction: The samples were dissolved in distilled water and forced through a  

0.45 μm filter membrane to obtain a 1 mg/mL polysaccharide solution. The solution was mixed with 

an equal volume of distilled water or 0.4 mol/L NaOH. After 1.5 h incubation at 45 °C, the mixture 

was then scanned in the wavelength range of 190–400 nm using a UV spectrophotometer (UV 1800, 

Shimadzu, Kyoto, Japan). 

Infrared spectral: The IR spectra of the polysaccharides were determined using a Fourier-transform 

infrared spectrophotometer (FTIR) (Nexus 5DXC FT-IR, Thermo Nicolet, Austin, TX, USA). The 

samples were mixed with potassium bromide (KBr) powder and then pressed into 1 mm thick pellets 

for FTIR measurement in the frequency range of 4,000–400 cm−1. 

3.4. In Vitro Inhibition Assay of Tumor Cells Proliferation of Litchi Polysaccharides 

3.4.1. Cytotoxicity Assay of Tumor Cells 

The cytotoxicity of litchi polysaccharides was measured by using a methylene blue assay  

method [41]. Briefly, when each cancer cell line was adjusted to an appropriate level, 100 μL of a cell 

suspension (HepG2: 4 × 104 cells/mL; Hela: 4 × 104 cells/mL; A549: 6 × 104 cells/mL), was plated in 

96-well plates. Cells were left for 6 h to attach, and medium was replaced with litchi polysaccharides 

which were dissolved in RPMI-1640 medium, and cells were kept at 37 °C in 5% CO2 for another  

24 h. Then, the medium was aspirated and each well was gently rinsed with phosphate-buffered saline 

(PBS) twice. Cells were stained and fixed by adding 50 μL methylene blue solution (HBSS + 1.25% 

glutaraldehyde + 0.6% methylene blue) to each well. After 1 h incubation, plates were rinsed by gently 

submerging in distilled water six times. Plates were drained and air-dried before addition of 100 μL 

elution solution (50% ethanol + 49% PBS + 1% acetic acid) to each well and homogenized for 15 min 

to fully dissolve the stained materials. The plates were read using a microplate reader at 570 nm. 

3.4.2. Inhibition Assay of Tumor Cells Proliferation 

The inhibition effects of the polysaccharides on the growth of tumor cells were evaluated by a 

methylene blue method described previously. HepG2, Hela and A549 cells were plated at the density 

of 2 × 104 cells/mL, 2 × 104 cells/mL and 4 × 104 cells/mL, respectively, in 96-well plates and left for 

6 h to attach. Then, litchi polysaccharides containing medium was added to replace the old medium at 

final concentrations of 50, 150, 300, 450, 600, and 750 μg/mL. After 72 h of incubation, cells were 

stained with methylene blue solution for 1 h. Cells were then rinsed with water and dried. Methylene 

blue stain was eluted with the elution solution by agitating plates at room temperature for 1 h. The 

absorbance was measured at 570 nm by a microplate reader (Thermo Labsystems, Helsinki, Finland). 

The inhibition rate (%) was calculated as: (1 − ODs/ODc) × 100, where ODs and ODc represented the 

OD value of the samples and control group, respectively. 
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3.5. In Vitro Immunostimulatory Activity Assay of Litchi Polysaccharides 

3.5.1. Determination of Mouse Splenocyte Proliferation 

The splenocyte proliferation assay was performed according to a reported method [28]. Briefly, the 

male BALB/c mice were sacrificed by cervical dislocation and their spleens were removed aseptically 

and minced in PBS. The splenic cells were obtained through sterilized meshes (200 mesh) at room 

temperature. After lysing red blood cells with hemolytic Gey’s solution, the remaining cells were 

washed twice and resuspended in RPMI 1640 complete medium. The overall cell viability was greater 

than 95% and was determined using the trypan-blue dye exclusion technique.  

One hundred microliters of splenic cell suspension was seeded in 96-well plates at 5 × 106 cells/mL 

with litchi polysaccharides containing medium at final concentrations of 0, 50, 100, 200 and 400 μg/mL. 

The cells were cultured at 37 °C and 5% CO2 with or without 5 μg/mL ConA or 10 μg/mL LPS for  

68 h. Then, MTT (20 μL, 5 mg/mL) was added to each well. After a further 4 h of incubation,  

100 μL acidified isopropyl alcohol was added to dissolve the formazan crystals for 12 h at 37 °C. The 

plates were finally read at 570 nm in a microplate reader. The proliferation indexes (%) of splenocyte 

were calculated as: (ODs/ODc − 1) × 100, where ODs and ODc represented the OD value of the 

samples and control group, respectively. 

3.5.2. Cytotoxicity Assay of Natural Killer Cells 

Splenocytes were prepared as the effector cells for a splenic natural killer (NK) activity assay  

as described by Yi et al. [42]. The splenocytes were plated into 96-well plates at a density of  

1 × 107 cells/mL per well in a 50 μL volume, and stimulated with 40 μL different concentrations of 

litchi polysaccharides (ultimate concentration: 0, 50, 100, 200, 400 μg/mL) for 24 h, with twelve 

replicate wells employed for each concentration. Then, YAC-1 cells (10 μL, 1 × 106 cells/mL) were 

added into six wells as the experimental group and complete medium was placed in the other six wells 

of the twelve replicate wells as the effector control. At the same time, complete medium (100 μL), 

containing YAC-1 cells (10 μL, 1 × 106 cells/mL) was added into empty wells as the target control. 

The plates were incubated for 4 h, followed by another 4 h with MTT (20 μL, 5 mg/mL). Then, 

acidified isopropyl alcohol (100 μL) was added to each well followed by a 12 h incubation. The 

absorbance was measured at 570 nm using a microplate reader. Cytotoxicity of NK cell was expressed 

as percent lysis of target cells: [ODT − (ODexp − ODE)]/ODT × 100, where ODT, ODexp and ODE 

represented the OD value of the target control, experimental group and effector control group, respectively. 

3.5.3. Assay of Phagocytosis of RAW264.7 Macrophages 

RAW264.7 macrophages (1 × 105 cells/well) were seeded in 96-well plates and allowed to adhere 

for 6 h. After removing the growth media from each well, different concentrations of litchi 

polysaccharides (0, 50, 100, 200, 400 μg/mL) prepared with culture medium, were added to each well 

in 100 μL and 10 μg/mL LPS was used as a positive control. After 24 h of incubation, the supernatant 

was removed and each well was gently rinsed with PBS twice. One hundred microliters of 0.075% 

neutral red solution was added to each well and the plates were cultured for a further 4 h. After washing 
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out unphagocytized neutral red with PBS, cell lysis buffer (100 μL, acetic acid/ethanol = 1:1, mL/mL) 

was added to each well for 12 h. The OD value of each well was measured at 570 nm. The 

phagocytosis index (%) was calculated as: (ODS/ODC − 1) × 100, where ODS and ODC represented the 

OD values of the stimulated group and control group, respectively.  

3.6. Statistical Analysis 

Data were expressed as the mean ± standard deviations (SD). The significance of the difference was 

evaluated with one-way ANOVA followed by the Student-Newman-Keuls test using SPSS 19.0 

software and a p-value of 0.05 was used as the threshold for significance. The statistically significant 

differences between the two groups were evaluated with an independent-sample T-test. 

4. Conclusions 

The drying process yielded polysaccharides with more uronic acid and protein as well as lower 

overall molecular weight than those obtained from fresh litchi. The monosaccharide molar ratio of LPF 

and LPD were significantly different. LPD showed relatively higher cytotoxic activity against three 

different tumor cell lines and in vitro immunomodulatory activity than LPF. Therefore, hot air drying 

can effectively change the chemical composition of litchi polysaccharides and improve their 

bioactivity. This finding supports the application of dried litchi pulp as a Traditional Chinese 

Medicine. Furthermore, the structural and bioactivity differences observed for polysaccharides 

obtained from dried litchi using different methods is an ongoing topic of research. 

Acknowledgments 

This work was supported by a Joint Fund of the NSFC and Guangdong Provincial Government 

(U1301211), a Special Prophase Project of The National Basic Research Program of China 

(2012CB722904), the International Science & Technology Cooperation Program of China 

(2012DFA31400) and the National “948” project (2012-S18). 

Author Contributions 

F. Huang and M.W. Zhang conceived of this study and designed the experiments. R.F. Zhang,  

F. Huang and Y. Yang, performed the experiments. All the authors analyzed the data and discussed the 

results. F. Huang and R.F. Zhang drafted the manuscript with the help of M.W. Zhang. All the authors 

have read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Kong, F.; Zhang, M.; Liao, S.; Yu, S.; Chi, J.; Wei, Z. Antioxidant activity of polysaccharide-enriched 

fractions extracted from pulp tissue of Litchi Chinensis sonn. Molecules 2010, 15, 2152–2165. 



Molecules 2014, 19 3923 

 

 

2. Jiang, G.; Lin, S.; Wen, L.; Jiang, Y.; Zhao, M.; Chen, F.; Prasad, K.N.; Duan, X.; Yang, B. 

Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and 

bioactivity evaluation. Food Chem. 2013, 136, 563–568. 

3. Zhou, Y.; Wang, H.; Yang, R.; Huang, H.; Sun, Y.; Shen, Y.; Lei, H.; Gao, H. Effects of Litchi 

chinensis fruit isolates on prostaglandin E(2) and nitric oxide production in J774 murine 

macrophage cells. BMC Complement. Altern. Med. 2012, 12, doi:10.1186/1472-6882-12-12. 

4. Wang, X.; Wei, Y.; Yuan, S.; Liu, G.; Zhang, Y.L.J.; Wang, W. Potential anticancer activity of 

litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett. 

2006, 239, 144–150. 

5. Bhoopat, L.; Srichairatanakool, S.; Kanjanapothi, D.; Taesotikul, T.; Thananchai, H.; Bhoopat, T. 

Hepatoprotective effects of lychee (Litchi chinensis Sonn.): A combination of antioxidant and  

anti-apoptotic activities. J. Ethnopharmacol. 2011, 136, 55–66. 

6. Zhao, M.; Yang, B.; Wang, J.; Liu, Y.; Yu, L.; Jiang, Y. Immunomodulatory and anticancer 

activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int. Immunopharmacol. 

2007, 7, 162–166. 

7. Hu, X.Q.; Huang, Y.Y.; Dong, Q.F.; Song, L.Y.; Yuan, F.; Yu, R.M. Structure characterization 

and antioxidant activity of a novel polysaccharide isolated from pulp tissues of Litchi chinensis.  

J. Agric. Food Chem. 2011, 59, 11548–11552. 

8. Garau, M.C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of air-drying temperature on  

physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium 

v. Canoneta) by-products. Food Chem. 2007, 104, 1014–1024. 

9. Chang, C.-H.; Lin, H.-Y.; Chang, C.-Y.; Liu, Y.-C. Comparisons on the antioxidant properties of 

fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485.  

10. Ferreira, D.; Barros, A.; Coimbra, M.; Delgadillo, I. Use of FT-IR spectroscopy to follow the 

effect of processing in cell wall polysaccharide extracts of a sun-dried pear. Carbohydr. Polym. 

2001, 45, 175–182. 

11. Ali Asgar, M. Structural features of pectins from fresh and sun-dried Japanese persimmon fruit. 

Food Chem. 2004, 87, 247–251. 

12. Thetsrimuang, C.; Khammuang, S.; Chiablaem, K.; Srisomsap, C.; Sarnthima, R. Antioxidant 

properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem. 

2011, 128, 634–639. 

13. Ma, L.; Chen, H.; Zhu, W.; Wang, Z. Effect of different drying methods on physicochemical 

properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus 

obliquus. Food Res. Int. 2013, 50, 2152–2165. 

14. Kong, F.-L.; Zhang, M.-W.; Kuang, R.-B.; Yu, S.-J.; Chi, J.-W.; Wei, Z.-C. Antioxidant activities 

of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). 

Carbohydr. Polym. 2010, 81, 612–616. 

15. Jing, Y.; Huang, L.; Lv, W.; Tong, H.; Song, L.; Hu, X.; Yu, R. Structure Characterization of a 

Novel Polysaccharide from Pulp Tissues of Litchi chinensis and its Immunomodulatory Activity. 

J. Agric. Food Chem. 2013, 62, 902–911. 



Molecules 2014, 19 3924 

 

 

16. Ducel, V.; Saulnier, P.; Richard, J.; Boury, F. Plant protein-polysaccharide interactions in 

solutions: Application of soft particle analysis and light scattering measurements. Colloids Surf. 

2005, 41, 95–102. 

17. Satitmanwiwat, S.; Ratanakhanokchai, K.; Laohakunjit, N.; Chao, L.K.; Chen, S.T.; Pason, P.; 

Tachaapaikoon, C.; Kyu, K.L. Improved purity and immunostimulatory activity of beta-(1–>3) 

(1–>6)-glucan from Pleurotus sajor-caju using cell wall-degrading enzymes. J. Agric. Food Chem. 

2012, 60, 5423–5430. 

18. Zhang, N.; Chen, H.; Ma, L.; Zhang, Y. Physical modifications of polysaccharide from Inonotus 

obliquus and the antioxidant properties. Int. J. Biol. Macromol. 2013, 54, 209–215. 

19. Mirhosseini, H.; Amid, B.T.; Cheong, K.W. Effect of different drying methods on chemical and 

molecular structure of heteropolysaccharide–protein gum from durian seed. Food Hydrocolloids 

2013, 31, 210–219. 

20. Asgar, M.A.; Yamauchi, R.; Kato, K. Modification of pectin in Japanese persimmon fruit during 

the sun-drying process. Food Chem. 2003, 81, 555–560. 

21. Doublier, J.-L.; Garnier, C.; Renard, D.; Sanchez, C. Protein–polysaccharide interactions.  

Curr. Opin. Colloid Interface Sci. 2000, 5, 202–214. 

22. Zhang, W. Biochemical Technology of Carbohydrate Complexes; Zhejiang University Press: 

Hangzhou, China, 1994. 

23. Tian, L.; Zhao, Y.; Guo, C.; Yang, X. A comparative study on the antioxidant activities of an 

acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata. 

Carbohydr. Polym. 2011, 83, 537–544. 

24. Xin, T.; Zhang, F.; Jiang, Q.; Chen, C.; Huang, D.; Lv, Y.; Shen, W.; Jin, Y. Purification and 

antitumor activity of two acidic polysaccharides from the roots of Polygala tenuifolia. Carbohydr. 

Polym. 2012, 90, 1671–1676. 

25. Ouchi, T.; Matsumoto, M.; Ihara, K.; Ohya, Y. Synthesis and cytotoxic activity of oxidized 

galactomannan/ADR conjugate. J. Macromol. Sci. Part A Pure Appl. Chem. 1997, 34, 975–989. 

26. Zhang, D.; Li, S.; Xiong, Q.; Jiang, C.; Lai, X. Extraction, characterization and biological 

activities of polysaccharides from Amomum villosum. Carbohydr. Polym. 2013, 95, 114–122. 

27. Zeng, G.; Ju, Y.; Shen, H.; Zhou, N.; Huang, L. Immunopontentiating activities of the purified 

polysaccharide from evening primrose in H22 tumor-bearing mice. Int. J. Biol Macromol. 2013, 

52, 280–285. 

28. Yi, Y.; Liao, S.T.; Zhang, M.W.; Shi, J.; Zhang, R.F.; Deng, Y.Y.; Wei, Z.C. Physicochemical 

characteristics and immunomodulatory activities of three polysaccharide-protein complexes of 

longan pulp. Molecules 2011, 16, 6148–6164. 

29. Iribe, H.; Koga, T. Augmentation of the proliferative response of thymocytes to phytohemagglutinin 

by the muramyl dipeptide. Cell Immunol. 1984, 88, 9–15. 

30. Kuang, H.; Xia, Y.; Yang, B.; Wang, Q.; Wang, Y. Screening and comparison of the 

immunosuppressive activities of polysaccharides from the stems of Ephedra sinica Stapf. 

Carbohydr. Polym. 2011, 83, 787–795. 

31. Zhang, C.; Huang, K. Characteristic immunostimulation by MAP, a polysaccharide isolated from 

the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr. Polym. 2005, 59, 75–82. 



Molecules 2014, 19 3925 

 

 

32. Lin, K.-I.; Kao, Y.-Y.; Kuo, H.-K.; Yang, W.-B.; Chou, A.; Lin, H.-H.; Alice, L.Y.; Wong, C.-H. 

Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated 

induction of transcription factor Blimp-1. J. Biol. Chem. 2006, 281, 24111–24123. 

33. Sun, Y.; Sun, T.; Wang, F.; Zhang, J.; Li, C.; Chen, X.; Li, Q.; Sun, S. A polysaccharide from the 

fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr. Polym. 

2013, 92, 577–582. 

34. Sun, Y.; Liang, H.; Zhang, X.; Tong, H.; Liu, J. Structural elucidation and immunological activity 

of a polysaccharide from the fruiting body of Armillaria mellea. Bioresour. Technol. 2009, 100, 

1860–1863. 

35. Kralovec, J.; Metera, K.; Kumar, J.; Watson, L.; Girouard, G.; Guan, Y.; Carr, R.; Barrow, C.; 

Ewart, H. Immunostimulatory principles from Chlorella p yrenoidosa—Part 1: Isolation and 

biological assessment in vitro. Phytomedicine 2007, 14, 57–64. 

36. Lo, T.C.; Jiang, Y.H.; Chao, A.L.; Chang, C.A. Use of statistical methods to find the 

polysaccharide structural characteristics and the relationships between monosaccharide 

composition ratio and macrophage stimulatory activity of regionally different strains of Lentinula 

edodes. Anal. Chim. Acta 2007, 584, 50–56. 

37. Sevag, M.; Lackman, D.B.; Smolens, J. The isolation of the components of streptococcal 

nucleoproteins in serologically active form. J. Biol. Chem. 1938, 1938, 425–436. 

38. Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.; Smith, F. Colorimetric method for 

determination of sugars and related substances. Anal. Chem. 1956, 3, 350–356. 

39. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of 

protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. 

40. Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. 

Anal. Biochem. 1973, 54, 484–489. 

41. Felice, D.L.; Sun, J.; Liu, R.H. A modified methylene blue assay for accurate cell counting.  

J. Funct. Foods 2009, 1, 109–118. 

42. Yi, Y.; Zhang, M.-W.; Liao, S.-T.; Zhang, R.-F.; Deng, Y.-Y.; Wei, Z.-C.; Tang, X.-J.; Zhang, Y. 

Structural features and immunomodulatory activities of polysaccharides of longan pulp. 

Carbohydr. Polym. 2012, 87, 636–643. 

Sample Availability: Samples of polysaccharides are available from the authors. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


