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Abstract: A poor diet cannot fully explain the prevalence of obesity. Other environmental factors
(e.g., heavy metals) have been reported to be associated with obesity. However, limited evidence is
available for the combined effect of these factors on obesity. Therefore, we conducted a cross-sectional
study and used the data from the National Health and Examination Survey (2007–2018) to explore
the associations between diet quality and heavy metals and obesity. Diet quality was evaluated
by the Healthy Eating Index-2015 (HEI-2015) score. Heavy metals included serum cadmium (Cd),
lead (Pb), and mercury (Hg). We included 15,959 adults, with 5799 of obesity (body mass index
≥ 30 kg/m2). After adjustment for covariates, every interquartile range increase in HEI-2015 scores,
Pb, Cd and Hg was associated with a 35% (odds ratios [OR] = 0.65, 95% confidence interval [CI]:
0.60, 0.70), 11% (OR = 0.89, 95% CI: 0.82, 0.98), 9% (OR = 0.91, 95% CI: 0.87, 0.96), 5% (OR = 0.85,
95% CI: 0.82, 0.89) reduction in risk of peripheral obesity, respectively. In addition, the association
between the HEI-2015 scores and peripheral obesity was attenuated by higher levels of heavy metals
(All p interaction < 0.05). Results remained similar for abdominal obesity. Our study reveals the distinct
effects of a high-quality diet and heavy metals on obesity prevalence, and the beneficial effect of a
high-quality diet could be weakened by higher levels of heavy metals.

Keywords: obesity; diet quality; heavy metal; cross-sectional study

1. Introduction

Over the past five decades, the global prevalence of obesity has soared to a pandemic
level [1,2], which has increased by 80% from 1980 to 2015 [3]. A study predicted that
57.8% of the world population would be overweight or obese by 2030 without effective
intervention on current trends [3]. Many studies have identified obesity as a critical risk
factor for all-cause mortality, metabolic diseases, cardiovascular diseases, musculoskeletal
disease, Alzheimer’s disease, depression, and cancers in multiple organs (e.g., breast,
ovarian, prostate, liver, kidney, and colon) [4,5]. Meanwhile, obesity is associated with
unemployment, social disadvantages, and reduced socio-economic productivity [1].

High caloric diets and low physical levels are universally acknowledged as risk factors
for obesity. Other factors might also exert effects on the risk of obesity [6]. Recent studies
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have suggested that environmental exposure, such as heavy metals [7], may play an
important role in the onset of obesity. Some experimental evidence suggested that the
hypothalamic dopaminergic system perturbation, endoplasmic reticulum stress, oxidative
stress, impaired adipogenesis, and adipocytokines secretion might explain the associations
between heavy metals and obesity [8–11]. However, the results from epidemiological
studies are still controversial. A cross-sectional study conducted in the US suggested
that barium (Ba) and thallium (Tl) were positively, while cadmium (Cd), cobalt (Co),
cesium (Cs), and lead (Pb) were inversely associated with body mass index (BMI) and
waist circumference (WC) [12]. However, the Korea National Health and Nutrition Survey
reported that higher levels of blood Cd and mercury (Hg) were associated with a higher
risk of obesity [13]. Moreover, a prospective cohort study observed no association of arsenic
(As), Cd, Hg, Pb, or Co at baseline with BMI [14].

In the general non-smoking and non-occupationally exposed population, food is the
most important source of heavy metals in the human body (e.g., Cd, Hg, and Pb) [15].
Metals are present in most foods at different concentrations as plant crops can absorb them
from polluted soil or water and spread them through the food chain [16]. For example,
fish, shellfish, and sea mammals are the main dietary sources of Hg, mainly methylated Hg
(MeHg) [17]. Excessive heavy metals could accumulate in the body through food chains
and disturb some essential nutrients’ normal absorption, distribution, or function [18].

Although numerous studies have investigated the association between diet and obesity,
limited studies are available on the combined effect of heavy metals and diet on obesity.
Herein, we aimed to explore the associations of heavy metals and diet quality with the risk
of obesity and their potential interactive effects in this study.

2. Materials and Methods
2.1. Data Resource

NHANES is a nationally representative cross-sectional study, aiming to assess the
health and nutritional information of adults and children in the United States (https://
www.cdc.gov/nchs/nhanes/index.htm accessed on 20 January 2022). The NHANES used
a stratified multistage probability cluster design and collected information on participants’
interviews (e.g., demographic, socioeconomic, dietary, and health-related questions) and
laboratory tests (e.g., medical, dental, physiological measurements, and laboratory tests).
The NHANES study protocol was reviewed and approved by the research ethics review
board of the National Center for Health Statistics of the Centers for Disease Control and
Prevention, and informed consent was obtained from all participants [19].

Considering the different measurement methods for some variables during the study
period (e.g., diet, and physical activity), we used data from the six continuous NHANES cy-
cles (i.e., 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, and 2017–2018). Among
the 59,842 participants enrolled in NHANES 2007–2018, participants younger than 20 years
(n = 25,072) and reported currently being pregnant (n = 372) were excluded. Moreover, we
also excluded the participants without complete data on two 24-h dietary recalls (n = 1294),
blood concentrations of heavy metals (n = 6109), BMI (n = 1829) and WC (n = 1599), and
other covariates (n = 7608). Finally, a total of 15,959 individuals were included in the
final analysis. Figure 1 shows the detailed flowchart for inclusion/exclusion criteria for
study subjects.

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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Figure 1. Flowchart of the study population.

2.2. Diet Quality Scores

Dietary intake was collected from the NHANES using two 24-h dietary recalls. The
first 24-h recall interview was conducted in person in the Mobile Examination Center (MEC)
by trained interviewers, and the second interview was performed by telephone or mail
three to ten days later. Diet was assessed with the average of two 24-h dietary recalls, and
diet quality was measured using the Healthy Eating Index-2015 (HEI-2015). HEI-2015 is
the latest version of HEI, which can measure diet quality independent of quantity, assess
alignment with the U.S. Dietary Guidelines for Americans (DGA) and monitor changes
in dietary patterns [20]. HEI-2015 comprises 13 components, including nine adequacy
components (total vegetables, greens and beans, total fruits, whole fruits, whole grains,
dairy, total protein foods, seafood and plant proteins, and fatty acids) and four moderation
components (sodium, refined grains, saturated fats, and added sugars) (Table S1). The
HEI-2015 scores ranged from 0 to 100, with a higher score indicating a better quality of
overall diet [20].

2.3. Heavy Metal Measurements

The methodological details of the laboratory analyses have been described on the
NHANES website. Briefly, whole blood Pb, Cd, and Hg concentrations were measured by
the Centers for Disease Control and Prevention’s National Center for Environmental Health
(NCEH) [19]. Pb, Cd, and Hg levels were determined by inductively coupled plasma
dynamic reaction cell-mass spectrometry (ICP-DRC-MS). Metal concentrations below the
limit of detection (LOD) were imputed using the LOD divided by the square root of two.

2.4. Obesity

Anthropometric parameters were measured by trained health technicians at the MEC
following the standard protocols [19]. Standing height was measured to the nearest 0.1 cm,
body weight was measured to the nearest 0.1 kg, and WC was measured to the nearest
0.1 cm. BMI was calculated as weight in kilograms divided by height in meters squared.
Peripheral obesity was defined as BMI ≥ 30 kg/m2, and abdominal obesity was defined as
WC ≥ 102 cm in males and ≥88 cm in females [21].

2.5. Covariates

Data on covariates included demographic characteristics, individual-level socioeco-
nomic status (SES), lifestyle factors, and chronic health conditions. Demographic charac-
teristics included age (continuous in years), sex (males and females), race/ethnicity (non-
Hispanic white, non-Hispanic Black, Hispanic, and others), marital status (married/living
with a partner, divorced/widowed/separated, and single/never married). Individual-level
SES included education level and family income. Education level was categorized as less
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than high school, high school or General Educational Development (GED), and college or
above. Family income was divided into three levels, including <1.30, 1.30 ≥ & < 3.49, and
≥3.50, by the ratio of family income to poverty (FPL) [22]. Lifestyle factors were obtained
by questionnaire, including smoking (current, former, and never), alcohol consumption
status (never, light, moderate, and heavy), and physical activity (insufficient activity and
recommended activity). Current smokers were defined as individuals who smoked at
least 100 cigarettes in their lifetime and currently smoking. Former smokers were defined
as having more than 100 cigarettes in their lifetime but did not smoke at the time of the
interview [23]. Alcohol intake was calculated based on self-reported drinking frequency
(days per week, month, or year) and drinking quantity in the past year, and was categorized
into four groups, including never (0 drink per week), light (<1 drink per week), moderate
(1 ≥ & < 8 drinks per week), and heavy (≥8 drinks per week) [24]. According to World
Health Organization recommendations on physical activity for health, physical activity
was categorized into insufficient activity (<150 min of moderate-intensity activity each
week, <75 min of vigorous-intensity activity, and less than an equivalent combination) and
recommended activity (≥150 min of moderate-intensity activity each week, ≥75 min of
vigorous-intensity activity, or greater than or equal to an equivalent combination) [25,26].
Chronic health conditions, including diabetes and cardiovascular disease (congestive heart
failure, congestive heart failure, angina/angina pectoris, heart attack, or stroke), were
measured in the “diabetes” and “Medical Conditions” questionnaires, respectively.

2.6. Statistical Analysis

Baseline characteristics of study participants were presented as percentages for cate-
gorical variables and mean ± standard deviation (SD) for normally distributed variables or
median (P25, P75) for non-normally distributed variables. The differences in characteris-
tics between obesity and non-obesity were tested using Student’s t-test for normal data,
Wilcoxon rank-sum test for non-normal data, and Chi-square test for categorical variables.
All blood metal concentrations (Pb, Hg, and Cd) were log10-transformed due to right-
skewed distribution and presented as geometric means (GMs) and geometric standard
deviation (GSD). Coefficients of correlations between heavy metals (Pb, Hg, and Cd) and the
components of the HEI-2015 scores were calculated and presented via a correlation-matrix
heat map.

We used weighted logistic regression models to estimate odds ratios (ORs) and 95%
confidence intervals (CIs) for the associations of HEI-2015 scores and blood heavy metals
with the risk of obesity. Covariates were included in the following models: Model 1
adjusted for age, sex, ethnicity, education level, family income, and marriage; Model 2
further adjusted for smoking status, alcohol consumption, and physical activity; Model 3
further adjusted for prevalence of diabetes and cardiovascular disease.

Stratified analyses on the associations between HEI-2015 scores and obesity were per-
formed by age (20–29, 30–44, 45–64, and ≥65 years), sex (males and females), race/ethnicity
(non-Hispanic white, non-Hispanic Black, Hispanic, and others), education level (less than
high school, high school or GED, and college or above), marital status (married/living
with partner, divorced/widowed/separated, and single/never married), family income
(<1.30, 1.30–3.49 and ≥3.50), smoking status (current, former, and never), alcohol consump-
tion status (never, light, moderate, and heavy), physical activity (insufficient activity and
recommended activity), diabetes (yes and no), and cardiovascular disease (yes and no).
For heavy metals, subgroup analyses were performed by age, sex, smoking status, and
alcohol consumption status. Potential interactions were tested by including a multiplicative
interaction term in the regression models. Moreover, interactive effects between heavy
metals and HEI-2015 scores on the risk of obesity were explored by calculating the ORs for
the associations between HEI-2015 scores and obesity in different quartiles of heavy metals.

Several sensitivity analyses were performed in our study to assess the robustness of
the results. Firstly, participants with diabetes or cardiovascular disease were excluded since
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they might change their lifestyles and lose weight. Secondly, we repeated the analyses
using data from the eight continuous NHANES cycles during 2003–2018.

All tests were two-sided, and p values less than 0.05 were considered statistically sig-
nificant. All analyses accounted for the complex survey design and NHANES probabilistic
sampling weights using R software (version 3.6.3) with the “survey” package.

3. Results

Overall, a total of 15,959 participants were included in the final analysis, and the mean
age was 45.71 (±16.31) years, and 47.27% were females. About 36.3% of participants had
peripheral obesity, and 53.4% had abdominal obesity. Mean concentrations of blood Cd, Pb,
and Hg were 0.32 (±1.40), 1.06 (±1.26), and 0.92 (±1.64), respectively. The mean score of
HEI-2015 was 53.97 (±13.62). In general, obese participants were more likely to be older,
smokers, nondrinkers, divorced, Non-Hispanic Black, have lower education, lower family
income, or lower physical activity as compared with normal-weight participants (Table 1).

As shown in Figure 2, a number of dietary components were associated with blood
levels of heavy metals (Pb, Cd, and Hg). Especially, higher refined grain and sodium
consumption was correlated with Cd (p < 0.001). Vegetables, refined grains, sodium, and
saturated fats were correlated with significantly higher levels of blood Pb (p < 0.001). In
addition, Hg was correlated with seafood and plant protein, added sugar, total fruits, and
vegetable intake (p < 0.001).

Table 2 shows the multivariate-adjusted ORs and 95% CIs for the associations of
HEI-2015 scores and heavy metals with adiposity indicators. In the full adjusted model, a
higher HEI-2015 score was associated with a lower risk of peripheral obesity (Quartile 4 vs.
Quartile 1: OR = 0.47, 95% CI: 0.41, 0.54) and abdominal obesity (Quartile 4 vs. Quartile
1: OR = 0.51, 95% CI: 0.45, 0.57). Moreover, all of the three heavy metals were inversely
associated with risk of peripheral obesity (Quartile 4 vs. Quartile 1: OR = 0.48, 95% CI: 0.40,
0.57 for Pb; OR = 0.47, 95% CI: 0.39, 0.59 for Cd; OR = 0.57, 95% CI: 0.49, 0.67 for Hg) and
abdominal obesity (Quartile 4 vs. Quartile 1: OR = 0.55, 95% CI: 0.46, 0.65 for Pb; OR = 0.50,
95% CI: 0.42, 0.60 for Cd; OR = 0.56, 95% CI: 0.49, 0.65 for Hg).

In stratified analyses, the associations of HEI-2015 scores with peripheral and ab-
dominal obesities did not vary across the subgroups by age, alcohol consumption status,
physical activity, race/ethnicity, diabetes, and cardiovascular disease (All p interaction > 0.05,
Figure 3). However, stronger associations were observed among females, nonsmokers,
and individuals with higher education, higher income, and married/living with partners
(All p interaction < 0.05, Figure 3). For heavy metals, stronger associations were observed
among women and older participants (All p interaction < 0.05, Figure 4). Interaction analysis
for HEI-2015 scores and heavy metals showed that higher concentrations of heavy metals
could attenuate the beneficial effect of healthy dietary patterns (higher diet scores) on the
risk of peripheral or abdominal obesity. However, the association between HEI-2015 in the
highest quartile and obesity was not offset by heavy metals, even in their highest quartiles.
(Figure 5).

Sensitivity analysis excluding subjects with diabetes or cardiovascular disease did not
materially change our results (Table S2). Moreover, sensitivity analysis using NHANES
subsets from 2003 to 2018 obtained similar results for the associations of HEI-2015 scores
and heavy metals with obesity (Table S3).
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Table 1. Demographic characteristics of the NHANES 2007–2018 participants (n = 15,959).

Characteristics Total
(n = 15,959)

No Obesity
(n = 10,160)

Obesity
(n = 5799) p Value

Age (years), mean (SD) 45.71 (16.31) 45.27(16.74) 46.53 (15.46) 0.004

Sex, n (%) 0.509

Male 8415 (52.73) 5582 (54.94) 2833 (48.85)

Female 7544 (47.27) 4578 (45.06) 2966 (51.15)

Race/ethnicity, n (%) <0.001

Non-Hispanic White 7240 (45.37) 4822 (47.46) 2418 (41.70)

Non-Hispanic Black 3164 (19.83) 1657 (16.31) 1507 (25.99)

Other Hispanic 1509 (9.46) 967 (9.52) 542 (9.35)

Others 4046 (25.35) 2714 (26.71) 1332 (22.97)

Education level, n (%) <0.001

Less than high school 3231 (20.25) 2030 (19.98) 1201 (20.71)

High school graduate or GED 3584 (22.46) 2151 (21.17) 1433 (24.71)

College or above 9144 (57.30) 5979 (58.85) 3165 (54.58)

Marital status, n (%) <0.001

Married/living with partner 9648 (60.45) 6154 (60.57) 3494 (60.25)

Divorced/widowed/separated 3129 (19.61) 1876 (18.46) 1253 (21.61)

Single/never married 3182 (19.94) 2130 (20.96) 1052 (18.14)

Ratio of family income to poverty level, n (%) 0.005

<1.30 4738 (29.69) 2957 (29.10) 1781 (30.71)

1.30–3.49 5936 (37.20) 3670 (36.12) 2266 (39.08)

≥3.50 5285 (33.12) 3533 (34.77) 1752 (30.21)

Smoking status, n (%) <0.001

Never 8844 (55.42) 5599 (55.11) 3245 (55.96)
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Table 1. Cont.

Characteristics Total
(n = 15,959)

No Obesity
(n = 10,160)

Obesity
(n = 5799) p Value

Former 3818 (23.92) 2286 (22.50) 1532 (26.42)

Current 3297 (20.66) 2275 (22.39) 1022 (17.62)

Alcohol consumption status, n (%) <0.001

Never 2429 (15.22) 1422 (14.00) 1007 (17.37)

Light 6566 (41.14) 3984 (39.21) 2582 (44.52)

Moderate 5102 (31.97) 3465 (34.10) 1637 (28.23)

Heavy 1862 (11.67) 1289 (12.69) 573 (9.88)

Physical activity, n (%) <0.001

Insufficient activity 2853 (17.88) 1698 (16.71) 1155 (19.92)

Recommended activity 13,106 (82.12) 8462 (83.29) 4644 (80.08)

Diabetes, n (%) <0.001

Yes 2013 (12.61) 832 (8.19) 1181 (20.37)

No 13,946 (87.39) 9328 (91.81) 4618 (79.63)

Cardiovascular disease, n (%) <0.001

Yes 1318 (8.26) 730 (7.19) 588 (10.14)

No 14,641 (91.74) 9430 (92.81) 5211 (89.86)

BMI (kg/m2), mean (SD) 28.63 (6.51) 24.88 (3.10) 35.60 (5.34) <0.001

Waist circumference (cm), mean (SD) 98.21 (16.08) 89.64 (10.17) 114.13 (12.52) <0.001

HEI-2015 total score, mean (SD) 53.97 (13.62) 55.17 (13.89) 51.74 (12.82) <0.001

Cadmium (µg/L), GM (GSD) 0.32 (1.40) 0.33 (1.41) 0.30 (1.38) <0.001 *

Lead (µg/dL), GM (GSD) 1.06 (1.26) 1.11 (1.25) 0.96 (1.26) <0.001 *

Total mercury (µg/L), GM (GSD) 0.92 (1.64) 0.99 (1.67) 0.80 (1.52) <0.001 *

Note: NHANES, National Health and Nutrition Examination Survey; BMI, body mass index; WC, waist circumference; HEI, The Healthy Eating Index. Data are presented as mean ± SD,
Geometric mean (GM) ± geometric standard deviation (GSD), or n (%). The t-test and χ2 test were between the peripheral obesity and no obesity groups. * Wilcoxon rank-sum test was
used for non-normal distribution data. Obesity was defined as BMI ≥ 30 kg/m2.
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Table 2. Association of HEI-2015 total scores and heavy metals with obesity in NHANES 2007–2018 (n = 15,959).

Exposure
Peripheral Obesity a Abdominal Obesity b

Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)
Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)

HEI-2015 total score

Quartile 1 f 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Quartile 2 0.84 (0.73, 0.95) 0.82 (0.71, 0.93) 0.81 (0.70, 0.93) 0.91 (0.78, 1.05) 0.89 (0.76, 1.03) 0.88 (0.75, 1.03)
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Table 2. Cont.

Exposure
Peripheral Obesity a Abdominal Obesity b

Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)
Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)

Quartile 3 0.69 (0.60, 0.79) 0.67 (0.58, 0.77) 0.67 (0.58, 0.77) 0.67(0.59, 0.79) 0.66(0.57, 0.76) 0.66 (0.57, 0.77)

Quartile 4 0.49 (0.44, 0.56) 0.48 (0.42, 0.54) 0.47 (0.41, 0.54) 0.53 (0.46, 0.60) 0.51(0.45, 0.58) 0.51 (0.45, 0.57)

P for trend g <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Continuous (per IQR) 0.67 (0.62, 0.71) 0.65 (0.61, 0.70) 0.65 (0.60, 0.70) 0.67 (0.63, 0.73) 0.66 (0.62, 0.71) 0.66 (0.62, 0.71)

Pb

Quartile 1 f 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Quartile 2 0.79 (0.68, 0.91) 0.81 (0.70, 0.93) 0.83 (0.72, 0.96) 0.83 (0.72, 0.95) 0.83 (0.72, 0.96) 0.85 (0.74, 0.98)

Quartile 3 0.54 (0.46, 0.62) 0.57 (0.49, 0.66) 0.62 (0.54, 0.72) 0.68 (0.59, 0.79) 0.69 (0.59, 0.81) 0.74 (0.64, 0.87)

Quartile 4 0.39 (0.33, 0.47) 0.42 (0.35, 0.50) 0.48 (0.40, 0.57) 0.49 (0.41, 0.57) 0.49 (0.41, 0.59) 0.55 (0.46, 0.65)

P for trend g 0.001 0.004 0.013 <0.001 <0.001 <0.001

Continuous (per IQR) 0.83 (0.75, 0.93) 0.86 (0.78, 0.95) 0.89 (0.82, 0.98) 0.87 (0.82, 0.93) 0.88 (0.83, 0.94) 0.90 (0.86, 0.96)

Cd

Quartile 1 f 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Quartile 2 0.84 (0.74, 0.96) 0.83 (0.73, 0.94) 0.85 (0.75, 0.97) 0.86 (0.76, 0.99) 0.83 (0.73, 0.95) 0.85 (0.74, 0.97)

Quartile 3 0.69 (0.60, 0.81) 0.66 (0.57, 0.78) 0.70 (0.60, 0.82) 0.75 (0.64, 0.87) 0.69 (0.59, 0.81) 0.72 (0.61, 0.84)

Quartile 4 0.51 (0.45, 0.59) 0.45 (0.38, 0.54) 0.47 (0.39, 0.57) 0.59 (0.52, 0.68) 0.48 (0.40, 0.57) 0.50 (0.42, 0.60)

P for trend g <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Continuous (per IQR) 0.90 (0.86, 0.94) 0.91 (0.87, 0.95) 0.91 (0.87, 0.96) 0.93 (0.89, 0.96) 0.91 (0.88, 0.95) 0.92 (0.88, 0.96)

Hg

Quartile 1 f 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
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Table 2. Cont.

Exposure
Peripheral Obesity a Abdominal Obesity b

Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)
Model 1 c

OR (95% CI)
Model 2 d

OR (95% CI)
Model 3 e

OR (95% CI)

Quartile 2 0.92 (0.81, 1.04) 0.92 (0.81, 1.04) 0.93 (0.82, 1.06) 0.99 (0.85, 1.14) 0.99 (0.85, 1.14) 1.00 (0.86, 1.16)

Quartile 3 0.83 (0.72, 0.96) 0.85 (0.73, 0.98) 0.88 (0.75, 1.03) 0.79 (0.67, 0.93) 0.79 (0.67, 0.94) 0.81 (0.69, 0.96)

Quartile 4 0.53 (0.45, 0.62) 0.55 (0.47, 0.65) 0.57 (0.49, 0.67) 0.54 (0.46, 0.62) 0.55 (0.47, 0.63) 0.56 (0.49, 0.65)

p for trend g <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Continuous (per IQR) 0.84 (0.80, 0.87) 0.85 (0.81, 0.88) 0.85 (0.82, 0.89) 0.85 (0.82, 0.89) 0.86 (0.83, 0.89) 0.86 (0.83, 0.89)

Note: HEI, The Healthy Eating Index; CI, confidence interval; OR, odds ratio; IQR, interquartile range; Pb, Lead; Cd, Cadmium; Hg, Total mercury. a Peripheral obesity was defined as
BMI ≥ 30 kg/m2. b Abdominal peripheral obesity was defined as a WC of ≥102 cm for males and ≥88 cm for females. c Adjusted for demographics characteristics, including sex,
age, race, income, education, and marriage. d Adjusted for covariates in model 1+smoking, drinking status, and physical activity.e Adjusted for covariates in model 2+diabetes and
cardiovascular disease. f Least HEI-2015 total score quartile. g P values for trend were derived based on ordinal quartile values.
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4. Discussions

Our study was based on a large population and showed that higher HEI-2015 scores
were significantly associated with lower peripheral or central obesity prevalence. Stronger
associations were observed among females, nonsmokers, and individuals with higher
education, higher income, and married or living with a partner. Similar associations were
observed for heavy metals (Pb, Cd, and Hg) and obesity. We also found interactive effects
between heavy metals and diet scores on the risk of obesity.

Previous studies have established that one of the leading causes of obesity is positive
energy balance, in which energy intake exceeds energy expenditure. In addition, dietary
components play crucial roles in metabolism and energy balance [27]. For example, a
low-carbohydrate, high-fat diet could reduce insulin secretion, increase fat mobilization
from adipose tissue, and stimulate free fatty acids’ oxidation, thus increasing body fat
loss and energy expenditure [28,29]. High-protein diet could maintain basal body fat,
prevent fat-free mass loss, increase satiety, produce thermal effects, and lead to weight
loss [30]. The HEI-2015 score was commonly used to measure dietary patterns in previ-
ous studies [20]. Higher HEI-2015 scores are similar to the “Mediterranean-like” dietary
pattern characterized by higher consumption of fruits, vegetables, whole grains, white
meats, fish, and monounsaturated fats, which could reduce the risk of oxidative stress and
inflammation [31,32]. However, lower HEI-2015 scores are similar to the “calorie-dense”
pattern characterized by high intakes of refined grains, starches, desserts, sweets, red meats,
alcohol, and saturated fats, leading to higher calorie intakes [32]. Our results showed that
higher HEI-2015 scores were significantly associated with a lower risk of obesity, consistent
with previous studies. A previous study using NHANES III data found that the HEI-1995
score was associated with a lower risk for abdominal obesity in US adults [33]. Inverse
associations of HEI-2005 with BMI and WC were observed in a longitudinal study based
on the Multi-Ethnic Study of Atherosclerosis (MESA) [34]. However, a study in Brazil
reported no relationship of HEI with BMI and WC [35]. A possible explanation of the
discrepancies may be that HEI, designed for US populations, is a measure for assessing
whether a food set aligns with the DGA [36] and may not be suitable for dietary assessment
in other populations [35,37].

We also observed more substantial beneficial effects of diet quality for obesity among
women, non-smokers, and participants who were married to/lived with a partner, had
higher education and higher income, or had more physical activity. A Canadian Com-
munity Health Survey revealed a stronger association between diet quality and obesity
in women [38]. A study on the health effects of overweight and obesity in 195 countries
over 25 years suggested the prevalence of obesity was higher in women than in men at
all sociodemographic levels [39]. Meanwhile, individuals’ positions in the social hierar-
chy (such as educational attainment, household income, and neighborhood deprivation)
shape their access to health-promoting resources and their exposure and vulnerability to
adverse environmental conditions [40,41]. Furthermore, a systematic review showed that
in most cases, subjects who adhered to diet quality indices had favorable health behaviors
associated with being older, married, higher education levels, and lower smoking [42].

In the present study, we found that heavy metals (Pb, Cd, and Hg) were inversely
associated with risks of peripheral or abdominal obesity, and this finding was consistent
with previous studies. For example, a cross-sectional study using NHANES data from 1999
to 2002 observed that Pb and Cd were inversely associated with BMI and WC [12]. Another
study using the NHANES data during 2007–2010 reported that blood Hg was also inversely
associated with BMI in adults [43]. However, the mechanism for the relationship between
heavy metals and obesity remains unclear. Some animal studies indicated that Pb could
reduce weight by perturbating the hypothalamic dopaminergic system [8]. As an important
endocrine disruptor, Hg has been indicated to have a potential role in the pathogenesis of
obesity [44]. For example, animal experiments showed that HgCl2 treatment significantly
decreased serum leptin levels with the down-regulation of leptin mRNA expression in white
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adipose tissue and reduced adipocyte size [9]. Cd may affect body weight by increasing
oxidative stress, affecting adipose tissue and glucose metabolism [45].

Our study also observed stronger associations between heavy metals and obesity
among women and older participants. Women are more susceptible to heavy metals
than men due to the different redox homeostasis processes, hormonal influences (sexual
maturation and menopause), and immune responses between the sexes [46,47]. Moreover,
behavioral factors, such as smoking and occupational exposure, might affect the different
susceptibility between men and women. For example, smokers could be less sensitive
to heavy metals contained in tobacco [48]. Women are more susceptible to the adverse
effects of heavy metals than men due to the lower smoking rate in women. Compared with
young people, the elderly may have higher concentrations of heavy metals, due to their
accumulative effect on tissues and organs [49].

We found that heavy metals (Pb, Hg, and Cd) were associated with intakes of specific
food groups. Our results were consistent with previous studies analyzing the elemental
content of these foods and their contribution to human exposure. The FDA’s Total Diet
Study, a comprehensive assessment of heavy metals in U.S. food sources, reported that Pb
was primarily from cucumbers, sweet peaches, shrimp, cattle liver, and fruit cocktails; Hg
was mainly from canned shrimp, tuna casserole, tuna, haddock, and fish sticks; and Cd
comes mainly from beef liver, spinach, and iceberg lettuce [50]. A cross-sectional study
suggested that fish and seafood were the sources of the largest quantity of dietary Hg
exposure, and the source of non-seafood products (e.g., vegetables, and rice) could not
be ignored [17]. Meanwhile, a study showed that cereals and breads, followed by leafy
vegetables including potatoes, were the top food groups contributing to Americans’ dietary
Cd intake, accounting for 66% of the total estimated dietary Cd [51]. Collectively, due to
food being an important source of heavy metals, it is critical for us to reduce exposure by
lowering the safety threshold in foods [52]. We also found interactive effects between heavy
metals and diet on the risk of obesity. High concentrations of heavy metals could attenuate
the beneficial effect of healthy dietary patterns on obesity. Previous studies reported that
trace elements and vitamins rich in high-quality dietary patterns were positively associated
with healthy body weight. For example, zinc (Zn) and related protein families are involved
in adipocyte metabolism, which plays a crucial role in controlling energy balance [53].
Vitamin A and vitamin A-binding proteins play essential roles in the metabolic process,
such as adipocyte differentiation, adipogenesis, and lipid metabolism. Dietary vitamin A
supplementation administration has been recommended to prevent the development of
obesity [54]. Our study also found inverse associations between HEI-2015 scores and the
risk of obesity. However, we noticed that the beneficial effect of HEI-2015 scores could be
attenuated in subjects with higher serum heavy metals. Possible explanations could be that
high heavy metals in the body might interfere with the normal functional performance
of nutrients. Previous studies have reported that a high Hg concentration could block Zn
intake [55], and Cd might prevent vitamin A from releasing into the blood [56]. However,
we also noticed that the offsetting effect of heavy metals was more significant when the diet
had a lower score. In other words, people with a less healthy diet should pay more attention
to the effect of heavy metals. Further studies are needed to explore the relationship between
nutrients and heavy metals in the metabolic process.

Obesity, as one of the most serious global health challenges, could impair health and
quality of life and increase the burden on the healthcare system [57]. Therefore, urgent
action is needed to prevent and control obesity. The results of our study could provide
new evidence on obesity management strategies and policies to better control and prevent
obesity. However, several limitations should be considered in our study. Firstly, the study
design was cross-sectional, and the exposures and outcomes were surveyed simultaneously,
it may be difficult to establish the temporal sequence between exposures and outcomes.
Therefore, the results cannot conclude a cause–effect relationship, and reverse causality
could not be ruled out. Secondly, the HEI-2015 score was calculated based on self-reported
24-h dietary recall data, and participants were subject to over- or under-reporting. Thirdly,
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although we controlled for several potential confounders in models, it should be noted that
other unmeasured factors, such as workload, family history of diseases, and medication,
could affect the results when extrapolating our results to other populations. Finally, we
only considered the effect of single metals on obesity and ignored the actual scenario of
exposure to multiple metals on obesity.

5. Conclusions

In summary, in this population-based cross-sectional study, higher diet quality was
associated with lower abdominal and peripheral obesity risks. Stronger associations were
observed among women, nonsmokers, or participants who were married, high-educated,
or high-income earners. We also found that heavy metals (Cd, Pb, and Hg) were inversely
associated with lower abdominal and peripheral obesity risks. Additionally, the beneficial
effect of higher diet quality on the risk of obesity could be attenuated by higher levels
of heavy metals (Pb, Hg, and Cd). Our findings highlighted that stakeholder, including
environmental regulators, public health experts, legislators, hygiene managers, and hygiene
supervisors for food, need to work together to enhance the quality of people’s diets, and
take heavy metals into consideration when during dietary management to control body
weight since heavy metals might counteract the beneficial effect of healthy dietary patterns
on obesity.
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