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Alfalfa long-term continuous cropping (CC) can pose a serious threat to alfalfa
production. However, the mechanism of alfalfa CC obstacle is unclear as of today.
Our preliminary study showed that the main factors of CC obstacle were not the
lack of nutrients or water in alfalfa rhizosphere soils. Further, we evaluated physic-
chemical property, microbial population structure, and metabolite differences of alfalfa
rhizosphere soils with CC for 1, 7, and 14 years based on analysis of metabolomics
and microbiomics. Four phenolic acid metabolites, including p-coumaric acid, ferulic
acid, vanillic acid, and p-hydroxybenzoic acid, were found to have significant differences
among different CC years, which may be the key factors of CC obstacle. Among them,
p-coumaric acid and ferulic acid could significantly decrease the germination rate of
alfalfa seeds by 21.11 and 16.67% at the concentration of 100 µg/mL and the height
(root length) of alfalfa seedlings by 21% (32.9%) and 13.72% (16.45%). Moreover, these
metabolites could effectively promote the growth of some pathogenic fungi, causing
alfalfa root rot. Among them, p-coumaric acid obviously and significantly aggravated the
occurrence of alfalfa root rot. With the increase of CC years, soil microbial community
changed from fungi to bacteria; fungi decreased by 10.83%, fungi increased by 8.08%,
and beneficial microorganisms decreased with the increase of CC years. Field analysis
and experimental verification showed that the above results were consistent with that of
CC obstacle in the field. Among the key metabolites, the autotoxicity of p-coumaric acid
was the strongest. This study fully proved that the continuous accumulation of autotoxic
substances in alfalfa rhizosphere was the key factor causing alfalfa CC obstacles.

Keywords: alfalfa, continuous cropping obstacle, root rot, metabolomics, microbiomics, autotoxic substances

INTRODUCTION

Alfalfa (Medicago sativa L.), also called lucerne or purple medic, is a perennial, clover-like,
leguminous plant of the pea family (Fabaceae). It is widely grown primarily for hay, pasturage, and
silage in the United States, Europe, and Asia (Graham and Vance, 2003) and is the main animal feed.
The Ministry of Agriculture of the People’s Republic of China reported that cultivated area of alfalfa
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in China was 4.7 million ha with a production of 32.17 million
tons from the end of 2015 to 2017. It was anticipated that
the planting area of high-quality alfalfa in China will increase
by 0.2 million ha by 2020 with a production of 3.6 million
tons. However, with the continuous expansion of alfalfa planting
area, alfalfa production capacity decreased year by year in fields
continuously planted for more than 4 years (Yin, 2019). Reduced
production capacity was reflected in that root activity declined
gradually, seed germination rate decreased seriously, root rot
incidence increased year by year, and it was difficult to survive
resowing or replanting (Rong et al., 2016). This phenomenon is a
typical continuous cropping (CC) obstacle of alfalfa.

There are two main explanations on the formation of CC
obstacles of alfalfa in the literature. The first viewpoint is that
alfalfa is a crop with a deep root system and high water and
fertilizer consumption. After continuous growth for many years,
it will lead to soil water and fertilizer deficit, which causes a large
area decline of alfalfa growth (Wu H. J. et al., 2015; Molero et al.,
2019). Li et al. (2010) and Xia et al. (2015) also believed that
CC of alfalfa led to deterioration of soil physical and chemical
properties that are difficult to restore. However, other scholars
hold different points of view. Li et al. (2010) found that planting
alfalfa in the same land for more than 10 years could lead to
serious land degradation and significant decline of alfalfa yield in
the Loess Plateau. Viliana and Ognyan (2015) stated that certain
numbers of roots would disappear after each harvest in the CC
process of alfalfa, which could provide organic materials for the
soil and increase soil organic matter contents. Jiang et al. (2007)
reported that soil quality deteriorated but alfalfa yield increased
in the first 9 years, while soil quality tended to recover but alfalfa
yield decreased in the following years. Our field studies also
indicated that CC obstacle still occurred even if fertilizers and
water were sufficient (Wang R. T. et al., unpublished)1. These
studies demonstrated that soil moisture and fertility were not
the primary factors causing CC obstacle in alfalfa production,
such as slow seed germination, delayed returning green, poor
growth, yield and quality decline, and severe root rot in CC for
more than 4 years.

Another explanation is that the continuous accumulation
of autotoxic allelochemicals causes CC obstacle of alfalfa.
Allelopathy is defined as the direct/indirect harmful/beneficial
effect via the production of chemical compounds that escape
into the environment (Rice, 1984). Allelopathy is a biological
phenomenon by which an organism produces one or more
biochemical substances that influence the germination, growth,
survival, and reproduction of other organisms in the same
community (Zuo et al., 2015). It was reported that alfalfa
produced a number of phytochemicals, including soyasapogenol
glycoside B (Wyman-Simpson et al., 1991), medicarpin and
isoflavonoid (Miller, 1988), chlorogenic acid, ferulic acid,
p-hydroxybenzoic acid, caffeic acid, coumarin, ferulic acid
(Abdul-Rahman and Habib, 1989; Rong et al., 2016), amic
acid, hydroxybenzoic acid, coumarin, and tretinoin (Zheng
et al., 2018). These phenolic acids had inhibitory effects on

1Wang, R. T., Zhang, X., and Li, Y. G. (unpublished). Long-term Alfalfa
Monoculture Alters Soil Chemical Properties and Microbial Communities.

plant seedlings, plant photosynthesis, and respiration (John and
Sarada, 2012; Li Z. F. et al., 2012; Zhang et al., 2016; Ghimire
et al., 2019). Chung et al. (2000) reported that chlorogenic acid
was involved in alfalfa autotoxicity. Rong et al. (2016) found that
contents of coumarin, ferulic acid, chlorogenic acid, and caffeic
acid varied in 18 alfalfa varieties, with coumarin and chlorogenic
acid being significantly higher than ferulic acid and caffeic acid.
In other studies, phenolic acid such as p-coumaric acid inhibited
photosynthesis and enzymatic activities of PG1, CG6PDH,
AID, and OPPP, which was detrimental to plant and root
growth and altered morphological and physical structures of
alfalfa roots (Rong, 2017; Zheng et al., 2018). These studies
suggested that continuous accumulation of autotoxic substances
in alfalfa rhizosphere might be the primary factor causing
alfalfa CC obstacle; however, direct evidence supporting the
theory is lacking.

Methods available for studying CC obstacle include multi-
omics, such as high throughput isolation (culturomics),
analyzing structural and functional changes of plant rhizosphere
microorganisms (microbiomics), targeting the taxonomic
composition (metabarcoding), addressing the metabolic
potential (metabarcoding of functional genes, metagenomics),
and analyzing components of plant rhizosphere exudates
(metabolomics) (Zhang et al., 2018; Tian et al., 2019; Zeng
et al., 2020; Huang et al., 2021; Li et al., 2021). Through
metabolomics, we can quickly understand the metabolic changes
of organisms under the stimulation of different biological
factors and environmental factors, and search for biomarkers
with the purpose of identifying metabolites related to various
diseases and environmental exposure (Nicholson and Lindon,
2008; Liu et al., 2018). Through microbiomics, we can have a
comprehensive understanding that plant surfaces and interior
parts are populated by myriads of bacteria, fungi, and microbes
from other kingdoms which can have considerable effects on
plant growth, disease resistance, abiotic stress tolerance, and
nutrient uptake (Xie et al., 2019). In CC systems, the same crop
root secretions may not only affect plant growth but also lead to
simpler microbial community structure, which may negatively
affect agroecosystems especially in terms of the aggravation
of pathogens and soil-borne fungi (Li and Liu, 2018). Plant-
microbial interactions can have positive or negative effects on
plant growth through a variety of mechanisms. Root exudates
are one of the most important chemical signals in determining
whether the interactions are benign or harmful (Bais et al.,
2006). Identification of major differences in root exudates may
be helpful in understanding changes of rhizosphere microbial
community structure (Brown et al., 2020). The combination
of metabolomics and microbiomics can be a powerful tool to
analyze the mechanism of CC obstacles. Lin et al. (2015) reported
that the accumulation of allelochemicals in rhizosphere soil
increased harmful microorganisms and decreased beneficial
microorganisms, resulting in imbalance of microbial community
structure and degradation of soil ecological function. Zhao et al.
(2018) indicated that continuous coffee cultivation reduced
potentially beneficial microbes in soil. Li et al. (2014b) showed
that peanut root exudates promoted the growth of root rot
pathogens Fusarium oxysporum and Phoma sp. and inhibited
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the growth of beneficial bacteria, such as Mortierella elongate
and Trichoderma sp. However, the advanced metabolomics and
microbiomics technologies have not been used in research of
CC obstacles of alfalfa to elucidate mechanisms involved in the
complex disease system.

The objectives of this research were: (1) to determine the
role of continuously accumulation of autotoxic substances
in CC obstacle of alfalfa; (2) to identify key metabolites
causing CC obstacle and determine their effects on alfalfa seed
germination and seedling growth; and (3) to evaluate the effects
of key metabolites on root rot pathogens and diseases and
rhizosphere microecology.

MATERIALS AND METHODS

Soil Sampling
The study was conducted on an experimental farm located
in Dörbets, Daqing, Heilongjiang, Northeast China (124.25’ E,
46.30’ E). The area is a temperate continental monsoon climate,
with 130 frost-free days, and the annual precipitation is 400 mm.
The grassland occupies 44.4% of the total area. The soil type
was sandy loam and average depth of topsoil was about 30 cm.
No location had history of hardpan. Soil samples were collected
in October 2019 using the five-spot-sampling method from
the rhizosphere of alfalfa plants grown in the fields with a
history of alfalfa CC for 1, 7, and 14 years. The soil samples,
thoroughly homogenized through a 20-mesh sieve to remove root
debris, were placed in sterile bags and then transferred to liquid
nitrogen and stored in ice boxes. The samples were transported
to the laboratory and stored at −80◦C for metabonomic and
microbiological analysis. In the meantime, a portion of the soil
samples was dried for analysis of soil properties. Each treatment
had three replicate samples.

Assessment of Soil Nutrients and
Enzyme Activities
Physic-chemical properties of the rhizosphere soils, including
available P (AP), available N (N), Fe, Mn, Cu, Zn and EC
values, were analyzed at the Soil and Fertilizer Testing Center of
Heilongjiang Academy of Agricultural Sciences (Harbin, China).
Enzyme activities were assessed using a soil enzyme activity
test kit (Suzhou Grace Biotechnology Co., Ltd., Suzhou, China).
Specific measurement and analysis followed the manufacturer’s
instructions using Multiskan sky (Thermo Fisher Scientific,
Waltham, MA, United States). Assessment of the enzyme
activities was as the following: soil urease (S-UE) was measured
at 578 nm; neutral phosphatase (S-NP, G0306W) catalyzes
p-nitrophenyl phosphate (pNPP) to produce a yellow product
PNP, which has a maximum absorption peak at 405 nm, and the
enzyme activity was measured by the rate of increase of PNP;
solid polyphenol oxidase (S-PPO, G0311W) catalyzes gallic acid
to produce gallium, which has a characteristic light absorption at
430 nm, reflecting polyphenol oxidase activity; solid sucrase (S-
SC, G0302W) catalyzes the degradation of sucrose into reducing
sugar and reacts with 3, 5-dinitrosalicylic acid to form colored
metal amides with characteristic light absorption at 540 nm;

soil catalase (S-CAT, G0303W) catalyzes hydrogen peroxide to
produce water and oxygen and the remaining hydrogen peroxide
reacts with a chromogenic probe to produce a colored substance
with a maximum absorption at about 510 nm. Each treatment had
three replicates, and the experiment was conducted twice.

Effects of Soil Extracts on Alfalfa
Seedling and Pathogen Growth
To assess the effects of the autotoxic substances on alfalfa seed
(Xinjiang Large Leaf Alfalfa) and fungal pathogens causing alfalfa
root rot, soil extracts from the rhizosphere soil samples were
prepared. Ten grams of soil were mixed with 250 mL distilled
water and shaken for 24 h (Yang et al., 2009). The supernatant was
filtered, distilled, and concentrated to 1 mL/g of soil using a rotary
evaporator (Strike 300, Guangzhou Wengdi Instruction Co., Ltd.,
China). The concentrated supernatants were filtered through a
bacterial filter and stored at 4◦C.

Alfalfa seeds were immersed in 1.5% sodium hypochlorite for
10 min, rinsed 5 times with distilled water, air dried, and soaked
in the soil extracts (1 mL/g) for 30 min. At this juncture, the
germination rate of distilled water was more than 70%. Treated
seeds were placed on sterile filter paper in a petri dish (50
seeds/dish). Two milliliter of soil extract was added to each dish
and the dishes were incubated in a growth chamber at 25◦C with
a 12-h photoperiod. To keep the petri dish moist, add 2 mL of
soil extract every 2 days. Alfalfa seeds treated with equal amount
of distilled water were used as the control. Each treatment had
three replicates and the experiment was conducted twice. Seed
germination rate, root length, and plant height of alfalfa were
measured 7 days after incubation.

To assess the effects of soil extracts on pathogens causing
alfalfa root rot, three fungal pathogens were used including
Fusarium tricinctum (MH894213), F. acuminatum (MK764994),
and F. oxysporum (MK764964) (Jiang et al., 2021). The fungi
were grown on potato dextrose agar (PDA) plates at 25◦C
for 5 days, and a mycelium plug (0.7 cm in diameter) was
transferred onto PDA plates amended with the soil extract (final
concentration V/V: 1, 5, and 10%). PDA plates amended with
equal amount of distilled water were used as controls. The
plates were incubated at 26◦C for 5 days and colony diameters
were measured. Each treatment had three replicates and the
experiment was conducted twice.

Metabolomics Analysis of Alfalfa
Rhizosphere Soil
The rhizosphere soil samples were extracted with methanol-
water (v/v 3:1), ethyl acetate, L-2-chlorophenylalanine, and
air dried. The air-dried soil extracts were dissolved in 20
µL methoxyamine salt and 30 µL BSTFA (containing 1%
TMCS). Metabolites of the rhizosphere soils were assessed using
7890A gas chromatography-time-of-fight mass spectrometry
(GC-TOF-MS) with DB-5MS capillary column (Agilent,
United States) at Beijing Allwegene Co., Ltd. (Beijing, China).
The Chroma TOF software (V 4.3x, LECO) was used to analyze
the mass spectrum data, including peak extraction, baseline
correction, deconvolution, peak integration, and peak alignment
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(Kind et al., 2009). The LECO-Fiehn RTX5 database, including
mass spectrometry, match, and retention time index match, was
used in the qualitative analysis of the substances.

Validation of Key Metabolites
To determine the role of key metabolites in alfalfa CC, the
effects of key metabolites from the rhizosphere soils on seed
germination, seedling growth, and growth of root rot pathogens
F. trintum, F. acuminatum, and F. oxysporum were determined.
The following experiments were conducted:

Effect of Key Metabolites on Alfalfa Seed and
Seedling
Alfalfa seeds disinfected as described above were immersed
in different concentrations (10, 25, 50, 100 µg/mL) of key
metabolites for 30 min. The seeds were placed in a sterile culture
dish, covered with two layers of sterile filter paper, dripped with
the corresponding concentration of key metabolites (1 mL/2
days), and placed in a humidity chamber (>95% RH, 24◦C and
16/8 h light/dark). Each treatment had three replicates and the
experiment was conducted twice. Seed germination rate, root
length, and plant height were measured 7 days after incubation.

Effect of Key Matabolites on Pathogenic Fungi
Causing Alfalfa Root Rot
A mycelium plug (0.7 cm in diameter) of F. tricinctum,
F. acuminatum, and F. oxysporum grown on PDA for 5 days
was transferred onto PDA plates amended with different
key metabolites at 10, 25, 50, and 100 µg/mL. The plates
were incubated at 26◦C in dark and colony diameters were
measured 5 days after incubation. Plates amended with equal
amount of sterile distilled water (SDW) were used as controls.
Each treatment had three replicates, and the experiment was
conducted twice.

To evaluate effects of metabolites on spore germination,
F. tricinctum, F. acuminatum, and F. oxysporum were grown
on PDA at 25◦C until colony diameters were 5 cm or larger.
Conidia on the plates were washed with SDW, and the
concentration was adjusted to 106 spores/mL by counting using
a hemocytometer. Different key metabolites were added into the
conidial suspensions at concentrations of 10, 25, 50, and 100
µg/mL. Conidial suspensions amended with an equal volume
of SDW served as a control. Spore suspensions were incubated
at 25◦C until spore germination rates were greater than 10%,
and germinated spores were counted by counting 100 spores for
each treatment in a replicate. To evaluate effects of metabolites
on spore production, the three fungal cultures were grown as
above. Different key metabolites at concentrations of 10, 25, 50,
or 100 µg/mL were added to each plate (20 mL/plate). Mycelia
on the surface of the PDA plates were scraped off, and liquid
on the plates was poured out after 20 min. The plates were then
incubated at 26◦C for 72 h, and 20 mL of SDW was added
to a petri dish to wash the spores off the mycelium (Li et al.,
2010). Spore suspension in a dish was collected in a tube (50 mL)
and spore concentration was determined using a hemocytometer.
Each treatment had three replicates and the experiment was
conducted twice.

Microbiological Analysis of Alfalfa
Rhizosphere Soil
Total DNA was extracted from the rhizosphere soils
using PowerSoil DNA Isolation Kit (MoBio Laboratories,
CarIsbad, CA, United States). DNA concentration was
quantified using a NanoDropTM 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States).
Research on 16S rRNA/ITS sequencing and sequencing of
the complete metagenomic sequence. The primer sets ITS1
(CTTGGTCATTTAGAGGAAGTAA)/ITS2 (TGCGTTCTTCAT
CGATGC) and 338F (ACTCCTACGGGAGGCAGCAG)/806R
(GGACTACHVGGGTWTCTAAT) were used to amplify target
regions of fungal and bacterial genes, respectively.

The quality-checked DNA samples were then sequenced
on Illumina Miseq PE300 platform. To guarantee the quality
of data for downstream analysis, Trimmomatic was used to
remove raw reads with tail end quality score < 20. Data pre-
processing was conducted to obtain a good sequence. Through
the sorting operation, the sequences were divided into different
groups according to their similarity, and a group was an OTU.
All sequences were divided into OTU according to different
similarity level, and OTUs under 97% similarity level could
be analyzed statistically (Edgar, 2013). The data were extracted
based on the out clustering results, and the Alpha (Amato et al.,
2013) and Beta (Jiang et al., 2013) analyses were carried out
using Qiime (Version 1.82), uclust (Version 1.2.223), and usearch
(Version 10.0.2404). All sequencing data were deposited in the
NCBI Sequence Read Archive (SRA) database (Rhizosphere
soil sequence accession number: SRP351057; Validation test
accession number: SRP351055).

Validation of Effects of P-Coumaric Acid
in Greenhouse
Alfalfa seeds were surface disinfested as described above and
planted in a seedling tray in a greenhouse at 25 ± 2◦C. Seven-
day-old seedlings were transplanted in pots (5 plants/per pot).
Plants in 5 pots were treated with p-coumaric acid 3 days
after transplanting at 10, 25, 50, or 100 µg/mL, respectively
(1 mL/per plant). Treatment with p-coumaric acid was applied
once every 3 days, and plants in 5 pots treated with SDW
were used as controls. Alfalfa rhizosphere soils were collected
as described above after treatment with p-coumaric acid for 5
times (i.e., 15 days after transplanting). Soil samples were stored
at −80◦C for microbiological analysis. Soil DNA extraction and
microbiological analysis were as described above.

RESULTS

Soil Nutrients and Enzyme Activities
Most of the nutrient contents tested in the 7- and 14-year
rhizosphere soils were lower than the 1-year rhizosphere soil,

2http://qiime.org/
3http://www.drive5.com/uclust/downloads1_2_22q.html
4http://www.drive5.com/usearch/
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including N, P, K, B, Fe, Mn, and Mg, but Cu and Zn
did not decrease with the increase of CC years (Table 1).
There were significant differences in soil enzyme activities in
the rhizosphere soils of different cropping years (P < 0.05,
Figure 1). Polyphenol oxidase, neutral phosphatase, and
sucrase activities decreased with the increase of CC years,
while urease increased in 7-year and decreased in 14-year
rhizosphere soils.

Soil Extracts From Alfalfa Rhizosphere
Soil on Alfalfa Growth and Root Rot
Pathogens
When alfalfa seeds were treated with alfalfa rhizosphere soil
extracts, the germination rate in treatment with rhizosphere soil
extract of alfalfa planted for 1 year was equivalent to the non-
treated control, which was significantly higher than those planted
for 7 and 14 years (P < 0.05, Figure 2). Height of alfalfa seedlings
in the 1-year treatment, but not the 7- and 14-year treatments,
were significantly greater than the control. However, root length
of the 1-, 7-, and 14-year treatments was not significantly different
from the control.

Three fungal pathogens Fusarium tricinctum, F. acuminatum,
and F. oxysporum that cause alfalfa root rot were used to assess
the relationship between metabolites of alfalfa rhizosphere and
root rot of alfalfa. Extracts of rhizosphere soil in 14-year alfalfa
CC significantly enhanced mycelial growth of F. tricinctum,
F. acuminatum, and F. oxysporum when used at 1, 5, and
10% compared to 1-year and the water control (Figure 3).
Extracts of rhizosphere soil in 7-year alfalfa CC also enhanced
mycelial growth of the pathogens significantly when used at
higher concentrations.

Metabolomics Analysis of Alfalfa
Rhizosphere Soils
The peak with detection rate below 50% of RSD > 30%
was removed from the QC samples (Dunn et al., 2011).
Principle Component Analysis (PCA) and least squares-
discriminant analysis (PLS-DA) were performed. A total of
161 different metabolic compounds were identified from
rhizosphere soils of the 1-, 7-, and 14-year treatments
(Supplementary Figure 1), which were classified according
to their chemical property as sugar compounds (26), sugar
acids (3), sugar alcohols (6), short-chain organic acids (16),
long-chain organic acids (31), nucleotides (12), amino acids
(14), esters (6), alcohols (16), and others (31). There were
significant differences in the peak values of 58 metabolites
from the rhizosphere soils. Combing VIP > 1 and independent
sample t-test (P < 0.05), there were 52 differential metabolites
down-regulated and 6 differential metabolites up-regulated
(Supplementary Table 1). Among them, vanillic acid,
p-hydroxybenzoic acid, ferulic acid, and p-coumaric acid
increased significantly with the increase of CC years, and
accumulation of p-hydroxybenzoic acid and p-coumaric
acid were more significant with the increase of alfalfa CC
years (Table 2). TA
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FIGURE 1 | Changes of enzyme activity, electrical conduction and organic matter content m rhizosphere soils from fields with continuous cropping of alfalfa for 1, 7,
and 14 years. (A) Catalase and S-NP activity. (B) Sucrase activity and electrical conduction. (C) Urease activity. (D) Polyphenol oxidase activity. Error bars indicate
standard errors of the means of three repetitions. Different letters above the bars indicate significant difference according to Duncan’s multiple range test (P = 0.05).

Key Metabolites From Alfalfa
Rhizosphere Soils on Alfalfa Growth and
Root Rot Pathogens
The effects of four phenolic acids on alfalfa plant were evaluated
at concentrations of 10, 25, 50, and 100 µg/mL. Inhibitory effect
on seed germination and plant growth was as follows: p-coumaric
acid > ferulic acid > vanillic acid and p-hydroxybenzoic acid,
with higher concentrations having greater inhibition than a lower
concentration (Figure 4A). P-coumaric acid reduced root length
significantly at all concentrations, compared to the control, and
the other three compounds reduced root length significantly
at higher concentrations (Figure 4C). Higher concentrations of
ferulic acid and p-hydroxybenzoic acid reduced plant height
significantly compared to the control, but vanillic acid did not
reduce plant height at all concentrations (Figure 4B).

The effects of four phenolic acids on mycelial growth of the
fungal pathogens were evaluated. They enhanced mycelial growth
with effects in the following order: p-coumaric acid > ferulic
acid > vanillic acid > p-hydroxybenzoic acid (Figure 5).
Higher concentrations of the phenolic acids had greater effects

in enhancing mycelial growth of the fungal pathogens. When
tested at 10, 25, 50, and 100 µg/mL, the four phenolic acids
at higher concentrations also significantly enhanced conidial
germination and production of F. acuminatum and F. oxysporum
(Figure 6). Among the phenolic acids, p-coumaric acid had
the greatest promoting effect on conidial germination and
production. When inoculated with F. tricinctum, F. acuminatum,
and F. oxysporum in greenhouse studies, severity of alfalfa
root rot treated by p-coumaric acid increased significantly with
50 µg/mL having greater effect than 10 µg/mL (Figure 7).
Growth and development of seedlings were also suppressed by
p-coumaric acid.

Alfalfa CC on Alfalfa Rhizosphere
Microecology
Microbial community sequences of the rhizosphere soil samples
were analyzed on Illumina Miseq PE300 platform and divided
by OTUs. Principle Component Analysis (PCoA) based on
detected OTUs showed that there were significant differences
in community composition of the rhizosphere soils, and Anova
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FIGURE 2 | Effects of rhizosphere soil extracts from fields with different years of alfalfa continuous cropping on alfalfa seed germination and seedling growth. Error
bars indicate standard errors of the means of three repetitions. Different letters above the bars indicate significant difference according to Duncan’s multiple range
test (P = 0.05).

analysis showed that there were significant differences among
groups (P < 0.05, Figures 8A1,B1). The diversity of bacterial
community was high and the number of OTUs decreased with the
CC increase (Figure 8A2). The diversity of bacterial community
of 14-year CC was the lowest, while the diversity of fungal
community of 1-year cropping was the lowest (Figure 8B2).
Small changes in root exudates can lead to changes in soil
microbial structure (Ling et al., 2011). This change could lead
to soil microecological damage as well as disease and pest
problems (Liu et al., 2020). These results seem to indicate that

CC can change the microbial composition of soil from bacterial-
dominated to fungal-dominated (Lin et al., 2015).

Most OTUs of bacteria were Actinobacteria (35.55,
37.54, and 40.28% for 1-, 7-, and 14-year CC, respectively),
Acidobacteria (24.07, 18.49, and 19.53% for 1-, 7-, and 14-
year) and Proteobacteria, and a small proportion belonged
to Gemmatimonadetes, Verrucinobacter, Nitrospiraceae,
and Bacteroidetes (Figure 9A). Bacillus is considered an
important soil conditioner and can be used as a biological
control agent (Li W. et al., 2018). In our present study,
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FIGURE 3 | Effect of rhizosphere soil extracts (final concentration VIV: 1, 5, and 10%) from fields with alfalfa continuous cropping for 1, 7, and 14 years on mycelial
growth of Fuasrium oxysporum, F. tricinctum, and F. acuminatum that cause alfalfa root rot. Error bars indicate standard errors of the means of three repetitions.
Different letters above the bars indicate significant difference according to Duncan ’s multiple range test (P = 0.05).

the abundance of Bacillus decreased in years and then
increased in 14 years. Most OTUs of fungi belonged to
Ascomycota (56.14, 65.57, and 73.72% for 1-, 7-, and 14-
year CC, respectively), Basidiomycota, Mortierellomycota,

Glomeromycota, and Chytridiomycota (Figure 9B). Four
bacterial genus increased with continuous cropping years
(Gaiella, Mycobacterium, Pseudonocardia, Bradyrhizobium),
and two were opposite to their trend (Solirubrobacter, 11–24);
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TABLE 2 | Relative content of phenolic acids from rhizosphere soils in fields with alfalfa continuous cropping.

CC yeara Vanillic acidb p-Hydroxybenzoic acidb Ferulic acidb p-Coumaric acidb

1 0.050 ± 0.008 a 0.127 ± 0.014 a 0.031 ± 0.004 a 0.056 ± 0.011 a

7 0.068 ± 0.007 b 0.171 ± 0.013 b 0.026 ± 0.004 a 0.079 ± 0.009 b

14 0.070 ± 0.006 b 0.212 ± 0.017 c 0.046 ± 0.012 b 0.097 ± 0.011 c

a Indicates alfalfa continuous cropping (CC) for 1, 7, and 14 years. bDifferent letters in the column indicate significant difference according to Duncan’s multiple range test
(P = 0.05).

FIGURE 4 | Effect of different concentrations of phenolic acids on alfalfa germination rate (A), plant height (B), and root length (C). Error bars indicate standard
errors of the means of three repetitions. Different letters above the bars indicate significant difference according to Duncan’s multiple range test (P = 0.05).
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FIGURE 5 | (A–D), represent four different phenolic acids respectively. Effects of different concentrations of phenolic acids (a- P-Hydroxybenzoic acid, b-vanillic acid,
c-ferulic acid, d-p-coumaric acid) on mycelial growth of fungal pathogens that cause alfalfa root rot. Error bars indicate standard errors of the means of three
repetitions. Different letters above the bars indicate significant difference according to Duncan’s multiple range test (P = 0.05).

while five bacterial genera decreased first and then increased
with continuous cropping years (RB41, Rubrobacter, Roseiflexus,
Pseudarthrobacter, Blastococcus), and three were opposite
to their trend (Nocardioides, Microvirga, Sphingomonas)
(Figure 9C).

P-Coumaric Acid on Rhizosphere
Microbial Communities
In order to verify the correlation between microbial population
changes and metabolites secreted in the rhizosphere, alfalfa
rhizosphere soil was treated with p-coumaric acid, the most
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FIGURE 6 | Effects of phenolic acids on conidial germination and production of Fusarium oxysporum (A,C) and F. acuminatum (B,D) that cause alfalfa root rot.
Different letters above the bars indicate significant difference according to Duncan’s multiple range test (P = 0.05).

influential metabolite secreted by alfalfa. The results showed
that the communities of fungi and bacteria are dense within,
but the differences between them is large (Figures 10A1,B1),
and significant changes occurred in the bacterial and fungal
communities. The number of OTU in bacterial and fungal
communities decreased when treated with 10 µg/mL p-coumaric
acid but increased when treated with 50 µg/mL p-coumaric
acid. The number of OTU in soil bacterial community treated
with p-coumaric acid was less than that of the control
(Figures 10A2,B2). The biodiversity of bacterial community
was the highest when treated with 10 µg/mL of p-coumaric
acid, the lowest with 50 µg/mL, and the diversity of soil
fungal community increased gradually with the increase of
p-coumaric acid concentration, which was consistent with the
previous results of continuous cropping. However, the number

of microorganisms in alfalfa rhizosphere soil in the pots treated
with p-coumaric acid was lower than that in the field.

Analysis of microbial species and functions indicated that
the Gemmatimonadetes decreased with increasing concentration
of p-coumaric acid (Figure 11A). The relative abundance of
bacterial species decreased to different degrees, with 8 main
bacterial species in the top 20 species showing a decreasing
trend, 6 bacterial groups showing the trend of decreasing when
treated with 10 µg/mL p-coumaric acid and increasing with
50 µg/mL, and five groups of bacteria showing the trend
of increasing with 10 µg/mL and decreasing with 50 µg/mL
(Figure 11C). Sphingomonas increased with the addition of
p-coumaric acid, which was consistent with the experimental
results described above. Sphingomonas and Gemmatimonas were
related to nitrogen metabolism and transformation, as well as
the change of NH4

+-N and N2O contents (Nathanae et al., 2009;
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Shen et al., 2014; Li et al., 2017). Candidatus Solibacter is able to
decompose organic matter, and the results showed it decreased
with the increase of p-coumaric acid concentration (Zak et al.,
1996). Bryobacter promoted soil carbon cycle (Li W. et al., 2012),
which showed a trend of increasing at first and then decreasing,
and was lower in the p-coumaric acid treatment (50 µg/mL) than
the control soil (Figure 11B).

In Figure 12A, most of the physical and chemical properties
(Catalase, Available Mg, Available K, Poly phenoloxidase,
S-NP, Sucrase, and EC) were negatively correlated with
Top20 bacteria, Roseiflexus, RB41, Rubrobacter, 11_24, was
positively correlated with soil physical and chemical properties,
and Urease, EC, Sucrase were positively correlated with
Microvirga, Soilrubrobacter, Marmoricola, Pseudarthrobacter,
etc. In Figure 12B, Sucrase, S-NP, Available B, and Available K
and EC was positively correlated with 7 strains, but negatively
correlated with other strains, and only Available Cu was
negatively correlated with these strains.

DISCUSSION

The soil enzyme is a key criterion for evaluating different residue
covering approaches, as it is an important indicator of soil
quality and function. Sucrase can reflect the conversion ability
of organic carbon (Cantarella et al., 2018). As the CC years
increase, the conversion of organic carbon gradually decreases,
which is consistent with studies of Liu et al. (2017). Soil urease
reflects the transformation ability of soil organic nitrogen to
available nitrogen and the supply ability of soil inorganic nitrogen
(Tawaraya et al., 2014). Phosphatase can catalyze the hydrolysis
of soil monophosphate to form inorganic phosphorus, which
can be absorbed by plants, and soil phosphatase activity can be
used to characterize the state of soil phosphate (Hu et al., 2015).
Our present study indicated that the activity of soil phosphatase
transformation decreased with the increase of CC years. In the
meantime, the content of phosphorus in soil decreased with the
increase of CC years. Soil catalase activity indicates its ability to
remove the toxicity of hydrogen peroxide, which could reflect soil
quality and the total metabolic activity of soil microorganisms
(Zhang et al., 2012). Overall, soil quality became worse with the
increase of CC years of alfalfa.

Development of alfalfa seedlings needs the support of external
nutrition. In the study plant height and root length from seeds
treated with rhizosphere soil extracts decreased with the increase
of CC years, which might be because soil nutrient condition
gradually became worse. However, theoretically nutrition for seed
germination is provided by the nutrition stored by the seed itself
and there is little need for extra nutrition. The richness of soil
nutrients only affects the growth of seedlings after germination
but does not affect seed germination rate (Meng et al., 2006). Our
present study provides two evidences that do not support the view
that the main factors of alfalfa CC obstacle were the lack of soil
nutrients. One was that seed germination does not need external
nutrients, and at least the germination rate of alfalfa seeds treated
by soil extracts from the 1-, 7-, and 14-year CC should be
similar to that of the water treatment control. However, it is

FIGURE 7 | Effect of p-coumaric acid on alfalfa seedling and root rot.
(A) Inoculated with water as control. (B) Inoculated with mixed spore
suspensions of Fusarium tricinctum, F. acuminatum, and F. oxysporum.
(C) Inoculated with mixed spore suspensions of the three Fusarium spp. and
10 µg/mL p-coumaric acid. (D) Inoculated with mixed spore suspensions of
the three Fusarium spp. and 50 µg/mL p-coumaric acid.

interesting that seed germination rate decreased significantly with
the increase of CC years. Another evidence was that nutrients in
the soil extracts from the three alfalfa cropping years were richer
than the water control. In theory, the soil extracts of the three
cropping years should have significant effects on the growth of
alfalfa seedlings compared to the control. However, our results
showed that the effects of soil extracts from CC for 7 and 14 years
on seedling growth were similar to that of the control. These
results indicated that lack of nutrients in alfalfa rhizosphere soil
was not the key factor resulting in alfalfa CC obstacles.

As our results, the accumulation of phenolic acids in the
soil after CC significantly affects the rhizosphere ecosystem
(Wang et al., 2019), for instance, by inducing changes in
microbial populations, soil enzyme activity, and nutrient cycling
(Halvorson et al., 2009; Chen et al., 2020). Many perennial and
annual crop species are threatened by CC problems associated
with reduced plant growth and vigor as well as reduced crop
yields and quality (Muscolo and Sidari, 2006; Chen et al., 2012;
Li J. P. et al., 2018; Li W. et al., 2018). In fact, previous studies have
shown that phenolic acids are the major secondary metabolite of
CC disorder (Muscolo and Sidari, 2006). In studies on cucumber,
strawberry, tobacco, and Rehmannia, soils continuously planted
were found to contain self-toxic substances, phenolic acid, which
repressed growth of the same plant (Wu et al., 2009; Chen et al.,
2011; Li W. et al., 2012; Li et al., 2015b). With the extension
of CC years, the concentration of phenolic acid in the soil
increased gradually (Huang et al., 2013). Qu and Wang (2008)
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FIGURE 8 | Rhizosphere soil of continuous cropping of alfalfa’s principal
coordinate analysis (PCoA). (A1) Bacteria and (B1) fungi. (A2) Venn diagram
of bacteria and (B2) Venn diagram of fungi.

reported that two phenolic acids from soybean root exudates,
2,4-di-tert-butylphenol and vanillic acid, had significant negative
effect on microbial communities and soybean monoculture. Li W.
et al. (2012) also found that the extracts from rhizosphere soil
of Ginseng CC had significant inhibition allelopathy on the
growth of radicle. These are consistent with our findings about
the inhibitory effects of the phenolic acids on alfalfa. With

FIGURE 9 | The relative abundance (%) of continuous cropping of alfalfa
rhizosphere soils, five repetitions per soil samples. (A) Major bacteria phylum,
(B) major fungi phylum, (C) major bacteria genus.

the increase of alfalfa CC years, the contents of four phenolic
acids (vanillic acid, p-hydroxybenzoic acid, ferulic acid, and
p-coumaric acid) increased significantly. Therefore, we thought
that the occurrence of alfalfa CC obstacle may be related to
the phenolic acids.

Crop roots respond to pathogen infections by changing the
amount and composition of root exudates (Lanoue et al., 2010;
Liu et al., 2020). Studies showed that cucumber CC usually led
to the accumulation of soil-borne pathogens such as Fusarium
spp. (Zhou et al., 2012). In alfalfa CC, we also found that root rot
caused by diverse pathogens increased with the increase of alfalfa
CC years. In addition, the accumulation of soil-borne pathogens
is considered to be one of the main reasons for the failure of
Notoginseng replanting (Li et al., 2019). Wu L. K. et al. (2015)
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FIGURE 10 | Alfalfa rhizosphere with adding p-coumaric acid’s principal coordinate analysis (PCoA). (A1) Bacteria and (B1) fungi. (A2) Venn diagram of bacteria,
and (B2) Venn diagram of fungi.
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FIGURE 11 | The relative abundance (%) of adding p-coumaric acid alfalfa rhizosphere soils, five repetitions per soil samples. (A) Major bacteria phylum, (B) major
fungi phylum, (C) major bacteria genus.
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FIGURE 12 | RDA correlation analysis of soil physical and chemical properties with Top20 bacteria. (A) and Top20 fungi (B).

reported that a mixture of phenolic acids promoted the growth
of F. oxysporum hyphae, spore formation, and production. Zhou
et al. (2012) indicated that the amount of p-coumaric acid from
cucumber could increase the number and population density of
F. oxysporum in soil and disease incidence in the field. However,
the results of Yuan et al. (2019) showed that p-coumaric has a
strong inhibitory effect on the growth on fungi in vitro, especially
Alternaria alternata. A number of studies also demonstrated that
CC significantly increased levels of fungal pathogens causing root
diseases of Rehmannia glutinosa, soybean, and cucumber (Guo
et al., 2011; Zhou et al., 2012; Zhou and Wu, 2012b; Wu L. K.
et al., 2015). These studies are in agreement with our research
that alfalfa root rot was getting more severe with the increase of
CC years. Our present study further confirmed that metabolites
secreted by alfalfa rhizosphere, such as p-coumaric acid, had
strong effects on alfalfa root rot and may be the key factor of
alfalfa CC obstacle.

Soil bacteria are responsible for decomposing organic matter
into inorganic matter and thus maintaining soil fertility,
so we did a differential analysis of soil bacterial flora
for different years of CC. The results show that Gaiella,
Pseudonocarida, Mycobacterium, and Bradyrhizobium in the soil
samples increased gradually with the increase of CC years, and
Solirubrobacter decreased with the increase of CC years. The
relative abundance of Sphingomonas was less than 1% in 1-
year and more than 1.4% in 14-year treatments, showing an
increase with CC. Other studies have shown that Sphingomonas
was a nutrient-poor nanobacterium, which could adapt to
heterotrophic growth under conditions of nutrient depletion
(Kämpfer et al., 2002; Delmotte et al., 2009; Williams et al.,
2009; Sharma et al., 2010; Kertesz et al., 2017). In this paper,
the increase of Sphingomonas indicates that after 14 years of
continuous cultivation, the rhizosphere soil presented a state of

nutrient depletion. This is consistent with the results of Chen
et al. (2020). The relative abundance of bacteria RB41 was higher
than 7.2% in 14 years of CC, which was higher than in 1 year and
7 year. The acid bacteria may play an important role in remaining
the metabolism of soil under long-term low nutrient stress, and
could degrade the polymer of plant residues (Aislabie et al., 2006;
Fan et al., 2018). Bradyrhizobium is a diazotrophic bacterium
in soil, which plays an important role in nodule formation,
ammonia production, and nitrogen fixation symbiosis in legume
roots (Masuda et al., 2016; Shiro et al., 2016; Saeki et al., 2017;
Siqueira et al., 2017). The difference of relative abundance of
Bradyrhizobium in three different CC years was significant, which
was higher in 14-year CC than in 1-year. Two fungi Gibberella
and Metarhizium were 11.5% in soil after 1 year of CC and 1–2%
after 14 years of CC. In the CC process, the bacterial community
in soil decreased significantly.

The change of alfalfa rhizosphere microbial communities
treated with p-coumaric acid was basically consistent with
that of alfalfa CC obstacle. There were some differences
between results in the potted alfalfa study and the actual field
conditions, which was probably due to other secondary autotoxic
substances. Overall, alfalfa CC had an impact on soil microbial
communities, and the accumulation of autotoxins in rhizosphere
soils increased harmful microorganisms and decreased beneficial
microorganisms (such as Gemmatimonadetes and Sphingomonas
et al.), resulting in imbalance of microbial community and
degradation of soil ecological function (Liu et al., 2019).

And the results of the four phenolic acid treated seeds
and pathogens were similar to those treated by soil extracts.
The occurrence of CC obstacle was directly related to the
four phenolic acids secreted by alfalfa rhizosphere. Among
them, the effects of ferulic acid and p-coumaric acid on
alfalfa seed germination and mycelium growth were significant.
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The effects of p-coumaric acid on alfalfa seedling development
were obvious, and the effects of ferulic acid on spore production
and germination of pathogenic fungi causing alfalfa root rot were
significant. Bi et al. (2010) reported that nine phenolic acids,
such as p-hydroxybenzoic acid, coumaric acid, and ferulic acid,
were detected in commercially grown Ginseng rhizosphere soils,
which could inhibit the growth of radicles and buds. Zhou and
Wu (2012a) found p-coumaric acid, an autotoxin of cucumber,
increased F. oxysporum f. sp. cucumerinum population densities
in soil and the severity of Fusarium wilt under field conditions.
Wu L. K. et al. (2015) indicated that phenolic acid mixtures
promoted hyphal growth, spore formation, and production of
F. oxysporum that causes wilt disease of Rehmannia glutinosa.
Tao et al. (2018) reported that both p-hydroxybenzoic acid and
ferulic acid could inhibit alfalfa seed germination and seedling
development. Therefore, we think that the four phenolic acids
secreted in the rhizosphere of alfalfa were the main factors
causing severe alfalfa root rot in the alfalfa CC obstacle.

CONCLUSION

In this study, we found that the main factors causing CC obstacle
were not the lack of nutrients or water in alfalfa rhizosphere soil.
Based on metabolomics and microbiology analysis, the effects
of certain key metabolites, including p-coumaric acid, ferulic
acid, and other phenolic acids, on alfalfa seed and seedling
growth and root rot pathogens were basically consistent with
the influence of CC obstacles in the field. In addition, with
the increase of CC years, the microbial community in soil
changed from fungal to bacterial, and beneficial microorganisms
decreased with the increase of CC years. The effects of the key
metabolites from alfalfa rhizosphere on alfalfa seed germination,
seedling growth, and root rot were further verified, which
resulted in similar alfalfa performance as in CC obstacles.
Among these key metabolites, the autotoxicity of p-coumaric acid
was the strongest. This study fully proved that the continuous
accumulation of autotoxic substances in the rhizosphere was the
key factor of alfalfa CC obstacle.
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