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Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the

life course may be useful for investigating long term effects of risk and resilience factors

for brain development and healthy aging, and for understanding early life determinants of

adult brain structure. Therefore, there is an increasing need for automated segmentation

tools that can be applied to images acquired at different life stages. We developed

an automatic segmentation method for human brain MRI, where a sliding window

approach and a multi-class random forest classifier were applied to high-dimensional

feature vectors for accurate segmentation. The method performed well on brain MRI

data acquired from 179 individuals, analyzed in three age groups: newborns (38–42

weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years).

As the method can learn from partially labeled datasets, it can be used to segment

large-scale datasets efficiently. It could also be applied to different populations and

imaging modalities across the life course.

Keywords: brain, MRI, large-scale, life-course, slidingwindow, random forests, classification, tissue segmentation

INTRODUCTION

During early life, the brain undergoes significant morphological and functional changes, the
integrity of which determines long-term neurological, cognitive and psychiatric functions (Tamnes
et al., 2013). For instance, a wide range of problems including autism spectrum disorder, poor
cognitive aging, stroke and neurodegenerative diseases of adulthood may have early life origins
(McGurn et al., 2008; Shenkin et al., 2009; Hill et al., 2010; Wardlaw et al., 2011; Stoner et al., 2014).
Improved understanding of cerebral structural changes across the life course may be useful for
studying early life determinants and atypical trajectories that underlie these common problems.

Quantitative volumes from brain structural magnetic resonance imaging (MRI) acquired at
different stages of life offer the possibility of new insight into cerebral phenotypes of disease,
biomarkers for evaluating treatment protocols, and improved clinical decision-making and
diagnosis. The literature presents a clear distinction between methods developed for different ages
partly because the computational task is determined by properties of the acquired data and these
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are age-dependent (Cabezas et al., 2011; Despotovic et al., 2015;
Išgum et al., 2015). For example, the infant brain presents
challenges to automated segmentation algorithms developed for
adult brain due to: wide variations in head size and shape in early
life, rapid changes in tissue contrast associated with myelination,
decreases in brain water, changes in tissue density, and relatively
low contrast to noise ratio between gray matter (GM) and
white matter (WM). Therefore, automated segmentation tools
for modeling structure over years are limited, and this hampers
research that would benefit from robust assessment of the
newborn to the adult trajectory.

With regard to methodology, approaches for automatic
segmentation of brain MRI can be classified into unsupervised
(Cai et al., 2007; Leroy et al., 2011; Weglinski and Fabijanska,
2011; Gui et al., 2012) or supervised (Van Leemput et al., 2001;
Fischl et al., 2002; Ashburner and Friston, 2005; Prastawa et al.,
2005; Song et al., 2007; Altaye et al., 2008; Weisenfeld and
Warfield, 2009; Shi et al., 2010; Kuklisova-Murgasova et al., 2011;
Makropoulos et al., 2012; Serag et al., 2012b; Cardoso et al., 2013;
Cherel et al., 2015; Moeskops et al., 2015; Wang et al., 2015; Loh
et al., 2016) approaches. Supervised approaches have proven to
be very successful in medical image segmentation (Aljabar et al.,
2009; Lötjönen et al., 2010; Coupé et al., 2011; Rousseau et al.,
2011; Kaba et al., 2014). However, as they rely on labeled training
data (or atlases) to infer the labels of a test scan, most existing
supervised approaches require a large number of training datasets
to provide a reasonable level of accuracy and they usually carry
a high computation cost due to their requirement of non-linear
registrations between labeled data and the test scan (Iglesias and
Sabuncu, 2015).

To address these challenges, here we describe a method for
automatic brain segmentation of MR images, called SEGMA

(SEGMentation Approach). SEGMA differs from current
supervised approaches in the following ways. First, SEGMA
uses a sparsity-based technique for training data selection by
selecting training data samples that are “uniformly” distributed
in the low-dimensional data space, and hence eliminates the
need for target-specific training data (Serag et al., 2016).
Second, SEGMA uses linear registration to provide an accurate
segmentation (mainly to ensure the same orientation and size for
all subjects). This is useful because it reduces computation time
compared with most supervised methods which require non-
linear registrations between the training images and the target
image. Finally, SEGMA uses a machine learning classification
based on random forests (Breiman, 2001) where a class label
for a given test voxel is determined based on its high-
dimensional feature representation. In addition to incorporating
more information into the feature set (compared with methods
that use voxel intensity information only), we use a sliding
window technique that moves over all positions in the test image
and classifies all voxels inside the window at once, instead of
assigning labels on a voxel by voxel basis. This technique has
the advantage of speeding-up the classification process while
minimizing misclassifications compared with methods that use
a global classifier (Iglesias et al., 2011; Vovk et al., 2011; Zikic
et al., 2014). The feature extraction framework is illustrated in
Figure 1.

MATERIALS AND METHODS

Data And Image Acquisition
The study includes brain imaging data from 179 subjects,
spanning the ages of 0–71 years, from three MRI datasets.

Dataset I

The first dataset contained MR images from 66 infants: 56
preterms (mean post-menstrual age [PMA] at birth 29.23 weeks,
range 23.28–34.84 weeks) were acquired at term equivalent age
(mean PMA 39.84 weeks, range 38.00–42.71 weeks), and 10
healthy infants born at full term (>37 weeks’ PMA). None of
the infants had focal parenchymal cystic lesions. Participants of
the newborns dataset were recruited to a larger study using MRI
to study the effect of preterm birth on brain growth and long-
term outcome. Ethical approval was granted by the National
Research Ethics Service (South East Scotland Research Ethics
Committee) and NHS Research and Development, and informed
written parental consent was obtained.

A SiemensMagnetomVerio 3TMRI clinical scanner (Siemens
Healthcare GmbH, Erlangen, Germany) and 12-channel phased-
array head coil were used to acquire: [1] T1-weighted (T1w) 3D
MPRAGE: TR = 1650 ms, TE = 2.43 ms, inversion time = 160
ms, flip angle= 9 degrees, acquisition plane= sagittal, voxel size
= 1× 1× 1mm3, FOV= 256mm, acquiredmatrix= 256× 256,
acceleration factor (iPAT) = 2; [2] T2-weighted (T2w) SPACE
STIR: TR = 3800 ms, TE = 194 ms, flip angle = 120 degrees,
acquisition plane = sagittal, voxel size = 0.9 × 0.9 × 0.9 mm3,
FOV = 220 mm, acquired matrix = 256 × 218. The image data
used in this manuscript are available from the BRAINS repository
(Job et al., 2017) (http://www.brainsimagebank.ac.uk).

Reference tissue segmentations for the dataset were generated
using an Expectation-Maximization algorithm with tissue priors
provided by the atlas from (Serag et al., 2012a,c). Ground truth
accuracy of reference neonatal segmentations was evaluated by
a radiologist experienced in neonatal brain MRI, who concluded
that they were all plausible representations of anatomical classes.
Quantitative evaluation of the reference segmentations was
performed against manual segmentations from 9 subjects chosen
at random. For each subject, three slices (those numbered
as 25th percentile, median and 75th percentile of the slices
containing brain tissue) were segmented. In order to remove
bias toward any particular anatomical plane, three subjects
were segmented in the axial plane, three in the coronal plane,
and three in the sagittal plane. The quantitative analyses
indicated high agreement for all tissues (mean Dice coefficient
of 92%).

Dataset II

The second dataset contained T1wMRI scans and corresponding
manual expert segmentation of 32 structures from 103 subjects
(mean age 11.24 years, range 4.20–16.90 years) publicly available
from the Child and Adolescent NeuroDevelopment Initiative
(CANDI) at University of Massachusetts Medical School (Frazier
et al., 2008; Kennedy et al., 2012) (http://www.nitrc.org/projects/
candi_share). The data originates from four diagnostic groups:
healthy controls (N = 29), schizophrenia spectrum (N =
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FIGURE 1 | Overview of the SEGMA feature extraction framework. The input test image is preprocessed for brain extraction and bias field correction, before

computing gradients. Then, a sliding window is scanned across the input image at all positions where a feature vector for each voxel over the window is constructed

using intensity and gradient information. The feature vectors are fed into a random forest classifier trained for structure / tissue classification.

20), Bipolar Disorder (N = 35), and Bipolar Disorder with
psychosis (N = 19). The T1w images were acquired using a 1.5T
Signa scanner (GE Medical Systems, Milwaukee, USA) with the
following parameters: a three-dimensional inversion recovery-
prepared spoiled gradient recalled echo coronal series, number of
slices= 124, prep= 300 ms, TE= 1 min, flip angle= 25 degrees,
FOV= 240 mm2, slice thickness= 1.5 mm, acquisition matrix=
256× 192, number of excitations= 2.

Dataset III

The third dataset contained brain images and the corresponding
manual expert segmentation of the whole brain into 32 structures
from 18 healthy subjects including both adults and children;
for the current study, we used only the adult data (N = 10,
mean age 38, range 35–71 years). The dataset is publicly available
from the Internet Brain Segmentation Repository (www.nitrc.
org/projects/ibsr) as IBSR v2.0 (Rohlfing, 2012). The T1w images
were acquired using the following parameters: scanner/scan
parameters unspecified, acquisition plane = sagittal, number of

slices = 128, FOV = 256 × 256 mm, voxel size = 0.8–1.0 ×

0.8–1.0× 1.5 mm3.

Preprocessing
For brain extraction, we used the brain masks which are provided
with each dataset; except dataset I which was brain extracted
using ALFA (Serag et al., 2016). All images from all datasets
were corrected for intensity inhomogeneity using the N4 method
(Tustison et al., 2010).

Training Data
The number of training examples often must be limited due to
the costs associated with procuring, preparing and storing the
training examples, and the computational costs associated with
learning from them (Weiss and Provost, 2003). Therefore, we
use in this work a sparsity-based technique to select a number
of representative atlas images that capture population variability
by determining a subset of n-dimensional samples that are
“uniformly” distributed in the low-dimensional data space (Serag
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et al., 2016). The technique works by first linearly registering
(12 degrees of freedom) all images from each dataset to an
appropriate common coordinate space, and image intensities are
normalized using the method described by (Nyul and Udupa,
2000). For dataset I, the 40 weeks PMA template from the 4D atlas
(Serag et al., 2012a) was used as the common space, which is the
closest age-matched template to themean age of the cohort, while
datasets II and III were aligned to the common space defined by
the International Consortium for Brain Mapping (ICBM) atlas
(Mazziotta et al., 2001). Then, allN aligned images are considered
as candidates for the subset of selected atlases. The closest image
to the mean of the dataset is included as the first subset image.
The consecutive images are selected sequentially, based on the
distances to the images already assigned to the subset. Further
details can be found in (Serag et al., 2016).

Features
We use machine learning to assign a label to all voxels in the
test image, based on training a local classifier. Most existing
methods for tissue classification only utilize information from
voxel intensity, without considering other information. Here, in
addition to voxel intensities, we incorporated various gradient-
based features. Typically for each voxel v, a ten-dimensional
feature vector fv is extracted:

fv =
[

I Ix Iy Iz r θ φ Ixx Iyy Izz
]T

(1)

where I is the gray scale intensity value, Ix, Iy and Iz are the
norms of the first order derivatives, and Ixx, Iyy and Izz are the
norms of the second order derivatives. The image derivatives are
calculated through the filters [−1 0 1]T and [−1 2 − 1]T . The
gradient magnitude (r), azimuth angle (θ) and zenith angle (φ)
are defined as follows:

r =

√

I2x + I2y + I2z (2)

θ = tan−1

(

Iy

Ix

)

(3)

φ = cos−1

(

Iz

r

)

(4)

where r ∈ [0,∞) , θ ∈ [0, 2π), and φ ∈ [0,π].

Random Forests
In the last decade, random forests (RF) (Breiman, 2001) became
a popular ensemble learning algorithm, as they achieve state-of-
the-art performance in numerous medical applications (Yi et al.,
2009; Huang et al., 2010; Geremia et al., 2011; Mitra et al., 2014;
Zikic et al., 2014; Tustison et al., 2015; Pereira et al., 2016). A RF
ensemble classifier consists of multiple decision trees. In order
to grow these ensembles, often random vectors are generated
that govern the growth of each tree in the ensemble. Typically,
each tree is trained by combining “bagging” (Breiman, 1996)
(where a random selection is made from the examples in the
training set) and random selection of a subset of features (Ho,
1998), which construct a collection of decision trees exhibiting
controlled variation.

A test sample is pushed down to every decision tree of the
random forest. When the sample ends up in one leaf node, the
label of the training sample of that node it is assigned to the
test sample as tree decision. Then, the final predicted class for a
test sample is obtained by combining, in a voting procedure, the
predictions of all individual trees.More details on decision forests
for computer vision and medical image analysis can be found in
Criminisi and Shotton (2013).

Sliding-Window Based Classification
A sliding window is used tomove over all possible positions in the
test image, and for each window, the voxels inside the window
are classified into different tissues or structures. The vector in
equation (1) represents the test sample for one voxel in a window,
where the number of test samples is equal to the window size
w. The training samples come from the voxels of the aligned
atlas images that are located at the same location as the voxels
belonging to the test window. This means that the number of
training samples per window is equal to k × w, where k is the
number of training atlases andw is the window size, e.g., 5×5×5,
or 7× 7× 7, etc.

A local RF classifier is then used to assign each voxel in
the test image to a segmentation class. Figure 2 shows an
example of classifying one test window. The SEGMA algorithm
is summarized in Algorithm 1.

Algorithm 1. SEGMA algorithm

Set fv to represent a feature vector for a voxel v
Set cv to represent a segmentation class for a voxel v
Set k to represent the number of training data
Set w to represent the sliding window size
for each windowW do

Construct the training data matrix T Train
W = {f

j
v|j =

1, . . . , k; v = 1, . . . ,w}
Train the RFW classifier for windowW using T Train

W

Construct the test data matrix T
Test
W = {fv|v =

1, . . . ,w}
Determine the labels cv for all voxels inside the test
windowW by applying RFW to T Test

W
end

Evaluation
A leave-one-out cross-validation procedure was performed for
every dataset. Each subject from a dataset in turn was left out as a
test sample and the remaining subjects were used as the training
data where a subset of k atlases is selected. The comparison
between automatic (A) and reference (M) segmentations was
performed using the Dice coefficient (DC) (Dice, 1945) which
measures the extent of spatial overlap between two binary images,
with range 0 (no overlap) to 1 (perfect agreement). The Dice
values are expressed as a percentage and obtained using the
following equation:

DC(A,M) =
2 |A∩M|

|A| + |M|
× 100 (5)
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FIGURE 2 | An example of classifying one test window. The green square in the test image represents the test window. The green rectangle represents the

extracted features from the test window (i.e., test samples). The red rectangle represents the extracted features from training data (i.e., training samples). The voxels

inside the test window are classified into different classes based on training the random forest classifier using the training samples.

Comparison against Other Methods
We compared SEGMA against commonly used segmentation
methods: Majority Vote (MV) (Rohlfing et al., 2004; Heckemann
et al., 2006), Simultaneous Truth And Performance Level
Estimation (STAPLE) (Warfield et al., 2004). The registration
scheme for these methods is based on non-linear image
deformation (Rueckert et al., 1999; Modat et al., 2010).

To compare SEGMA against other RF segmentation methods,
we implemented a global RF classifier, similar to (Iglesias et al.,
2011; Zikic et al., 2014), and experimented training it using
intensity and gradient-based features, and intensity feature only.
Non-linear registration was used as above to map the training
images to the test image coordinate space, and the RF classifier
was trained using 100,000 randomly sampled voxels from each
training image.

Statistical Analyses
To test for differences between segmentation results, t-tests
were used for normally distributed data, and Mann Whitney U
was used to compare non-normal distributions (Shapiro-Wilk
normality test was used). P < 0.05 were considered significant
after controlling for Type I error using false discovery rate (FDR).

RESULTS

To evaluate segmentation performance across the life course,
SEGMA was applied to three publicly available datasets that
provide MR brain images at different stages of the life course:

neonatal period (38–42 weeks gestational age), childhood and
adolescence (4–17 years), and adulthood (35–71 years). Figure 3
shows examples of brain segmentation results across the life
course, and Figure 4 shows the resulting Dice coefficient (i.e., the
agreement between the automatic and reference segmentations).

Brain Segmentation in Neonatal Period
We first applied the proposed segmentation method to a
neonatal cohort (dataset I) consisting of 66 MR images and
associated segmentation of the following tissues / structures:
brainstem, cerebellum, cortex or GM, cerebrospinal fluid (CSF),
deep GM and WM. Quantitative analyses (Figure 4) indicated
high accuracy for all tissues and structures with a mean Dice
coefficient of 91%.

The highest accuracies obtained for brainstem, cerebellum,
deep GM, and WM with mean Dice coefficient of 90–94%, while
cortex and CSF had average Dice coefficients of 89 and 85%,
respectively.

Brain Segmentation in Childhood and
Adolescence
To examine the performance of SEGMA in childhood and
adolescence, we used 103 MR images from subjects aged 4–
17 years (dataset II) with associated anatomical segmentation
of 32 structures. Quantitative analyses (Figure 4) indicated
high accuracy for all tissues and structures with a mean Dice
coefficient of 86%. Nine structures had an average Dice coefficient
higher than 90%, 7 structures had an average Dice coefficient
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FIGURE 3 | Examples of brain segmentation results across the life course (axial view) using SEGMA. The automated segmentation is based on

T2-weighted scans for the neonatal period and T1-weighted scans for the rest of growth stages. The images are taken from single subjects at the shown ages, where

neonatal period images come from dataset I; childhood and adolescence images come from dataset II; and adulthood images come from dataset III.

FIGURE 4 | Bar plots of the Dice coefficient (with standard deviation as error bar) comparing segmentations derived from SEGMA with reference

segmentations using (A) dataset I [neonatal period], (B) dataset II [childhood and adolescence], and (C) dataset III [adulthood].

of 79–89%, and 2 structures had an average Dice coefficient of
51–67%.

Brains Segmentation in Adulthood
A dataset (dataset III) consisting of MR images and
corresponding anatomical segmentation of 32 structures
from 10 subjects (aged 38–71 years) was used to examine the
performance of the segmentation algorithm in adulthood.
Quantitative analyses (Figure 4) indicated high accuracy of 83%.
Seven structures had an average Dice coefficient higher than
90%, 9 structures had an average Dice coefficient of 75–89%, and
2 structures had an average Dice coefficient of 49–57%.

Comparison against Other Methods
SEGMA was compared with two commonly used segmentation
methods [Majority Vote (MV) (Rohlfing et al., 2004; Heckemann

et al., 2006), Simultaneous Truth And Performance Level
Estimation (STAPLE) (Warfield et al., 2004)], and other RF-based
segmentation methods. SEGMA improved overall segmentation
accuracy compared with MV, STAPLE, global-RF-1 (trained
using intensity and gradient features), and global- RF- 2 (trained
using intensity feature only); Table 1 shows Dice coefficients
averaged over all structures, generated by each segmentation
method and applied to datasets I, II and III. (P < 0.001; after FDR
correction).

Reproducibility
As dataset I (neonatal period) included T1-weighted (T1w)
and T2-weighetd (T2w) MR imaging, we used it to test the
reproducibility of SEGMA across different MR modalities by
segmenting the newborn brain using information from T1w
and T2w data separately (Figure 5). SEGMA provided consistent
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TABLE 1 | Dice coefficients averaged over all structures for datasets I, II,

and III.

Dataset SEGMA % Global-

RF-1 %

Global-

RF-2 %

MV % STAPLE %

I 90.68 85.29 84.22 86.97 87.01

II 86.05 78.98 74.90 81.75 79.17

III 82.56 78.75 76.02 77.13 77.54

SEGMA is compared with MV, STAPLE, global-RF-1, and global-RF-2.

segmentation results across different structural MRI modalities
of the newborn brain. There was no statistically significant
difference between mean Dice scores estimated from the two
groups (P = 0.8977).

Influence of Parameters
We evaluated the influence of size of training data on
segmentation accuracy, and found that increasing the size of
the training data improves segmentation accuracy, evidenced by
the increase in average Dice coefficient from 88% (7% training
data) to 91% (30% training data) for neonates, and from 83%
(5% training data) to 86% (20% training data) for children and
adolescents. From our experiments, 5–10 training images were
sufficient to yield accurate results.

Forest parameters such as tree depth and number of samples
per leaf node were set according to pervious work (Geremia et al.,
2011; Zikic et al., 2014; Wang et al., 2015), and in this work, we
only evaluated the influence of number of trees on segmentation
accuracy. The number of trees in the forest characterizes the
generalization power. As the number of trees becomes large,
segmentation accuracy increases, but training time increases and
a threshold value is reached after which further improvement is
not achieved. In this work, number of trees was set to 10.

With regard to window size, the smaller the window, the
longer the classification time. Hence, window size needs to be
chosen carefully as it provides a balance between accuracy and
speed. Therefore, in this paper, we select the window size as
5× 5× 5.

Relative Importance of Features
As partial volume effects in neonatal brain MRI present
challenges for automatic segmentation methods, we evaluated
the influence of each of the features on segmentation accuracy
of the neonatal brain (dataset I). This was done by dropping
one or a group of the ten features and running segmentation
with the remaining features (features of the same type were
dropped together). Therefore, an approximation of relative
importance of each feature was obtained. Our experiments
show that dropping the intensity feature significantly hinders
the segmentation accuracy (Figure 6A), whilst the accuracy is
improved by incorporating gradient-based features. When all of
the features are used, SEGMA yielded higher accuracy than each
individual category (P < 0.001; after FDR correction). Figure 6B
also shows an example of the automatic neonatal cortical GM
segmentation and how the dropping of each of the ten features
affects the segmentation accuracy.

We then analyzed the edge detection for various regions based
on using all features (intensity combined with gradients) and gray
scale intensity only. Figure 7 shows that gradient-based features
improved edge detection for various regions of the adult and
neonatal brain.

Computation Time
One classification task on a 64-bit iMac R© (Intel R© Core i7 @
3.5 GHz × 4.32 GB RAM) takes 5–7 min. The classification has
benefited much from the sliding window strategy used. This is
because instead of performing the classification in a voxel-wise
manner, this is done for a batch of voxels at once. Assuming a
window size of 5 × 5 × 5, the classification time is decreased
by 125-folds. In addition, multi-core processing or computer
clusters could greatly enhance the speed; and then one brain
classification could be performed in about (or less than) 1min.

DISCUSSION

In this article, we present a new method for MRI brain
segmentation (SEGMentationApproach, SEGMA). SEGMAwas
evaluated on three different datasets (span the ages 0–71 years)
that provide different challenges to the brain segmentation task,
and accurate results were obtained at all stages of development.

The method is trained using partially labeled datasets where
a relatively small number of manually labeled images from the
population under study are sufficient to provide accurate results.
It is possible that training the method with a larger dataset might
increase the segmentation accuracy. However, our goal was to
design a methodology that can provide an acceptable, yet high
accuracy result using a small number of training images (and
thence a low computation cost).

The relatively lower performance for CSF could be caused by
its bordering with GM (which is a complex shape). The boundary
between GM and CSF is especially difficult to identify inside the
sulci, where it is often poorly visible. In addition, the relatively
lower performance for the children and adolescence, and adult
datasets compared with the neonatal dataset could be attributable
to scanner strength. Yet, the results obtained are comparable with
those obtained using other methods tested on the same datasets
(Rousseau et al., 2011; Zikic et al., 2014).

SEGMA uses a local RF classifier (trained by information from
neighboring voxels in the same window) to assign a label to
each voxel, which makes it less susceptible to classification errors
such as the partial volume misclassification on the CSF-GM and
CSF-background boundaries (Kuklisova-Murgasova et al., 2011;
Cardoso et al., 2013; Išgum et al., 2015; Moeskops et al., 2015).
We chose to use random forests as the classification technique
since they naturally handle multi-class classification problems
and are accurate and fast (Huang et al., 2010; Geremia et al., 2011;
Criminisi and Shotton, 2013). Also, the sliding window plays an
important role in significantly speeding up the classification task
(compared to voxel-wise approaches).

The method provides an accurate segmentation using only
linear registration, which ensures the same orientation and
size for all subjects. This is an advantage compared with
most supervised methods, which require non-linear registrations
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FIGURE 5 | Examples of SEGMA’s output segmentation results (sagittal view) using T1-weighted (T1w) and T2-weighted (T2w) MR individually.

FIGURE 6 | (A) Relative importance of each of the ten features, expressed as the segmentation accuracy, on removing the feature from the feature vector. The

leftmost bar shows a baseline value—Dice coefficient, when all features are used. (B) An example of the automatic segmentation of cortical GM (coronal view), which

shows how the dropping of each of the ten features affects the segmentation accuracy. The baseline segmentation is obtained by using all features.

between the training images and the test image which increases
segmentation time to several hours thereby compromising
clinical utility (Iglesias and Sabuncu, 2015). SEGMA also has
the advantage of providing an accurate segmentation using a
single modality (which is important as the available data might
be limited to one modality), and features that characterize object
appearance and shape (intensity and gradients). However, the
method is flexible and new features can easily be added to the
high-dimensional feature vector.

To conclude, we present a method for segmentation of
human brain MRI that is robust and provides accurate and
consistent results across different age groups and modalities.
As SEGMA can learn from partially labeled datasets, it can
be used to segment large-scale datasets efficiently. The idea of
SEGMA is generic and could be applied to different populations
and imaging modalities across the life course. SEGMA is
available to the research community at http://brainsquare.
org.
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FIGURE 7 | Examples of edge detection for various regions (cortical gray matter, sub-cortical structures, brainstem and cerebellum) based on using

all features (intensity combined with gradients) and intensity gray scale only, for a neonatal (dataset I) and an adult brain (dataset III).
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