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Alzheimer’s disease (AD) affects half the US population over the age of 85 and is universally fatal following
an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association
studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these
risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful
prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale
matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD.
Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing
and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired
(MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous
quality control. Both the raw and processed data are publicly available through the Synapse software
platform.

Design Type(s) database creation objective • disease analysis objective

Measurement Type(s)
RNA sequence • whole exome sequencing • protein expression profiling •
whole genome sequencing

Technology Type(s) RNA sequencing • DNA sequencing • mass spectrometry assay
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Background & Summary
Alzheimer’s disease (AD) affects half the US population over the age of 85 and is universally fatal
following an average course of 10 years of progressive cognitive disability1. The certain cause of AD is
known for 1-3% of early onset disease, which is autosomal dominant and 100% penetrant.
Apolipoprotein E ε4 (APOE ε4) is a risk gene in 30% of common, late-onset AD (LOAD), but the
mechanism linking APOE ε4 to increased AD risk remains elusive2. Conventional genetic and genome-
wide association studies (GWAS) have revealed additional loci associated with LOAD, the most recent of
which is TREM2 (refs 3–7). However, the current set of established LOAD risk loci are not informative
for individual risk of developing LOAD and fail to provide actionable insights for therapeutics. Molecular
profiling including whole genome, exome and RNA sequencing are key technologies that hold promise
for identifying functional pathways and key targets in AD8. In this study, we generated whole genome
sequencing, whole exome sequencing, RNA-sequencing and proteome profiling data from multiple
regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and
pathophysiological data. All the data went through rigorous quality control. Both the raw and processed
data are publicly available through the Synapse software platform.

Methods
MSBB AD study population
364 human brains were accessed from the Mount Sinai/JJ Peters VA Medical Center Brain Bank
(MSBB–Mount Sinai NIH Neurobiobank) cohort, which holds over 2,040 well-characterized brains. This
cohort was assembled after applying stringent inclusion/exclusion criteria and represents the full
spectrum of cognitive and neuropathological disease severity in the absence of discernable non-AD
neuropathology. All neuropsychological, diagnostic and autopsy protocols were approved by the Mount
Sinai and JJ Peters VA Medical Center Institutional Review Boards. Neuropathological assessments,
cognitive, and medical and neurological status determinations were performed according to previously
published procedures as described in detail9. Briefly, for each sample, neuropathological assessments was
performed according to the Consortium to Establish a Registry for Alzheimer's Disease (CERAD)
protocol10 and included assessment by hematoxylin and eosin, modified Bielschowski, modified
thioflavin S, and anti-β amyloid (4G8), anti-tau (AD2) and anti-ubiquitin (Dakoa Corp.). A Braak AD-
staging score for progression of neurofibrillary neuropathology11,12 was assigned to each case.
Quantitative data regarding the mean of the density of neuritic plaques in the middle frontal gyrus,
orbital frontal cortex, superior temporal gyrus, inferior parietal cortex and calcarine cortex were also
collected as described9. Clinical dementia rating scale (CDR)13 was conducted for assessment of dementia
and cognitive status. Ages for the samples were defined as Age at the time Of Death (AOD). AOD of the
present population ranged 61–108, with a mean and standard deviation (s.d.) of 84.7± 9.7. Table 1
tabulates a summary of the demographic information of the present study population, including sex,
AOD, mean plaque density, and Braak score, stratified by CDR score, while Fig. 1 illustrates the
distribution of cognitive and neuropathological characteristics grouped by CERAD neuropathological
category. There were 238 female and 126 male samples. Note that the majority (301) of the samples were
of European ancestry, while 36 were African American, 25 were Latino, one was Asian, and one was
unknown for race. The link to the complete demographic information of the present MSBB AD study
population is provided (Data Citation 1 & Data Citation 2).

Human brain tissue preparation
Four specific brain regions, Brodmann areas14, were selected for molecular profiling primarily based on
our recent study of microarray profiling of 19 brain regions in AD15. In that study, we systematically
investigated the regional vulnerability to AD at the molecular level by evaluating region-specific
expression changes associated with cognitive/neuropathological traits and then rank ordered the 19 brain
regions accordingly. The parahippocampal gyrus (Brodmann area 36-BM36) and the inferior frontal
gyrus (BM44) were the top two most vulnerable regions and thus were selected for this study. We also
chose the superior temporal gyrus (Brodmann area 22-BM22, ranked as the 7th most vulnerable region)
and the frontal pole (Brodmann area 10-BM10, ranked as the 14th) as contrast for studying the selective
regional vulnerability to AD.

These four brain regions were dissected while frozen from fresh frozen, never-thawed ~8 mm thick
coronal tissue blocks using a dry ice cooled reciprocating saw. The dissected regions were then pulverized
to a fine powder consistency in liquid nitrogen cooled mortar and pestle and distributed into 50 mg
aliquots. All aliquots were barcoded and stored at −80 oC until DNA, RNA or protein isolation.

MSBB AD RNA-seq data collection and processing
RNA extraction. Total RNA were isolated from brain tissues using RNeasy Lipid Tissue Mini Kit from
Qiagen (cat#74804) according to the manufacturer's protocol (The RNeasy Lipid Tissue Mini Kit
Handbook, Qiagen 104945, 02/2009) with these modifications: 1) all brain tissues (pulverized) were kept
on dry ice before adding QIAzol Lysis Reagent, 2) tissues were suspended in the lysis reagent by vortexing
with tubes placed on ice, and 3) the tissues were homogenized using a Tissue Ruptor (Qiagen, cat# 79656)
at full speed for 20–30 s.
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RNA-seq protocol. RNA-Seq library preparation was performed using the TruSeq RNA Sample
Preparation Kit v2 (Illumina, San Diego, CA). Briefly, rRNA was depleted from total RNA using the
Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illumina, San Diego, CA) to enrich for coding RNA
and long non-coding RNA. cDNA was synthesized using random hexamers, end-repaired and ligated
with appropriate adaptors for sequencing. The library then underwent size selection and purification
using AMPure XP beads (Beckman Coulter, Brea, CA). The appropriate Illumina recommended 6-bp
bar-code bases are introduced at one end of the adaptors during PCR amplification. The size and
concentration of the RNAseq libraries was measured by Bioanalyzer (Agilent, Santa Clara, CA) and Qubit
fluorometry (Life Technologies, Grand Island, NY) before loading onto the sequencer. The Ribo-Zero

CDR Total size Female/Male Age of death Mean plaque density Braak score

0 44 32/12 82.4± 9.4 2.1± 2.9 2.1± 1.3

0.5 47 24/23 81.7± 11.4 3.2± 5.2 2.3± 1.5

1 38 26/12 84.9± 10.6 6.3± 6.3 3± 1.8

2 49 31/18 86.5± 7.7 9± 8.5 4.5± 1.7

3 78 56/22 86.4± 8.5 9.8± 7.8 4.7± 1.5

4 47 30/17 87.7± 7.8 10.6± 7.7 4.6± 1.6

5 61 39/22 82.3± 10.8 18.6± 11.4 5.1± 1.3

Table 1. Demographics for the study population stratified by CDR.
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Figure 1. Cognitive and neuropathological trait phenotype distribution of the present study population.

(a) Bar-chart showing the number of female (F) and male (M) samples stratified by CERAD neuropathological

category. (b) boxplot showing distribution of mean of neuritic plaque density in cortical brain regions for each

class of CERAD neuropathological categories; c and d, bar-charts showing the number of samples with

different Braak score (c) or CDR (d) stratified by CERAD neuropathological category.
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libraries were sequenced on the Illumina HiSeq 2500 System with 100 nucleotide single end reads,
according to the standard manufacturer’s protocol (Illumina, San Diego, CA).

RNA-seq data processing. The raw sequence reads were aligned to human genome hg19 with the star
aligner (v2.3.0e). Following read alignment, featureCounts16 was used to quantify the gene expression at
the gene level based on Ensembl gene model GRCh37.70. The gene level read counts data were
normalized as counts per million (CPM) using the trimmed mean of M-values normalization (TMM)
method17 to adjust for sequencing library size difference. The RNA-seq alignment and expression
quantification matrices are available (Data Citation 3).

We also called variants in RNA-seq data by following the GATK Best Practices for variant calling on
RNA-seq v3.0 (https://gatkforums.broadinstitute.org/gatk/discussion/3891/calling-variants-in-rnaseq).
Starting from star aligned bam files, Picard tools were used for adding read group information, sorting,
marking duplicates and indexing. Next, GATK tool SplitNCigarReads was applied to split reads into exon
segments and trim any sequences overhanging into the intronic regions. Then GATK base-quality score
recalibration (BQSR) was called to detect systematic errors caused by the sequencer and subsequently
adjust the base quality score. After recalibration, single nucleotide polymorphisms (SNPs) and insert/
deletions (INDELs) were called jointly with the GATK HaplotypeCaller. Lastly, a series of hard filters
were applied to remove low quality variant sites using recommended parameters, including filtering
clusters of at least 3 SNPs within a window of 35, Fisher Strand values (FS)>30.0, or Qual By Depth
values (QD)o2.0.

MSBB AD DNA whole exome sequencing (WES) and whole genome sequencing (WGS)
DNA isolation. DNA was isolated from 50mg of frozen, never-thawed grey matter dissected from the
frontal cortex (BM10) or superior temporal gyrus (BM22). Specimens were homogenized in 300 μl of
elution buffer, and DNA was isolated using a Promega Maxwell 16 semi-automated system using the
Promega Maxwell 16 Tissue DNA Purification Kit according to the manufacturer’s instructions. DNA
quality and yield were assessed using an Agilent 4200 Tape Station.

WES protocol. Genomic DNA samples were sheared into small DNA fragments and libraries were
prepared with Illumina compatible adapters and indices. Biotinylated cRNA baits were incubated with
the library for 16 h and then targeted regions were selected using magnetic streptavidin beads according
to Agilent SureSelect human all exon V5 kit sample preparation protocol. Targeted regions were
amplified, producing an exome enriched library. The sequence ready libraries were loaded onto Illumina
HiSeq 2500 System with 125 bp paired-end sequencing on V4 flow cell. Three samples were pooled per
sequencing lane, aiming for 80X mean coverage per sample.

WES variants calling. The raw sequence reads were aligned to targeted exome regions on human
genome hg19 with the BWA mem aligner. Then the sequence variants were called using the DNAseq
Variant Analysis workflow of GATK Best Practices version 3, including insertion/deletion (INDEL)
realignment, de-duplication, and base-quality score recalibration (BQSR). SNPs and INDELs were called
jointly with the GATK HaplotypeCaller. GATK Variant Quality Score Recalibration (VQSR) was used to
estimate the probability that a variant is a true genetic variant rather than a sequencing or data processing
artifact. The SNP VQSR model was trained using HapMap3.3, 1KG Omni 2.5, 1KG phase1 high
confidence, and dbsnp138 SNP sites, while Mills et. al. 1KG gold standard and dbsnp 138 sites were used
for training INDELs model. After VQSR recalibration, a 99% sensitivity threshold was applied to filter
variants by the GATK ApplyRecalibration tool. The WES alignment files and the resulting genetic
variants are included (Data Citation 4).

WGS protocol. Whole genome sequencing (WGS) libraries were prepared at the New York Genome
Center (NYGC) using the KAPA Hyper Library Preparation Kit (PCR-free) in accordance with the
manufacturer’s instructions. Briefly, 650 ng of DNA was sheared using a Covaris LE220 sonicator
(adaptive focused acoustics). DNA fragments underwent bead-based size selection and were subsequently
end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final libraries were evaluated
using fluorescent-based assays including qPCR with the Universal KAPA Library Quantification Kit and
Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an
Illumina HiSeq X sequencer (v2.5 chemistry) using 2 × 150bp cycles.

WGS variants calling. Paired-end 150 bp reads were aligned to the GRCh37 human reference using the
Burrows-Wheeler Aligner (BWA-MEM v0.7.8) and processed using the GATK best-practices workflow
that includes marking of duplicate reads using Picard tools v1.83, local realignment around indels, and
base quality score recalibration (BQSR) via Genome Analysis Toolkit (GATK v3.4.0). Variant discovery
was run using a two-step process. HaplotypeCaller was run on each sample individually in gVCF mode
(GATKv3.4.0) producing an intermediate file format called gVCF (genomic Variant Call Format). gVCFs
were combined by batches into merged gVCFs and run through a joint genotyping step (GATK v3.2.2) to
produce a multi-sample VCF. Variant filtration was then performed using Variant Quality Score
Recalibration (VQSR). VQSR identifies annotation profiles of variants that are likely to be real and assigns
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a score (VQSOD) to each variant. Variant effects annotation was then performed using SnpEff18, bcftools
and in-house software. Other functional annotations include variant frequencies in different populations
from 1000 Genomes project19, Exome Aggregation Consortium–ExAC, dbSNP 13820; cross-species
conservation scores from PhyloP21, Genomic Evolutionary Rate Profiling (GERP)22, PhastCons23; functional

Group Total AD MCI Control Unclassified

Sample number 349 258 43 40 8

Total raw bases (Gb) 47,234.85 35,000.30 5,781.90 5,344.65 1,108.00

Total mapped bases (Gb) 46,905.02 34,759.08 5,738.92 5,306.18 1,100.84

Mean raw bases per individual (Gb) 135.34 135.66 134.46 133.62 138.5

Mean mapped bases per individual (Gb) 134.4 134.73 133.46 132.65 137.61

Mean mapped depth (X) 42.56 42.67 42.26 42 43.58

breadth of coverage (% of genome) 91.91 91.902 92.02 91.85 91.92

Mean read length 151 151 151 151 151

No. of SNPs 32,452,033 28,279,155 17,291,042 15,350,134 7,854,397

bi-allelic 31,714,836 27,648,823 16,979,800 15,081,052 7,773,748

multi-allelic 737,197 630,332 311,242 269,082 80,649

Mean variant SNP sites per individual 4,138,872 4,126,627 4,225,036 4,138,235 4,053,271

Ti/Tv ratio 2.08 2.08 2.08 2.08 2.08

Indels 5,339,491 4,621,397 2,569,428 2,225,159 936,046

Mean variant Indel sites per individual 264,136 262,706 273,735 265,023 254,236

3-prime UTR variant 226,130 193,011 112,299 98,632 48,104

5-prime UTR premature start codon gain variant 8,201 6,917 3,785 3,303 1,508

5-prime UTR variant 43,102 36,417 20,741 18,279 8,727

initiator codon variant 26 20 10 13 6

intergenic region 12,968,846 11,190,326 6,909,837 6,158,825 3,186,627

intragenic variant 1,720,234 1,479,298 905,608 803,650 408,297

intron variant 12,273,865 10,521,791 6,335,143 5,592,120 2,802,259

missense variant 151,628 127,117 65,494 58,348 26,720

missense variant&splice region variant 3,525 2,919 1,467 1,286 564

non coding exon variant 140,928 123,097 77,928 69,429 37,377

protein protein contact 811 674 304 252 92

splice acceptor variant&intron variant 1,178 990 521 466 246

splice acceptor variant&splice donor variant&intron variant 15 9 7 5 4

splice acceptor variant&splice region variant&intron variant 11 8 6 3 1

splice donor variant&intron variant 1,622 1,383 771 689 355

splice donor variant&splice region variant&intron variant 9 5 3 2 0

splice region variant 995 853 505 441 205

splice region variant&intron variant 22,085 18,973 11,190 9,943 4,915

splice region variant&non coding exon variant 4,027 3,506 2,163 1,976 1,029

splice region variant&stop retained variant 6 5 2 3 1

splice region variant&synonymous variant 2,729 2,342 1,314 1,173 572

start lost 231 197 92 81 33

start lost&splice region variant 7 5 2 1 0

stop gained 2,595 2,165 911 787 340

stop gained&splice region variant 73 57 24 21 7

stop lost 158 137 84 74 46

stop lost&splice region variant 20 19 13 13 8

stop retained variant 80 70 47 42 32

synonymous variant 115,128 99,186 57,983 51,292 25,120

upstream gene variant 2,991,606 2,576,772 1,586,065 1,410,548 733,828

downstream gene variant 2,395,694 2,062,423 1,268,135 1,127,516 583,990

Table 2. Summary of the whole genome sequencing data.
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prediction scores from Polyphen224 and SIFT25; variant disease associations from OMIM, Clinvar; regulatory
annotations from ENCODE26, Regulome27, KEGG pathway annotations28; and gene ontology annotations
for biological process, cellular component, molecular function29. Variants and annotations were exported to
tabular formats for the ease of downstream analysis. Additional filtration based on functional annotation was
applied to extract variants with predicted effects on protein coding. The WGS alignment files together with
the genetic variants calling and annotation are included (Data Citation 5).

MSBB AD Proteomics
Tissue homogenization. Tissue samples dissected from the frontal pole (Brodmann area 10–BM10)
were processed as described in ref. 30 with only minor modifications. The homogenized samples were
treated with 500 μ L of urea lysis buffer (8M urea, 100 mM NaHPO4, pH 8.5), including 5 μL (100x stock)
HALT protease and phosphatase inhibitor cocktail (Pierce). All homogenization was performed using a
Bullet Blender (Next Advance) according to manufacturer protocols. Tissue-derived powder was added to
urea lysis buffer in a 1.5 mL Rino tube (Next Advance) harboring 750 mg stainless steel beads (0.9–2 mm
in diameter) and blended twice for 5 min intervals in a cold room (4 °C). Protein supernatants were
transferred to 1.5 mL Eppendorf tubes and sonicated (Sonic Dismembrator, Fisher Scientific) 3 times for
5 s with 15 s intervals of rest at 30% amplitude to disrupt nucleic acids and subsequently vortexed.
Protein concentration was determined by the bicinchoninic acid (BCA) method, and samples were
frozen in aliquots at −80 °C. Each brain homogenate was analyzed by SDS-PAGE to assess for
protein integrity as described30. Protein homogenates (150 μ g) were diluted with 50 mM NH4HCO3 to
a final concentration of less than 2M urea and then treated with 1 mM dithiothreitol (DTT) at 25 °C for
30 min, followed by 5 mM iodoacetimide (IAA) at 25 °C for 30 min in the dark. Protein was digested with
1:100 (w/w) lysyl endopeptidase (Wako) at 25 °C for 2 h and further digested overnight with 1:50 (w/w)
trypsin (Promega) at 25 °C. Resulting peptides were desalted with a Sep-Pak C18 column (Waters)
and dried under vacuum.

LC-MS/MS analysis. Mass spectrometry analysis was performed and processed as described in ref. 30.
Peptides (2 μ g) from each individual case or batch standard (BMGIS; described below) were resuspended
in peptide loading buffer (0.1% formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile) containing 0.2
pmol of isotopically labeled peptide calibrants (Life Technologies, #88321). Peptide mixtures were
separated on a self-packed C18 (1.9 μm Dr. Maisch, Germany) fused silica column (25 cm× 75 μM
internal diameter (ID); New Objective, Woburn, MA) by a NanoAcquity UHPLC (Waters, Milford, FA)
and monitored on a Q-Exactive Plus mass spectrometer (ThermoFisher Scientific, San Jose, CA). Elution
was performed over a 120-minute gradient at a rate of 300 nl/min with buffer B ranging from 3 to 50%
(buffer A: 0.1% formic acid and 5% DMSO in water, buffer B: 0.1% formic and 5% DMSO in acetonitrile).
The mass spectrometer cycle was programmed to collect one full MS scan followed by 10 data dependent
MS/MS scans. The MS scans (300–1800 m/z range, 1,000,000 AGC, 150 ms maximum ion time) were
collected at a resolution of 70,000 at m/z 200 in profile mode and the MS/MS spectra (2 m/z isolation
width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion time) were acquired at a
resolution of 17,500 at m/z 200. Dynamic exclusion was set to exclude previous sequenced precursor ions
for 30 s within a 10 ppm window. Precursor ions with +1, and +6 or higher charge states were excluded
from sequencing. A total of 7 independent batches were analyzed consisting each of 38 individual cases
(randomized for age, gender, and clincopathological traits). Each batch also had the same 3 external
reference standards (BMGIS, an equal mixture of all batch1 samples). These standards were run in the
beginning, middle and end of each batch. From batch 7, a total of 18 individual samples and 1 BMGIS
were analyzed in technical replicate and was referred to as batch 8.

MaxQuant for label-free quantification. RAW data for the samples were analyzed using MaxQuant
v1.5.2.8 with Thermo Foundation 2.0 for RAW file reading capability. The search engine Andromeda,
integrated into MaxQuant31, was used to build and search a concatenated target-decoy Uniprot human
reference protein database (retrieved April 20, 2015; 90,411 target sequences), plus 245 contaminant
proteins from the common repository of adventitious proteins (cRAP) built into MaxQuant. Methionine
oxidation (+15.9949 Da), asparagine and glutamine deamidation (+0.9840 Da), and protein N-terminal
acetylation (+42.0106 Da) were variable modifications (up to 5 allowed per peptide); cysteine was
assigned a fixed carbamidomethyl modification (+57.0215 Da). Only fully tryptic peptides were
considered with up to 2 miscleavages in the database search. A precursor mass tolerance of ±20 ppm was
applied prior to mass accuracy calibration and ±4.5 ppm after internal MaxQuant calibration. Other
search settings included a maximum peptide mass of 6,000 Da, a minimum peptide length of 6 residues,
0.05 Da tolerance for high resolution MS/MS scans. Co-fragmented peptide search was enabled to
deconvolute multiplex spectra. The false discovery rate (FDR) for peptide spectral matches, proteins, and
site decoy fraction were all set to 1 percent. Label free quantification of proteins was performed by
MaxLFQ, which considered razor plus unique peptides for protein level measurements. Surrogate
amyloid beta (Aβ) levels by precursor intensity trace area of tryptic fragments from the region of APP
containing the Aβ sequence were quantified as described previously30. The MS raw data, MaxQuant
parameters, search results and quantification are included (Data Citation 6).
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Data Records
All data described herein are available for use by the research community and have been deposited in
the AMP-AD Knowledge Portal in study specific folders (Data Citation 1). These include sample
metadata (Data Citation 2), RNA-seq alignment files in bam format and the gene level expression matrix
from 4 brain regions (Data Citation 3), WES alignment files in bam format and the variants calling in
plink and VCF format (Data Citation 4), WGS based variants calling in VCF format and variants
annotations (Data Citation 5), and mass spectrometry raw files and protein quantification analysis results
(Data Citation 6).

Technical Validation
WES data quality control
We utilized the GATK VariantEval tool to calculate various quality control metrics of the identified
variants, including overall and per sample number of variants, transition/transversion (Ti/Tv) ratio,
alternate allele heterozygous/homozygous (Het/Hom) ratio and insertion/deletion (Ins/Del) ratio.
Overall, there were 399,135 SNPs and 22,967 INDELs identified, including 70,083 (17.6%) and 10,641
(46.3%) novel SNPs and INDELs, respectively. On average, 39,744 (364 novel) SNPs and 3,597 (228
novel) INDELs were detected per individual. The Ti/Tv ratio is a critical metric for assessing the quality
of variants calling, with high quality exome sequencing variation dataset expecting to have Ti/Tv ratios
between 2.8 and 3.0 (refs 32,33). Over the whole study population, the Ti/Tv ratio at the known variant
sites was 2.83, close to the standard value of 2.84 in the reference dbSNP dataset. The Ti/Tv ratio at the
novel variant sites was 2.12; the slightly lower ratio at new sites is consistent with previously
observations33. Combining known and novel loci, the overall Ti/Tv ratio was 2.68. Figure 2 illustrates the
per sample variant metrics. Not surprisingly, samples from different ethnic backgrounds showed different
distributions in terms of the number of variants, Ti/Tv ratio and Het/Hom ratio and Ins/Del ratio.
For example, the African American samples presented a much larger number of variants (mean 50974)
than did the samples of European (mean 42743) or Latino ancestry (mean 46588) (one-tailed t-test
P value o6.2 × 10− 11). Samples of Latino ancestry presented more variants than samples of
European ancestry.

WGS data quality control
The mean mapped depth of all 349 samples was 42X (32X-62X). The paired-end short reads mapped to
around 91.91% of human reference genome (GRCh37). There was no significant difference in mapped
depth and breadth of coverage among the AD, MCI and control groups (Table 2). There were 32,452,033
SNPs and 5,339,491 INDELs detected in the 349 samples through a joint calling procedure. On average,
each sample contained 4.14M SNPs and 264,136 INDELs (Table 2). The Ti/Tv ratio of SNPs detected was
2.08, which was within the expected range of Ti/Tv (2.0-2.1) for human whole genome. SNPeffect was
further used to annotate potential functional effect of SNPs detected (Table 2).

Proteomics data quality control and imputation
6,107 different proteins were identified from the experiment with an average missing rate at 41.8%. By
selecting proteins with missing rate smaller than 15%, we obtain protein abundance profiles for 2,962
proteins in total. Figure 3a illustrated the number of proteins with different missing percentages. In
addition, these missing events were not random. Figure 3b illustrated the abundance dependent missing
trend, which is rather common in mass spectrometry-based protein profiling. Moreover, due to the
through-put limitation of the proteomics experiments, 306 samples were divided into 8 batches and
profiled separately, which led to strong batch effects in the resulting data as samples in different batches
were subjected to different experimental noise (Fig. 3c and d). Thus, it is important and necessary to
remove batch effects and properly impute the missing values before any meaningful analysis can be
effectively carried out. For this purpose, following Chen et al.34, we implement a mixed effects model to
remove batch effects and impute missing values while taking into consideration the abundance-
dependent missing mechanism in the data.

We assume that, for each protein, its abundance measurements follow a mixed effect model with a
random effect term representing the batch effect. For the kth sample in the ith experiment (i = 1, …, n
and k = 1, …, K) we have:

yki ¼ μþ α ´ Iki þ bi þ eki;

In which yki is the observed abundance, μ is the average abundance, Iki is the index of reference sample
taking value 1 if the kth sample in ith experiment is a reference sample and 0 otherwise, α is the fixed
effect of reference samples, bi is random variable with standard deviation d indicating the batch effect of
ith experiment and eki is the error term representing the individual variation of the protein abundance
with standard deviation σ0 of reference sample or σ of regular sample. For different k and i, bis and ekis
are all independent. μ, α, d, σ0 and σ are parameters to be estimated. We also assume the abundance
dependent missing data mechanism as follow:

P Mki ¼ 1ð Þ ¼ exp - γ0 - γ1 ´ yki
� �

:

Here Mki is the missing status, taking value 1 if Yki if missing, and 0 otherwise.
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With the above model, we can estimate the random effect and impute the missing values by
maximizing the likelihood function of the observed data. Specifically, we implement an expectation
conditional maximization (ECM) algorithm which iterates between (1) estimating the expectation of
missing data and random effect conditional on the observed data and parameter estimated from last step,
and (2) maximizing the conditional likelihood given the updated conditional expectation of missing data
and random effect to obtain the parameter estimation, until the pre-defined convergence criterion is met.

We performed the above procedure of Batch effect Correction and Missing value Imputation (BCMI)
on each protein feature separately. Notice that 18 samples have two replicates measured in both the 7th
and 8th batches. We examine correlations between each replicate pair before and after the above
procedure. As illustrated in Fig. 3e, replicate sample correlation increases after BCMI procedure, but
decreases after the naïve imputation procedure (imputing the missing data by the median or minimum
intensity of the corresponding protein), suggesting better data quality after the BCMI procedure.

Sample matching across different datasets
In the current study, 4 different types of -omics data, including WGS, WES, RNA-seq (from 4 brain
regions), and proteomics, have been generated from the same set of postmortem brain donors and brain
regions, resulting in more than 1,800 samples of different data types. Quality control (QC) and
assessment relating to individual data platform/technique is in place, e.g., phred-score based filtering of
low quality sequencing reads and missing data imputation for proteomics. However, during the
production and management of large-scale data, sample errors, including incorrect labeling, sample
swapping and contamination, are inevitable but harder to detect by the platform specific QC procedure
on each type of data. Because sample errors can cause both false-positive and false-negative results,
systems approach for QC across multiple -omics datasets are essential for reliable and accurate
identification of true biological signals from the integrative data analysis. Given the scale and complexity
of such datasets, automatic QC and adjustment methods need to be applied.

Here we developed and applied a robust and efficient computational pipeline to identify consistent
assignments across the multiple types of molecular data in the MSBB AD cohort. The pipeline is
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summarized in Fig. 4. For the various sequencing data, we first mapped the sequencing reads onto human
genome GRCh37 and then called genetic variants following GATK best practices as detailed above. The
genetic variants survived standard filtering by GATK were subsequently used to compute basic QC
statistics including missing rate, heterozygosity, sex imputation and sample principal components
analysis (PCA) using plink35. Variants with missing rate >50%, minor allele frequencyo0.01 or Hardy-
Weinberg equilibrium test P valueo0.001 were removed from further analysis. Samples with excessively
high or low heterozygosity rate (more than 3 standard deviations away from the mean) in each data type
were marked as they suggested either mixture (possibly due to contamination) or inbreeding in these
samples. Plink can impute sex from X chromosome inbreeding coefficients and flag individuals for whom
the reported sex in the meta table does not match the inferred sex. It is noted that some of the statistics,
including heterozygosity rate, sex imputation and PCA, require a relatively large number of independent
SNPs and hence the inference is more accurate from WGS than from WES or RNA-seq. On the other
hand, gender inference in RNA-seq can be facilitated by using gender-specific marker genes, such as XIST
(female-specific), DDX3Y (male-specific) and RPS4Y1 (male-specific). We found 6 sex-mislabeled
samples in the MSBB WGS data (Fig. 5), 20 sex-mislabeled samples in RNA-seq (Fig. 6), and 16 sex-
ambiguous samples in RNA-seq. As in many genome-wide association studies (GWAS), we found top

Figure 3. Quality check of proteomic data. (a) Histogram of the frequency of the proteins of each missing

level. (b) Scatter plot of missing rate and mean abundance for each protein. The red spots indicate the cross

sectional mean of each missing rate level with a yellow regression line. (c) Distribution of all individual median

value within a batch. Panel 3a is the distribution of all batches in raw data. (d) The distribution of all batches in

processed data. (e) Correlation of the duplicated samples. Red box represents the correlation of data imputed

with the mixed effect model; green box represents the correlation of data imputed by observed protein median;

blue box represents the correlation of data imputed by observed protein minimum; sky blue box represents the

correlation of raw data.
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principal components (PCs) from the WGS and WES reflected population structure, in the present case,
race information (Fig. 7). As a result, 4 samples were found to be mislabeled for race and 13 samples were
ambiguous for race. The quality controlled (QCed) sex and race information is detailed in Supplementary
Table S1.

Next we estimated pairwise sample kinship using KING36 and compared the genetic concordance
among all sequencing samples across different data types. Since the sequencing samples from the same
brain are expected to have high genetic similarity (in theory identical) while the sequencing samples from
different brains are expected to present low genetic similarity, any kinship failure or mismatch suggested
sample errors due to either incorrect ID labeling, sample swapping or contamination. We flagged the
suspicious sample pairs which should match genetically but did not, and spurious sample pairs which
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Figure 4. Overview of the sample alignment across data types. A robust and efficient pipeline for quality

control of multiple -omics data from the MSBB AD cohort.
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should not match but present very high genetic similarity. Using an iterative procedure coupled with a
majority voting scheme, we sequentially tested whether every suspicious or spurious sample was
mislabeled and could be unambiguously identified with the correct brain source. Any sample which was
inconclusive for its brain source was deemed problematic and discarded from further analysis. In each
iteration, one sample with the most suspicious or spurious flags was selected for correction, then the
suspicious and spurious flags for all samples was updated because one mislabeling may lead to multiple
kinship errors and hence one correction may help resolve multiple errors.

Figure 8a illustrates examples of mislabeled samples identified through the iterative genetic
concordance analysis. There were 6 sequencing samples (4 RNA-seq, 1 WES and 1 WGS) generated
from the brain 44475 according to the sample annotation. These samples showed a high within-brain
genetic concordance, except for hB_RNA_10452 which exhibited a low kinship estimate (o0.1) with the

Figure 6. Gender imputation based on sex-specific marker gene expression in the RNA-seq data. XIST is a

female specific gene, and RPS4Y1 is a male specific gene. The color denotes the sex by annotation while the

shape denotes the sex by imputation. Samples highlighted in the ellipse area of the top right corner are

considered ambiguous for sex imputation.
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other samples from the same brain, but a high kinship coefficient (> 0.4) with 5 samples from the brain
53661. According to the guideline of KING36, an estimated kinship coefficient >0.354 suggests a duplicate
or mono-zygote twin while a kinship coefficient less than 0.1 indicates a 2nd-degree or more distant
relationship. Thus, it was likely that sample hB_RNA_10452 was mis-labeled for its brain id and its true
brain source should be re-mapped to 53661. Similarly, hB_RNA_10392 from the brain 10730 should be
re-mapped to brain id 44475. We further identified that one RNA-seq sample, hB_RNA_10442, from the
brain 53661 was also mislabeled. Resolving the true brain source for the samples in these 3 brains resulted
in multiple corrections involving 3 more brains (27965, 1465 and 34015) as shown in Fig. 8b. Using the
iterative genetic concordance analysis, we identified the brain identities for 10 samples (3 from RNA-seq
and from 7 WGS) which were originally unknown, re-mapped the brain identities for 38 samples (29
from RNA-seq, 5 fromWES, and 4 fromWGS), and excluded 15 samples (8 from RNA-seq, 3 fromWES,
and 4 from WGS) whose brain identity was unidentifiable. The samples which were re-mapped or
excluded are listed in Supplementary Table S1. Figure 9 shows the distribution of kinship coefficients
estimated between 3 different sequencing data types before and after sample QC. In each plot, there are
two density curves, one showing within-brain kinship coefficients with a peak close to 0.5 and the other
showing between-brain kinship coefficients with a peak close to 0. It is noted that, before the sample QC,
there was a small proportion of near-zero within-brain kinship coefficients (~4.5% of the pairs with
kinship coefficient less than 0.1), which dramatically diminished after the sample QC (~0.36% of the pairs
with kinship coefficient less than 0.1).

We used MODMatcher37 to match proteomics data with the QCed sequencing data. In this analysis,
we considered the sample labels in QCed sequencing data as ground truth. We first computed cis- protein
QTLs (pQTLs) based on protein expression (after missing data imputation) and WGS genotype data
using MatrixEQTL and then inferred genotypes at the cis-SNPs for each proteomics sample separately.
With the inferred genotypes, genetic identity similarity scores between proteomics and WGS data were
computed. Second, we ran the same pQTLs based genotype imputation analysis using WES genotype data
as some proteomics samples had WES genotype but not WGS genotype. In the present analysis, we
considered a proteomics sample Pi as properly aligned if (a) the similarity score (Sii) with the supposed
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self-align WGS/WES sample Gi which had the same brain id was ranked in top 3 among all WGS/WES
genotype profiles, or (b) Sii was ranked in top 3 among all proteomics samples with respect to the
genotype profile Gi. This is slightly different from the original MODMatcher criterion which requires a
reciprocal self-alignment. On the contrary, a proteomics profile would be considered mis-aligned with
other unmatched genotype sample by reciprocal matching, in which we explored whether a mis-aligned
genotype profile Gj has the highest similarity with an unmatched proteomics profile Pi among all
proteomics samples, and the unmatched proteomics profile Pi has the highest similarity with Gj among all
genotype profiles. If mislabels in proteomics data were identified, the quality of sample alignment was re-
assessed according to the updated sample annotation and this process was iterated until convergence. In
the present analysis, we obtained a 97.3% self-alignment rate in proteomics samples by using WGS
genotype profiles and similarly a 97.1% self-alignment rate using WES genotype profiles. Collectively, we
achieved a rate of 98.6% self-alignment combining the results from two genotype profiles (Supplementary
Table S2). We did not observe any reciprocal mis-matched proteomics profile. We also explored a cis
mRNA-protein mapping procedure similar to the cis methylation-mRNA mapping in Yoo et al.37 by
computing the ranked similarity score between mRNA and protein for pairs of RNA-seq and proteomics
samples. However, the self-alignment rate from this approach was only 3.6% (data not shown), which is
not surprising as the correlation between mRNA and protein expression is poor (mean and median cis
mRNA-protein Spearman’s correlations are 0.093 and 0.085, respectively).

The relatively mild correlation between the RNA-seq and proteomics data may be caused in part by
the sample processing where the tissues for the transcriptomic and proteomic profilings were dissected
from different locations of the same region at different times. Other factors, such as different degradation
rates of RNAs and proteins in postmortem brains, may also have some impact. Nevertheless, the mild
correlations between RNAs and their corresponding proteins are not unique to this cohort as we observed
a similar level of mild correlations between RNAs and proteins in an independent cohort of multi-Omic
data from postmortem human brains, the Mayo cohort (doi:10.7303/syn5550404), which utilized the
same LC-MS/MS technique for proteomic profiling as the Mount Sinai cohort. After filtering those with
more than 15% missing values in the proteomic data followed by normalization and covariates
adjustment, there were 2,914 proteins remained, out of which 2,880 had matched mRNA expression data
from the same brain regions in the Mayo cohort. The mean and median of the Spearman’s correlations
between matched mRNA-protein were 0.116 and 0.104, respectively. Therefore, extreme caution must be
taken if one wants to predict protein abundance from RNA expression, or vice versa, in postmortem
brain tissues.

WES vs RNAseq WGS vs RNAseq WGS vs WES

−3 −2 −1 0 −3 −2 −1 0
−0.50

−0.25
0.00

0.25
0.50

0.00

0.25

0.50

0.75

1.00

Kinship before QC
S

ca
le

d 
de

ns
ity

Same brain
FALSE
TRUE

a

WES vs RNAseq WGS vs RNAseq WGS vs WES

−3 −2 −1 0 −3 −2 −1 0
−0.50

−0.25
0.00

0.25
0.50

0.00

0.25

0.50

0.75

1.00

Kinship after QC

S
ca

le
d 

de
ns

ity

Same brain
FALSE
TRUE

b

Figure 9. Distribution of kinship coefficients estimated between sequencing data types for samples within

and between brains. (a) Distribution of kinship coefficients before sample QC. (b) Distribution of kinship

coefficients after sample QC. The density has been scaled to a range between 0 and 1. Highly related (duplicate

or mono-zygote twin) samples will have the estimated kinship coefficients close to 0.5, while unrelated samples

will have the estimated kinship coefficients close to 0.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180185 | DOI: 10.1038/sdata.2018.185 13



Usage Notes
Use case 1: Differential gene and protein expression in relation to AD
The present MSBB AD cohort consists of samples with varying degree of disease severity with respect to 4
different clinical and neuropathological traits in relation to AD. Stratifying samples into different severity
groups allows for the differential expression of mRNAs and proteins at early or advanced stage of the
disease. Investigators can prioritize genes which are altered in both mRNA and protein levels. Moreover,
RNA-seq based mRNA expression was profiled in 4 different brain regions which can help identify
region-specific gene signatures implicated in selective vulnerability to AD15.

Use case 2: Identification of gene and protein expression quantitative loci and novel disease
associated genetic variants
Genome-wide association studies (GWAS) have successfully identified more than 30 common genetic
variants associate with the disease risk of late onset AD. However, the majority (>75%) of the phenotypic
variance remain unexplained by the known markers38. Massive genome sequencing from the present
WGS and WES data offers an unprecedented opportunity to characterize both low frequency and rare
variants that may have a profound impact on disease risk but otherwise missed by traditional GWAS.
However, we must notice that the sample size is small and hence the power is very limited.

In addition, a joint analysis of WGS/WES genotype, RNA-seq and proteomics profiles can identify
variants playing transcriptional or translational regulatory roles by the so-called expression and protein
quantitative trait loci (eQTLs and pQTLs) analysis. Together with the genotype-disease association from
this cohort and other public datasets, this could help identify variants conferring risk to AD via
transcriptional or translational regulatory mechanisms.

Use case 3: Gene and protein integrative network analysis
AD is a complex human disease with a multifactorial nature involving a system of genetic and environmental
interactions. Thus, there is a growing interest in applying an integrative network biology approach to model
the interconnected relationships among a large network of gene/protein expression traits, genetic variants
and clinical/neuropathological outcomes39. The network analysis approaches (e.g. WGCNA40, MEGENA41,
Bayesian causal networks42 and other similar algorithms) combined with the deep and comprehensive
multiscale -omics data can not only help identify gene/protein modules that were enhanced or disrupted in
AD but also prioritize network hub regulators driving the key biological process implicated in AD.
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