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A B S T R A C T

Background: Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is 
significantly influenced by intestinal flora. Understanding the genetic and microbiotic interplay is 
crucial for IBD prediction and treatment.
Methods: We used Mendelian randomization (MR), transcriptomic analysis, and machine learning 
techniques, integrating data from the MiBioGen Consortium and various GWAS datasets. SNPs 
associated with intestinal flora were mapped to genes, with LASSO regression refining gene se-
lection. Differentially expressed genes (DEGs) and immune infiltration patterns were identified 
through transcriptomic analysis. Six machine learning models were used for predictive modeling.
Findings: MR analysis identified 25 gut microbiota classifications causally related to IBD. SNP 
mapping and gene expression analysis highlighted 24 significant genes. Drug target MR and 
colocalization validated these genes’ causal relationships with IBD. Key pathways identified 
included the PI3K-Akt signaling pathway and epithelial-mesenchymal transition. Immune infil-
tration analysis revealed distinct patterns between high and low LASSO score groups. Machine 
learning models demonstrated high predictive value, with soft voting enhancing reliability.
Interpretation: By integrating MR, transcriptomic analysis, and sophisticated machine learning 
approaches, this study elucidates the causal relationships between intestinal flora and IBD. The 
application of machine learning not only enhanced predictive modeling but also offered new 
insights into IBD pathogenesis, highlighted potential therapeutic targets, and established a robust 
framework for predicting IBD onset.

Research in context

Evidence before this study

Although the role of the intestinal flora in the onset and development of IBD has been well established, the related genes, pathways, 
and mechanisms still require further investigation.
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Added value of this study

We analyzed the intestinal flora taxa causally related to IBD using Mendelian randomization and identified a new set of genes 
associated with the intestinal flora and IBD. We validated their efficacy through drug target MR, SMR, and Coloc methods, observed 
the pathways, functions, and immune infiltration of the related genes through transcriptomic analysis, and constructed a disease model 
using six different machine learning methods.

Implications of all the available evidence

The identified genes were further tested for their causal relationship with IBD, and their roles in pathways, mechanisms, and 
immune infiltration were examined. Finally, six different machine learning models were used to construct a disease model.

1. Introduction

Inflammatory bowel disease (IBD) encompasses gastrointestinal inflammatory conditions, primarily Crohn’s disease and ulcerative 
colitis [1]. Historically, IBD has been considered a disease of the Western world and has become a significant global health challenge 
since the beginning of the 21st century [1,2]. While the precise etiology of IBD remains elusive, numerous studies have sought to 
uncover its underlying causes [3]. A widely recognized contributing factor is intestinal flora with many investigations highlighting 
potential causal links [4]. The composition of intestinal flora is strongly associated with genetic susceptibility and genes influencing 
these intestinal flora may also be linked to IBD [4]. Identifying a set of genes causally related to IBD, analyzing their functions, and 
constructing a pathogenesis model could be instrumental in predicting IBD onset and developing potential treatments.

Mendelian randomization (MR) is an analytical method that uses genome-wide association studies (GWAS) to investigate causal 
relationships between two traits [5]. It leverages single nucleotide polymorphisms (SNPs) identified by GWAS along with specific 
information for each SNP including effect sizes, standard errors, and P-values [6]. These data are utilized to quantitatively analyze 
potential causal effects between traits via rigorous statistical methods [7]. Recently, drug target MR has gained popularity among 
researchers as it can directly analyze causal relationships between specific genes and traits via quantitative trait locus (QTL) data [8]. 
In addition to directly extracting QTL data and performing MR analysis via traditional methods, colocalization analysis and 
summary-data-based Mendelian randomization (SMR) analysis can also be employed to investigate the causal relationships of specific 
genes and traits [9,10].

Transcriptomic analysis is a widely used bioinformatics method that integrates clinical information with gene expression matrices 
from samples to identify differentially expressed genes, immune infiltration patterns, pathways, and functional characteristics among 
different sample groups [11–16].

Machine learning is a discipline focused on the theory and methods of simulating human learning activities, acquiring knowledge 
and skills, and improving system performance via computers [17]. By building models with input training data, machine learning can 
predict disease occurrence on the basis of specific parameters [17]. Currently, the construction of machine learning models is widely 
used in medical research across various diseases [18–20].

2. Methods

The flowchart of this study is shown in Fig. 1.

2.1. Data source

The GWAS data for intestinal flora were obtained from the MiBioGen Consortium and included approximately 19,000 subjects from 
18 different populations. Intestinal flora information and GWAS data were collected through 16S RNA sequencing and whole-genome 
SNP arrays [21].

The GWAS data for IBD were sourced from 3 studies including the International Inflammatory Bowel Disease Genetics Consortium 
(IIBDGC), FinnGen, and Mbatchou J et al. The IIBDGC dataset included 12,882 cases and 21,770 controls and analyzed 12,716,084 
SNPs. The FinnGen dataset comprises 5673 cases and 213,119 controls with a total of 16,380,466 SNPs. Mbatchou J et al. analyzed 
GWAS data from 4101 cases and 480,497 controls and identified 9,587,836 SNPs. The 3 IBD GWAS datasets were all sourced from the 
European population [22–24].

Expression quantitative trait locus (eQTL) data were sourced from Phase I of the eQTLGen Consortium, which aimed to investigate 
the genetic architecture of blood gene expression and understand the genetic underpinnings of complex traits [25].

Bulk gene expression data for IBD were obtained from datasets GSE36807 [26] and GSE75214 [27] in the Gene Expression 
Omnibus (GEO) database, which is a public repository that archives and freely distributes microarray gene expression data and other 
types of genomics data [28].

2.2. Mendelian randomization analysis between intestinal flora and IBD

MR-STROBE [29] is shown in Supplementary Table 1.
The GWAS data for intestinal flora were sourced from the MiBioGen Consortium. To conduct a valid MR analysis, the instrumental 
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variables (SNPs) must meet the following three conditions.1) There must be a strong association between the SNP and the exposure 
trait (intestinal flora in this study). 2) The SNP must have a weak correlation with the outcome trait (IBD in this study). 3) SNPs can 
influence the outcome trait only through the exposure trait [30] (Fig. 2).

To meet these conditions, the following criteria were used to screen SNPs.
1) The P-value threshold for the association between SNPs and exposure traits was set at a P-value<5e-06 [31–33]. 2) The SNP 

linkage disequilibrium (LD) distance was set at 10,000, and the correlation index r2 was set at 0.001 [33]. 3) The P-value threshold for 
the association between SNPs and outcome traits was set at a P-value>0.05 [34]. 4) Proxy SNPs were not used. 5) The minor allele 
frequency (MAF) of each SNP had to be greater than 0.01 [35]. 6) Palindromic SNPs were excluded [35]. 7) The F-statistic for the weak 
instrument variable test had to be greater than 10 [36].

To calculate the F-statistic, the correlation coefficient R2 for each SNP with the trait must be determined. The following formulas 
are used to calculate R2 and the F-statistic: R2 = 2 × MAF × (1− MAF) × beta [2]/[2 × MAF × (1-MAF) + Se(beta [2]) × 2 × N × MAF 
× (1-MAF) [37], F=R2 × (N− 2)/(1− R2) [38], where EAF represents the effect allele frequency, beta represents the effect size between 
the SNP and exposure trait, N represents the sample size, and Se(beta) represents the variance of beta.

Inverse-variance weighted (IVW) [39], MR-Egger [40], weighted mode [41], simple mode [41], and weighted median [42] 
methods are used in MR analysis, and if heterogeneity and pleiotropy are detected, then the IVW random effect model is applied [43]. 
The IVW method is the gold standard and one of the most commonly used MR methods. It assumes that all instrumental variables are 
valid and there is no horizontal pleiotropy [39]. The IVW method provides efficient and robust causal effect estimates but is sensitive to 
the assumption of no pleiotropy. MR-Egger regression is an extension of the IVW method that allows for horizontal pleiotropy. While 
MR-Egger increases the robustness to pleiotropy bias, it has lower efficiency and requires a strong association between instrumental 
variables and exposure [40]. The weighted median method is a robust approach that assumes at least 50 % of the instrumental 
variables are valid. Compared with the IVW method, the weighted median method is more robust, although it may be slightly less 
efficient [42]. The weighted mode method assumes that the majority of instrumental variables have the same effect and permits the 
presence of invalid instruments. It is particularly useful when there is heterogeneity in the effects of instrumental variables [41]. The 
simple mode method estimates causal effects without weighting the effects of instrumental variables and identifies the mode of effects. 
This method is relatively simple and a more robust effect on heterogeneity but it typically has lower efficiency and may perform poorly 
when the number of instrumental variables is small [41].

For the sensitivity analysis, Cochran’s Q test [44], MR-Egger intercept analysis [45] and MR-Steiger [46] were employed. 
Cochran’s Q test was employed to assess heterogeneity in SNP effects within the MR analysis. It compares the contributions of indi-
vidual SNPs to causal estimates and indicates significant differences in SNP effects when the Q value is significant (P-value>0.05), 
which suggests potential effect heterogeneity [44]. The MR-Egger intercept analysis is a method used to detect and correct for hor-
izontal pleiotropy. Unlike conventional MR methods, MR-Egger does not require all SNPs to be valid instruments and estimates and 

Fig. 1. A flowchart of the study. GWAS, genome-wide association studies; IIBDGC, International Inflammatory Bowel Disease Genetics Con-
sortium; SNP, single nucleotide polymorphism; LD, linkage disequilibrium; IVW, inverse variance weighted method; CHR, chromosome; POS, SNP 
position; LASSO, least absolute shrinkage and selection operator; SMR, summary-based Mendelian randomization; DEG, differentially expressed 
gene; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; RF, random forest; SVM, sup-
porting vector machine; XGBoost, extreme gradient boosting; kNN, k-nearest neighbor; ANN, artificial neural network; AUC, area under the curve; 
ROC, receiver operating characteristic curve.

Fig. 2. A schematic plot of Mendelian randomization. (a) Instrumental variables must influence the outcome through exposure. (b) Instrumental 
variables should not influence outcomes through factors other than exposure. (c) Instrumental variables should not influence outcomes directly. 
SNP, single nucleotide polymorphism.
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adjusts for potential horizontal pleiotropy bias through an intercept term. It also detects bias in MR estimates, which is particularly 
useful when there is potential horizontal pleiotropy in the data [45]. To assess the possibility of reverse causation effects, we utilized 
the MR-Steiger method. This method helps researchers assess whether observed associations are more consistent with the exposure 
causing the outcome, or vice versa, and thereby provides insights into potential reverse causation effects in MR analyses [46].

To control the false negative rate and improve the statistical power of our analysis, we utilized the mRnd website to calculate the 
statistical power. Then, studies with statistical power greater than 0.50 were included in our analysis [47].

All MR analyses were subjected to P-value correction via the Benjamini‒Hochberg method [48]. A result was considered positive if 
the initial P-value was less than 0.05 and if the adjusted P-value (or P-adjust) was less than 0.10. If a gut microbe shows positive results 
across all 3 IBD outcome variables, it is selected for further analysis [48–50].

2.3. SNP mapping to genes

We extracted SNPs from the intestinal flora that were identified as positively associated with inflammatory bowel disease (IBD) and 
used the g:Profiler website [51] and PLINK software [52] to map these SNPs to specific genes. PLINK, a free, open-source whole 
genome association analysis toolkit, is engineered for basic to large-scale analyses with computational efficiency. It includes a feature 
that maps SNPs to genes, which indicates the distance between each SNP and its corresponding gene region [52]. We selected results 
where SNPs are located within gene regions. g:Profiler, which is a tool for functional enrichment and gene translation, also allows SNP 
mapping to genes via its g:SNPense feature [51]. By combining results from both PLINK and g:Profiler, we compiled a comprehensive 
list of genes to ensure an integrated understanding of the genetic impacts linked to the gut microbiota in IBD.

2.4. Expression analysis and variable selection

The expression levels of genes previously mapped in the disease and normal groups were compared via the GEO database. The 
method used for comparison was the Wilcoxon rank-sum test. The Benjamini‒Hochberg method was applied for P-value correction, 
and results with P-value<0.05 and P-adj <0.10 were selected for variable selection.

The LASSO method was then used to refine the variables among the positive results to identify a set of genes most significantly 
associated with the onset of IBD [53,54].

LASSO regression involves the addition of a regularization term, which is characterized by a penalty coefficient λ, to minimization 
of the residual sum of squares. This regularization term is the sum of the absolute values of the model coefficients (L1-norm). 
Consequently, this method can shrink some of the coefficients to zero and effectively perform variable selection. As the penalty co-
efficient λ increases, the coefficients of certain variables gradually decrease to zero. The optimal value of λ is selected via 10-fold cross- 
validation with λ corresponding to the minimum cross-validation error that is used for model construction. The coefficients of variables 
reflect the influence of each gene on the target variable such as disease status. On the basis of these coefficients, a LASSO score model 
can be constructed. This model evaluates individuals by calculating the weighted sum of gene expression levels and their corre-
sponding coefficients [54].

2.5. Drug target MR, SMR and colocalization analysis

Drug target MR leverages eQTL data from the eQTLGen Consortium database Phase I as exposure data with IBD GWAS data serving 
as outcome data. eQTL data for genes that showed positive results in the LASSO analysis were extracted for drug target MR analysis of 
IBD. Similarly, the IVW method is regarded as the gold standard for testing causal relationships [55].

The SMR (Summary-data-based Mendelian randomization) software tool, which was initially developed to implement the SMR & 
HEIDI methods, tests for pleiotropic associations between the expression level of a gene and a complex trait via summary-level data 
from GWAS and eQTL studies. The SMR test integrates eQTL and GWAS data to estimate the effect size of the exposure variable on the 
outcome variable and statistically tests this effect size. The HEIDI (Heterogeneity in Dependent Instruments) test examines whether 
associations identified by the SMR test could be due to multiple causal effects or collinearity. If the HEIDI test shows inconsistent effects 
(P-value<0.05), then the association may not be driven by a single causal pathway but could be influenced by multiple causal effects or 
other complex genetic regulatory mechanisms [10].

For colocalization analysis, the Coloc R package was used. Coloc analysis is based on 5 hypotheses that are used to assess whether 
two traits share the same genetic variant. The hypotheses are as follows. 1) H0: Neither trait has a causal association in the genomic 
region. 2) H1: The first trait has a causal association in the genomic region, whereas the second trait does not. 3) H2: The second trait 
has a causal association in the genomic region, whereas the first trait does not. 4) H3: Both traits have causal associations in the 
genomic region, but these signals are driven by different genetic variants. 5) H4: Both traits have causal associations in the genomic 
region, and these signals are driven by the same genetic variant and this indicates a shared genetic variant. Coloc analysis calculates the 
posterior probability for each hypothesis and helps to determine which hypothesis is most likely to explain the observed data. If the 
posterior probability of H3+H4 is high, the two traits are both likely to have a causal relationship to the outcome traits. This infor-
mation is crucial for understanding the genetic linkage and potential biological mechanisms between these two traits [9].

2.6. Transcriptomic analysis

The gene expression patterns of IBD patients were analyzed using the weighted gene co-expression network analysis (WGCNA) 
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method. WGCNA is a method for analyzing gene co-expression patterns. This method assumes that gene expression networks in 
biological systems follow a scale-free topology, which is characterized by a few hub genes with extensive connections and most other 
genes with relatively few connections. In these types of networks, the number of gene connections follows a negative exponential 
function with respect to their probability of occurrence. When using WGCNA, Pearson correlation coefficients between expression 
levels of all gene pairs are calculated first. Next, an appropriate soft threshold is selected to transform the correlation matrix into an 
adjacency matrix, which represents the connection strength between genes. Then, the topological overlap matrix (TOM) is constructed 
to measure the interconnectedness of genes. Finally, hierarchical clustering is performed on the basis of the TOM to group genes in 
modules of co-expressed genes. These steps enable the identification of gene modules with similar expression patterns and facilitate the 
discovery of gene interactions and potential biological functions. Genes selected via LASSO are then compared with the hub genes 
identified via WGCNA. If a selected gene is present in a specific WGCNA gene expression module, then all genes within that corre-
sponding module will be extracted for further analysis [15].

Moreover, differentially expressed gene (DEG) analysis was conducted between the disease group/control group and between the 
high-score/low-score groups on the basis of LASSO results [11] via the Limma R package [56]. Through DEG analysis, we identified 
genes that were differentially expressed in respective groups. Due to the cascading amplification effect in gene expression, some genes 
with relatively small log2FC values may have significant impacts. Therefore, DEG analysis results are then filtered based only on 
P-adj<0.10 without applying a log2FC threshold [56].

The intersection of genes identified from the DEG analysis was examined and the union of these intersecting genes with genes 
identified from the WGCNA was determined. These intersecting genes were further subjected to gene enrichment analyses, including 
Gene Ontology (GO) analysis [14], Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis [13], and Gene Set 
Enrichment Analysis (GSEA) [16], using Hallmark gene sets. These analyses provided insights into the functional and pathway 
characteristics of genes.

Additionally, immune infiltration differences between the high- and low-LASSO score groups were examined via CIBERSORT [12], 
which is an approach to characterize the immune cell composition of complex tissues from their gene expression profiles. This analysis 
explored the differences in immune functions between the two groups and enhanced the understanding of their roles in IBD.

2.7. Construction of an IBD onset model based on machine learning

The GEO IBD dataset was randomly divided into training and testing sets at a 70:30 ratio. In the training set, machine learning 
models, including random forest (RF) [57], support vector machine (SVM) [58], extreme gradient boosting (XGBoost) [59], artificial 
neural networks (ANN) [60], naive Bayes [61], and k-nearest neighbors (kNN) [62], were constructed. The parameters of all models 
were tuned using the R package ‘caret’ to identify those that minimized the error.

RF is an ensemble learning method that constructs multiple decision trees and aggregates their results for classification or 
regression [57]. SVM finds the optimal hyperplane that separates data points into different classes in a high-dimensional space. The 
algorithm maximizes the margin between the classification boundary and the nearest data points and enhances the model’s gener-
alization ability [58]. XGBoost is an efficient implementation of the boosting tree algorithm. It iteratively trains multiple weak learners 
and optimizes the loss function at each iteration to build a strong predictive model [59]. ANN is computational models inspired by 
biological neural networks and consist of input layers, hidden layers, and output layers; each layer contains multiple neurons con-
nected by weighted links. By adjusting these weights, neural networks can learn and approximate complex nonlinear functions [60]. 
Naive Bayes is a probabilistic classifier that is based on Bayes’ theorem and assumes independence among predictors. kNN is an 
instance-based classification and regression algorithm. For each test sample, the algorithm calculates the Euclidean distance to all 
training samples, selects the k closest neighbors, and makes a prediction [62].

Each model is then evaluated in the test set on the basis of metrics such as precision, accuracy, F1 score, recall, and the area under 
the receiver operating characteristic (ROC) curve (AUC). [63]To ensure the robustness of the model, we performed 400 times of 
10-fold cross-validation for each model and draw a box plot of AUC.

Each machine learning model expresses an output of a probability between 0 and 1 where values closer to 1 indicate a higher 
propensity for disease onset. The final probability result is determined via a soft voting mechanism, which averages the probabilities 
provided by each machine learning model [64].

2.8. Statistical analysis

Statistical analyses were conducted via R 4.3.1 or corresponding software and websites. The hypothesis testing method typically 
employs the Wilcoxon rank-sum test, and the Benjamini‒Hochberg method is the P-value adjustment method that is generally used.

3. Results

3.1. Mendelian randomization between intestinal flora and IBD

According to the selection criteria in Method 2.1, 8780 SNPs from 211 intestinal flora classifications (including 9 phyla, 16 classes, 
20 orders, 35 families, and 131 genera) were extracted. After MR analysis and P-value adjustment, 25 gut microbiota classifications 
(including 4 phyla, 3 classes, 5 orders, 2 families, and 11 genera) yielded positive results across three IBD outcome variables. These 25 
intestinal flora classifications have a causal effect on IBD. Sensitivity analyses were conducted for all 25 classifications. Detailed results 
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can be found in Table 1 and Supplementary Tables 2–4.

3.2. SNP mapping to genes

A total of 4006 SNPs related to intestinal flora were extracted. In the gene mapping process and for PLINK results, we extracted all 
SNPs located within genes and assigned a GeneSymbol name, which was marked as “GeneSymbolName(0)." SNPs without a gene 
symbol were excluded. For g:Profiler results, if a SNP was mapped to two genes, the first gene was chosen for further analysis as the 
second gene is often a subtype of the first. The genes identified by both tools were then merged and deduplicated, which resulted in a 
final set of 174 genes.

3.3. Expression analysis and variable selection

Gene expression analysis was conducted via data from the GSE36807 and GSE75214 datasets in the GEO database. The ulcerative 
colitis and Crohn’s disease groups were combined into a single IBD group. After P-value adjustment, 76 genes were identified as 
significantly different between the disease and control groups (detailed results can be found in Fig. 3A–D and Supplementary Table 5).

In the LASSO analysis, 10-fold cross-validation was used to determine the minimum λ as 0.012 (lnλ = − 4.423), which resulted in 24 
genes selected for further analysis. The LASSO score for each sample was calculated via the formula score = Σ (gene coefficient × gene 
expression) (see Fig. 3E–F and Supplementary Table 5).

3.4. Drug target MR, SMR and colocalization analysis

Due to limitations in eQTL data, only 21 of 24 genes were selected for drug target MR, SMR, and Coloc analyses. Because of data 
constraints, only IIBDGC GWAS data were used for the analysis.

In the drug target MR analysis, 15 of these genes were significantly and differentially expressed after drug target MR analysis and P- 
value adjustment. In the SMR analysis and after NA values were removed from the results, 13 SNPs of 3 genes were determined 
significant (P-SMR <0.10, P-HEIDI >0.05). In the Coloc colocalization analysis and of the 21 genes analyzed, 12 genes had P(H3) + P 
(H4) > 0.80, and among these genes, 2 genes had P(H4) > 0.75. Detailed results are presented in Table 2.

3.5. Transcriptomic analysis

In the WGCNA, genes with zero expression were filtered out, and sample hierarchical clustering was performed to remove outlier 
samples. A soft threshold power of 20 was chosen to achieve a scale-free topology model fit (R2) of 0.85, and an average connectivity 
plot was generated. The adjacency matrix and topological overlap matrix (TOM) were calculated and dissimilarity (1-TOM) was also 

Table 1 
Mendelian randomization results of inverse variance weighted method.

Trait IVW-OR (95%CI, P-value)

IIBDGC Finngen Mbatchou et al.

class.Actinobacteria.id.419 0.805(0.788–0.823,0) 0.83(0.810–0.851,0) 0.906(0.890–0.922,0)
class.Bacteroidia.id.912 1.161(1.092–1.236,0) 1.188(1.102–1.281,0) 1.192(1.138–1.248,0)
class.Negativicutes.id.2164 0.784(0.665–0.924,0.004) 0.633(0.484–0.829,0.001) 1.234(1.042–1.461,0.015)
family.Bifidobacteriaceae.id.433 0.784(0.766–0.802,0) 0.782(0.761–0.803,0) 0.939(0.923–0.955,0)
family.Peptostreptococcaceae.id.2042 1.322(1.232–1.419,0) 0.729(0.649–0.819,0) 1.14(1.083–1.200,0)
genus.Anaerostipes.id.1991 1.09(1.005–1.183,0.036) 2.067(1.875–2.279,0) 1.23(1.164–1.299,0)
genus.Bifidobacterium.id.436 0.806(0.788–0.824,0) 0.789(0.768–0.811,0) 0.935(0.920–0.951,0)
genus.Lachnoclostridium.id.11308 0.885(0.816–0.960,0.003) 0.508(0.460–0.560,0) 0.721(0.680–0.766,0)
genus.Odoribacter.id.952 1.187(1.073–1.314,0.001) 1.545(1.368–1.745,0) 0.798(0.744–0.857,0)
genus.Parasutterella.id.2892 1.085(1.020–1.154,0.01) 0.904(0.840–0.973,0.007) 1.083(1.038–1.130,0)
genus.Peptococcus.id.2037 1.166(1.137–1.195,0) 0.912(0.885–0.939,0) 0.909(0.892–0.926,0)
genus.Romboutsia.id.11347 1.546(1.384–1.726,0) 0.489(0.425–0.563,0) 1.13(1.047–1.219,0.002)
genus.Ruminiclostridium9.id.11357 0.943(0.896–0.992,0.023) 1.313(1.232–1.399,0) 1.164(1.123–1.206,0)
genus.RuminococcaceaeUCG011.id.11368 1.043(1.020–1.067,0) 1.071(1.044–1.098,0) 0.972(0.955–0.988,0.001)
genus.unknowngenus.id.2071 1.155(1.030–1.296,0.014) 0.676(0.601–0.759,0) 0.904(0.846–0.966,0.003)
genus.Victivallis.id.2256 1.086(1.003–1.175,0.041) 0.856(0.778–0.942,0.001) 1.121(1.051–1.196,0.001)
order.Bacillales.id.1674 0.877(0.823–0.935,0) 0.778(0.711–0.852,0) 0.882(0.841–0.925,0)
order.Bacteroidales.id.913 1.161(1.092–1.236,0) 1.188(1.102–1.281,0) 1.192(1.138–1.248,0)
order.Bifidobacteriales.id.432 0.784(0.766–0.802,0) 0.782(0.761–0.803,0) 0.939(0.923–0.955,0)
order.Lactobacillales.id.1800 0.856(0.768–0.955,0.005) 1.152(1.020–1.301,0.023) 1.118(1.038–1.205,0.003)
order.Selenomonadales.id.2165 0.784(0.665–0.924,0.004) 0.633(0.484–0.829,0.001) 1.234(1.042–1.461,0.015)
phylum.Actinobacteria.id.400 0.721(0.695–0.748,0) 0.765(0.734–0.797,0) 0.906(0.881–0.931,0)
phylum.Bacteroidetes.id.905 1.166(1.098–1.239,0) 1.188(1.104–1.279,0) 1.185(1.133–1.240,0)
phylum.Proteobacteria.id.2375 1.537(1.367–1.728,0) 0.735(0.642–0.842,0) 0.842(0.779–0.909,0)
phylum.Verrucomicrobia.id.3982 0.706(0.658–0.757,0) 0.778(0.701–0.862,0) 0.87(0.828–0.915,0)

IVW, inverse variance weighted method; OR, odds ratio; CI, confidential interval; a P-value of 0 means the P-value<0.0001.
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computed. Modules with a minimum size of 30 genes were identified, and modules with a merging distance of less than 0.25 were 
merged and resulted in 12 modules. Then, a gene dendrogram was plotted, module eigengenes were calculated, and an eigengene 
dendrogram was created. After all the hub genes were extracted, three of the 24 genes (PARPBP, CXCR4, and TNIK) were found in the 
pink, lightcyan, and turquoise modules. All 1313 node genes from these modules were extracted for further analysis (see Fig. 4A–F).

With a threshold of P-adj <0.10, DEG analysis was performed for both the IBD group vs. the normal group and the high-score group 
vs. the low-score group. From each DEG result, the top 1000 genes ranked by log2FC were selected, and union genes with the 1313 
genes identified from the WGCNA were selected, which resulted in a final set of 1723 genes. Enrichment analysis of these 1723 genes 
via KEGG, GO, and GSEA hallmark datasets revealed significant enrichment in response to chemicals, regulation of response to 
stimulus, the PI3K‒Akt signaling pathway, epithelial‒mesenchymal transition, and other related pathways (see Fig. 5A–E).

In the high- and low-LASSO score groups, an immune infiltration analysis was performed via CIBERSORT, and a rainbow plot, 
grouped bar chart, and immune cell‒gene correlation heatmap were generated. Results revealed that in the low-LASSO-score group, 
plasma cells, CD8+ T cells, Treg cells, NK cells, M2 macrophages, and mast cells had relatively high infiltration levels. In the high- 
LASSO-score group, CD4+ T cells, M0 macrophages, M1 macrophages, dendritic cells, and neutrophils had relatively high infiltra-
tion levels (see Fig. 5F–G).

3.6. Construction of an IBD onset model based on machine learning

The RF model was constructed via the randomForest package with the following hyperparameters: mtry (number of features 
selected at each split) was set to 4, ntree (number of trees) was set to 500, and other parameters were set to their default values. The 
model achieved an accuracy of 0.957, a precision of 0.952, a recall of 1, an F1 score of 0.975, and an AUC of 0.978 for the test set.

The SVM model was built via the e1071 package with the following hyperparameters: type set to ‘eps-regression’, cost (C-penalty 
parameter for support vectors) set to 10, gamma (parameter for radial basis kernel function) set to 0.01, epsilon set to 0.1, and other 
parameters set to their defaults. The SVM model achieved an accuracy of 0.975, a recall of 1, an F1 score of 0.975, and an AUC of 0.987.

The ANN model was constructed via the neuralnet package with the following hyperparameters: 2 hidden layers with 2 and 6 
neurons and other parameters set to their defaults. The ANN model achieved an accuracy of 0.911, a precision of 0.930, a recall of 
0.889, an F1 score of 0.909, and an AUC of 0.914.

The XGBoost model was built via the XGBoost package with the following hyperparameters: nrounds (number of iterations) set to 
300, max_depth (maximum tree depth) set to 6, eta (learning rate) set to 0.1, gamma (minimum loss reduction required for tree 
splitting) set to 0.1, colsample_bytree (feature subsample ratio) set to 0.8, and other parameters set to their defaults. The XGBoost 
model achieved an accuracy of 0.967, a precision of 0.937, a recall of 1, an F1 score of 0.967, and an AUC of 0.972.

Fig. 3. Expression analysis and variable selection. (a–d) Bar chart of gene expression levels determined via GEO data. (e) LASSO coefficient path 
plot. (f) LASSO cross-validation error plot. LASSO, least absolute shrinkage and selection operator.

Table 2 
Drug target MR, colocalization and SMR results.

Gene OR (95%CI), P-value Colocalization Analysis P(H3) + P(H4) P-SMR P-HEIDI Number of Significant SNPs in SMRa

ARHGAP27 1.232(1.221–1.242), 0 0.968 5.58e-03 0.04 0
C19orf33 N/A
CCNT2 0.913(0.905–0.922), 0 1 0.221 0.425 0
CDH13 1.085(1.045–1.126), 0 1 0.958 0.747 0
CRADD 1.595(0.821–3.100), 0.200 1 N/A N/A 0
CXCR4 1.307(1.086–1.573), 0.006 1 0.294 0.457 0
DDX60L 0.99(0.985–0.996), 0.001 1 0.564 0.348 0
EXOC3 1.087(1.083–1.091), 0 1 0.003 0.403 6
FBXL18 0.991(0.93–1.057), 0.788 1 N/A N/A N/A
GPR98 N/A 0.461 N/A N/A N/A
HHAT 0.985(0.952–1.02), 0.442 1 0.426 0.454 0
LEKR1 N/A
MFSD1 1.043(1.031–1.054), 0 1 0.107 0.348 0
PALLD 1.122(1.089–1.157), 0 1 0.295 0.859 0
PARPBP 0.859(0.829–0.89), 0 1 0.986 N/A 0
PTPRR N/A
SLC25A26 0.87(0.844–0.896), 0 1 0.002 0.104 1
SLC2A9 0.925(0.919–0.932), 0 1 0.061 0.338 0
TBC1D5 1.277(1.216–1.341), 0 1 0.347 0.980 0
TIPARP 0.995(0.958–1.032), 0.788 0.997 0.126 N/A 0
TNIK 0.935(0.915–0.957), 0 1 0.135 0.802 0
TTC23 0.948(0.94–0.956), 0 1 0.201 0.380 0
XRN1 1.011(0.994–1.027), 0.247 N/A 0.368 0.783 0
YIF1B 0.878(0.869–0.886), 0 N/A 0.002 0.709 6

OR, odds ratio; CI, confidential interval.
a Significant SNPs must be with a P-SMR<0.05 and P-HEIDI>0.05; a P-value of 0 means the P-value<0.0001.
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The kNN model was built via the e1071 package with the following hyperparameters: k (number of nearest neighbors) was set to 2 
and other parameters were set to their defaults. The kNN model achieved an accuracy of 0.920, a precision of 0.947, a recall of 0.889, 
an F1 score of 0.917, and an AUC of 0.923.

The naive Bayes model was constructed via the e1071 package and the laplace (Laplace smoothing parameter) hyperparameter was 
set to 0. The naive Bayes model achieved an accuracy of 0.959, a precision of 0.923, a recall of 1, an F1 score of 0.960, and an AUC of 
0.970.

The results of 400 times 10-fold cross-validation demonstrated the robustness of the model. The average AUC of the RF model was 
0.9982435, the SVM model was 0.997, the ANN model was 0.947, the XGBoost model was 0.996, the kNN model was 0.974, and the 
naive Bayes model was 0.962.

Given the satisfactory performance of all models, soft voting can be applied to the final prediction by averaging the probabilities 
from the six models to predict the likelihood of IBD.

All outcomes can be found in Fig. 6 and Supplementary Fig. 1.

4. Discussion

Intestinal flora plays a crucial role in the occurrence and development of IBD [4]. Among the 25 intestinal flora classifications 
selected in this study, 8 classifications exhibit protective effects against IBD (OR<1 in three outcome GWASs), 4 classifications exhibit 
pathogenic effects against IBD (OR>1 in three outcome GWASs), and 13 classifications may have either protective or pathogenic 
effects on IBD (OR>1 in some GWASs and OR<1 in others).

Regardless of whether the role of these intestinal flora classifications is clear or unclear, the significant results from the three- 
outcome GWAS provide sufficient evidence to indicate a causal relationship between these intestinal flora classifications and IBD. 
Therefore, we extracted all SNPs from the GWASs of these intestinal flora classifications and mapped them to the corresponding genes.

We employed LASSO for feature selection. As previously mentioned, the choice of λ significantly impacts the results of LASSO. 
When using cross-validation for model selection, the results usually present the λ-min, where the error is minimized, and λ-min plus 
one standard error (λ-min + 1se). In this process, we chose λ-min, primarily considering its minimal error and because this paper is 
innovative, providing more valuable genes for further research is necessary. However, this also results in a larger number of genes, 
which brings potential inconvenience for clinical translation. After expression analysis and LASSO regression, we ultimately identified 
24 genes potentially associated with IBD.

These 24 genes vary in their importance to IBD and perform differently in downstream analyses. In the drug target MR, SMR, and 
Coloc analyses, only SLC25A26 and EXOC3 had positive results in all three analyses. In contrast, C19orf33, PTPRR, and LEKR1 could 
not be analyzed further because of a lack of eQTL data.

Among the three analyses, SMR explores whether there are common driver SNPs between genes and traits. However, since an SNP 
is just a single base pair in the gene region, the absence of a common driver SNP does not necessarily indicate the absence of a causal 
relationship, which makes its importance relatively lower. Drug target MR and Coloc analysis, particularly P(H3+H4), better assess the 
causal relationships between genes and traits.

By excluding three genes lacking eQTL data, 15 out of the 20 genes presented positive results in both drug target MR and Coloc 
analyses. Five genes (FBXL18, GPR98, HHAT, TIPARP, and YIF1B) were positive in only one analysis, and only CRADD and XRN1 were 
negative in both analyses. This finding indicates that the initial gene selection was highly robust and sensitive.

Among these genes, CXCR4 is well studied in relation to IBD. The CXCR4 gene encodes GPCR CD184, which is involved in immune 
cell trafficking and hematopoiesis. It also interacts with CXCL12 and CXCR7 and influences cell survival, chemotaxis, and gene 
transcription [65]. The role of CXCR4 in immune cell migration has potential implications for gut immunity and IBD [66]. Most of the 
other genes have not been studied in relation to IBD, which highlights potential promising research directions for IBD.

For the transcriptomic analysis, we used the intersection of DEG results because we wanted to identify genes related to the LASSO 
score (and thus to the positive intestinal flora) that are also associated with the development of IBD. WGCNA serves more as an un-
supervised learning method that distinguishes expression modules by constructing TOM matrices and hierarchical clustering. Genes in 
these modules are not necessarily differentially expressed but are closely related and so we combined these genes.

In the KEGG analysis, the top two pathways were the broad metabolic pathway and cancer pathways. These findings strongly 
suggest that metabolic factors play a significant role in intestinal flora-induced IBD and cancer pathways imply that intestinal flora 
might be a common cause of both IBD and certain gastrointestinal cancers. The PI3K-Akt pathway is relatively underappreciated in its 
relationship with IBD. Some studies suggest that the PI3K-Akt pathway can increase glycolysis and thereby confer mesenchymal stem 
cells with anti-IBD capabilities [67]. Another study indicated that Bifidobacterium infantis can inhibit the PI3K-Akt-mTOR pathway 
through PD-L1 and exert an immunosuppressive effect [68]; in our MR analysis, Bifidobacterium was shown to have a protective effect 
against IBD (OR<1). Overall, the role of the PI3K-Akt signaling pathway in IBD warrants further exploration.

In the GSEA Hallmark enrichment analysis, epithelial-mesenchymal transition (EMT) ranked first. In addition, numerous studies 
have shown that EMT can promote the development of IBD through intestinal fibrosis and damage to the mucosal barrier. Chronic 
inflammation promotes both IBD and EMT, which makes EMT a likely intermediate factor in the causal chain from the intestinal flora 
to IBD [69–72].

Fig. 4. Weighted gene co-expression network analysis. (a) Cluster dendrogram of the sample. (b) Scale independence plot. (c) Mean connectivity 
plot. (d) Cluster dendrogram of genes. (e) Clustering dendrogram of module eigengenes. (f) Module‒trait relationship heatmap.
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Notably, immune infiltration analysis revealed that neutrophils, M1 macrophages, and CD8 T cells were more enriched in the high- 
LASSO-score group, whereas Treg cells and M2 macrophages were more enriched in the low-LASSO-score group. The roles of these 
cells in IBD have long been recognized. Studies indicate that CD8+ T-cell exhaustion plays a crucial role in the onset of IBD [73], have 

Fig. 5. Transcriptomic analysis. (a) Volcano plot of differentially expressed genes between the inflammatory bowel disease group and the normal 
group. (b) Volcano plot of differentially expressed genes between the high-LASSO-score group and the low-LASSO-score group. (c) Bubble plot of the 
GO analysis results. (d) Bubble plot of the KEGG analysis results. (e) Bubble plot of GSEA using the hallmark gene set. (f) Rainbow plot of 
CIBERSORT analysis. (G) Grouped bar chart of CIBERSORT. LASSO, least absolute shrinkage and selection operator; GO, gene ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; ns, not significant; *, P-value<0.05; **, P-value<0.01; ***, 
P-value<0.001.

Fig. 6. Model evaluation of machine learning models. (a–f) AUC of the ROC curve for RF, SVM, ANN, XGBoost, kNN, and naive Bayes classifiers. 
(g) Accuracy, precision, recall and F1 score of the six models. (h) Box plot of AUC of the ROC curve in 400 times 10-fold cross-validation. AUC, area 
under the curve; ROC, receiver operator characteristic curve; RF, random forest; SVM, supporting vector machine; ANN, artificial neural network; 
XGBoost, extreme gradient boosting; kNN, k-nearest neighbor.
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reviewed the significant role of neutrophils in intestinal flora and IBD [74], and noted that B. adolescentis affects IBD by influencing 
Treg cells [75]. Overall, immune infiltration results align with those of previous studies and enhance the robustness of our findings.

In the machine learning analysis, six different models were employed and all of them surprisingly demonstrated a favorable 
performance. The final model integration method that was chosen was soft threshold voting, which is a method that aligns well with 
machine learning principles. Machine learning is a popular approach in biomedical informatics research as it allows for effective data 
integration and analysis. The constructed models have the potential to predict the onset of IBD.

Meanwhile, these predictive models and the 24 genes they utilize hold potential clinical translational value. Further investigation 
of these genes could provide a deeper understanding of their roles in the development of IBD and their interactions within the human- 
intestinal flora. This knowledge could be valuable for developing novel therapeutics for IBD and identifying methods to modulate the 
intestinal flora in IBD patients. In combination with clinical testing techniques, these predictive models could aid in the early screening 
and prevention of IBD, which would be beneficial to the health of IBD patients.

The strengths of this study are the following. 1) Broad data sources, including IIBDGC, FinnGen database, eQTLGen, GEO database, 
and original literature. 2) Diverse analytical methods employing various methods at different stages were used to verify conclusions 
from multiple perspectives. 3) Machine learning techniques were used to construct models to predict the onset of IBD on the basis of 
gene expression levels. 4) Inspiring results identifying many genes and pathways with little previous research highlight potential new 
directions for future investigations into the relationship between the gut microbiota and IBD.

However, this study has several limitations. 1) Lack of experimental validation: although data for bioinformatics analysis were 
obtained from reliable public databases, experimental validation remains crucial in medical research. Furthermore, experimental 
evidence can significantly enhance the reliability of results. 2) eQTL data for three genes were missing, which resulted in a lack of 
information and discussion regarding these genes in the study. 3)In this study, the predictive model was developed based on data from 
two GEO databases, both of which are derived from European populations. Therefore, the model may be influenced by confounding 
factors such as ethnicity. Its generalizability to other populations requires further investigation. 4) These models are based on 24 genes 
and are not convenient for clinical testing. If further clinical translation work is to be carried out, it is necessary to further verify the 
functions and importance of these genes, or design a convenient and fast detection method with the support of technology.

In conclusion, this study analyzed the causal relationship between intestinal flora and IBD via two-sample Mendelian randomi-
zation. The SNPs from positive intestinal flora GWASs were mapped to corresponding genes via the g:Profiler and Plink tools. A set of 
genes was selected through LASSO. Further analysis of relationships between these genes and IBD was conducted via drug target MR, 
SMR, colocalization, and transcriptomic analyses. Finally, a disease prediction model was constructed via six machine learning 
methods and integrated via a soft voting method, which suggests potential translational value.
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