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Abstract

Purpose of Review This review summarizes the use of genetic similarity clusters to understand HIV transmission and inform
prevention efforts.

Recent Findings Recent emphases include the development of real-time cluster identification in order to interrupt transmission
chains, the use of clusters to estimate rates of transmission along the HIV care cascade, and the extension of cluster analyses to
understand transmission in the generalized epidemics of sub-Saharan Africa. Importantly, this recent empirical work has been
accompanied by theoretical work that elucidates the processes that underlie HIV genetic similarity clusters; multiple studies
suggest that clusters are not necessarily enriched with individuals with high transmission rates, but rather can reflect variation in
sampling times within a population, with individuals sampled early in infection more likely to cluster.

Summary Analyses of genetic similarity clusters have great promise to inform HIV epidemiology and prevention. Future
emphases should include the collection of additional sequence data from underrepresented populations, such as those in sub-

Saharan Africa, and further development and evaluation of clustering methods.

Keywords Prevention - HIV - Cluster identification - Genetic similarity clusters - HIV epidemiology

Introduction

Within epidemics, certain subgroups may contribute dispro-
portionately to epidemic growth, and specific clinical, demo-
graphic, or behavioral factors can define these subgroups
[1-3]. Historically, risk factors linked to high relative rates
of HIV transmission have been identified with survey-based
methods [4, 5], or with partner-based studies that provide per-
act estimates of individual-level transmission or acquisition
risk [6, 7]. Recently, analyses of HIV gene sequences have
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gained popularity as a means to identify transmission risk
factors. Such molecular epidemiological studies of HIV are
now common in the concentrated epidemics of Europe and
North America, due primarily to the post hoc use of pol geno-
types (gene sequences) available from routine screening for
resistance to antiretroviral therapy [8]. In the most common
type of approach, genetic clusters (sets of closely related se-
quences) are identified, and subsequent analyses are based on
these clusters. For instance, phylogenetic studies of clusters in
North America and Europe have revealed (and confirmed) the
importance of the men-who-have-sex-with-men (MSM) sub-
group [9, 10] and of early HIV infection [11-13], in driving
HIV transmission.

HIV phylogenetics and molecular epidemiology have ex-
perienced substantial recent advances, including in our under-
standing of genetic clusters and how their study can inform
HIV prevention. In this commentary, we review underlying
concepts of clustering relevant to HIV molecular epidemiolo-
gy, report on examples of application of clustering methods to
questions of HIV prevention, including the development of a
real-time pipeline for HIV phylogenetic analyses, and discuss
recent findings from HIV phylogenetic studies in sub-Saharan
Africa. We note this is not intended to be a comprehensive
review of the field. Furthermore, we discuss some open issues
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related to the use of genetic clusters, including the following
questions: What is cluster growth, and how do we determine
whether clusters are growing? Are genetic clusters enriched
with certain individual traits or risk factors relative to non-
clustered sequences? Can these traits be assumed to represent
increased rates of transmission?

What Is a Cluster?

In general, a cluster is a group of objects that are closer (more
similar) to each other than to objects outside of the group.
Selecting a cutoff that determines whether an object belongs
to the cluster is a subjective decision that is the responsibility
of the investigator. In the context of infectious disease epide-
miology, cases can be clustered in space (e.g., a hospital
ward), clustered in time (e.g., an excessive number of diagno-
ses in a short time interval), or in both space and time. An
implicit assumption is that the majority of infections do not
belong to clusters, which corresponds to an agglomerative
clustering approach where every observation initially belongs
to a cluster of one. Clusters can also be defined by the genetic
similarity of infections (genetic clusters). This approach can
be very useful when there is an abundance of pathogen gene
sequences routinely collected for the clinical management of

infection, when spatial information is incomplete, and when
times of diagnosis are less informative because of a long
asymptomatic period of infection. HIV-1, tuberculosis, and
hepatitis C virus epidemics are canonical examples of infec-
tious diseases that exhibit these characteristics.

Defining a genetic cluster, for the purposes of molecular
epidemiology described here, requires a measure of similarity
or distance between two sequences covering the same region
of the genome (homologous sequences). For instance, there
are many genetic distance measures that take sequences as
inputs [14] (Fig. 1). The more complex measures accommo-
date variation in the rates for different types of nucleotide
substitutions. One limitation of these distance measures is that
they can only utilize the information contained in two genetic
sequences to adjust these rate parameters. Clusters can be
assembled from all pairs of sequences within a threshold dis-
tance of each other—this is the approach taken by the software
HIV-TRACE [15]. The pairwise distances for a set of se-
quences can also be converted into a tree (phylogeny) that
approximates how the sequences are related through common
ancestors; the neighbor-joining algorithm is a popular tech-
nique for this conversion. This phylogeny makes it possible
to define clusters of infections that are assumed to be descen-
dents from a common source [16]. In addition, the phylogeny
defines another distance measure in the form of the total
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Fig. 1 Schematic diagram of HIV-1 transmission and evolution. Each
horizontal “track” represents a host individual separated by thick lines
representing barriers that are crossed by virus transmission. The red lines
represent virus lineages, and dots represent genetic differences that
accumulate along each lineage. Events unfold over time from left to
right. The sampling (observation) of lineages by sequencing is
represented by the open eye symbols. Lineages that may be included in

unsampled
host

2 Jasnp

clusters are highlighted in red. Hosts 1-3 are related by a recent rapid
series of transmissions and form cluster 1 because of limited genetic
divergence since transmission. Host 4 appears to be distantly related to
any other infection, although it would be similar to an unsampled lineage.
Hosts 5-7 are sampled soon after becoming infected and thus form a
second cluster despite a substantial time between the transmission events
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branch length on the path from one sequence to another, i.e.,
the patristic distance. A common practice in HIV phyloge-
netics is to remove amino acid sites that are associated with
antiretroviral resistance mutations prior to reconstruction of
phylogenetic trees and identification of clusters. This is done
to minimize the possibility or error introduced by convergent
evolution (i.e., the independent evolution of similar traits due
to selective pressure).

Phylogenies can also be reconstructed by maximum likeli-
hood (ML) for a given model of evolution [17]. Since this
approach jointly evaluates all the genetic sequences instead
of two sequences at a time, it is more capable of accounting
for variation in rates of evolution. On the other hand, ML
methods are much slower to compute and it is not known
whether the improved accuracy translates to more informative
clusters [18]. Accurately reconstructing a viral phylogeny is a
difficult problem because we must discriminate among an
enormous number of possible trees relating a given set of
infections [19]. A standard method for evaluating the uncer-
tainty in phylogeny reconstruction is to resample the gene
sequences at random with replacement (nonparametric boot-
strap sampling) to generate false replicates [20]. If the same
ancestor-descendant relationship (as defined by the branching
pattern of the phylogeny) appears in most of the trees inferred
from these replicates, then we have a high level of confidence
that those infections (pathogen lineages) are more closely re-
lated than other infections in the sample population, given the
data. This quantity is known as the bootstrap support value
and is frequently used as a criterion for clustering sequences.
Because this support value does not express how similar the
infections are, it is frequently used in combination with a
genetic distance [21, 22]. The computational burden of
reconstructing many ML trees may preclude nonparametric
bootstrap sampling; however, several fast methods have been
developed that can produce good approximations of bootstrap
values [23]. Aside from these differences in accuracy and
computational burden, the same methods for defining clusters
apply equally to ML and distance-based phylogenies. Lastly,
some studies employ Bayesian methods to generate a random
sample of phylogenies in proportion to their posterior proba-
bility [24], which is proportional to the product of the likeli-
hood and the investigator’s prior belief. The Bayesian poste-
rior probability associated with internal branches can serve the
same purpose as bootstrap values for clustering [25].

Examples of the Use of Clusters in HIV
Prevention

Real-time Cluster Identification

A current interest in HIV molecular epidemiology is the appli-
cation of sequence-based analyses for real-time prevention
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efforts, in order to interrupt ongoing transmission chains. One
promising approach includes estimates of priority for directed
intervention that are based on networks of genetic similarity
[26]. Another approach, from British Columbia (BC), combines
the diagnosis, genotyping, and genetic similarity analyses into
an automated pipeline; we describe this approach in greater
detail here. All clinical HIV resistance genotyping in BC, and
the majority of resistance tests in Canada, is performed by the
laboratory program at the BC Centre for Excellence in HIV/
AIDS (CFE). For all persons in BC, HIV resistance genotypes
and clinical variables, such as viral loads and drug regimens, are
integrated with demographic and risk factor information into a
population treatment database. This comprehensive centraliza-
tion within a “single-payer” health care system afforded a
unique opportunity to implement an automated monitoring sys-
tem that uses a phylogenetic clustering method to identify po-
tential transmission outbreaks in near real-time [27]. In
December 2012, epidemiologists and public health officers
from the BC Centre for Disease Control met with members of
the CFE laboratory program to discuss the development of a
near real-time monitoring system based on this treatment data-
base. A cached database query (termed a virtual table or “view”
for an Oracle database) was implemented by database program-
mers at the CFE to integrate anonymized data, including HIV
genotypes and sample collection dates, from multiple tables in
the database in a tightly controlled and reproducible manner.
Access to this view was password-protected and restricted to a
small number of Oracle user accounts and [P addresses on the
local CFE network, which is behind a dual firewall that blocks
all remote network requests.

New genotype records were detected by querying the
Oracle view for any records with a collection date that was
more recent than the date and time of the last transaction. A
positive result triggered the system to download the entire
contents of the view from the database to a secure workstation
running the monitoring system. The challenge was to develop
a pipeline for the phylogenetic analysis of this massive dataset
(over 30,000 sequences) that was sufficiently rapid for “real-
time” monitoring. Two simple methods were employed to
minimize computing time. First, the system used pairwise
alignment of sequences against the HIV-1 pol reference se-
quence (HXB2) and excluding any insertions relative to this
reference. This is the same approximation method used by
HIV-TRACE. Second, the system used the FastTree 2 pro-
gram for a fast approximate reconstruction of phylogenies
by maximum likelihood [29]. Even though this program is
orders of magnitude faster than more accurate programs based
on ML, it still required over an hour to build each tree relating
the entire sequence database. Although this approach should
provide more accurate estimates of the evolutionary distance
between sequences, a recent simulation study indicates that
the pairwise genetic distance method employed by HIV-
TRACE is nearly as effective while running in seconds [18].
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By mid-2013, a functional real-time system had been im-
plemented and was automatically generating reports to the
laboratory director whenever new sequences were deposited
in the database (almost daily). On October 2013, the public
health and laboratory personnel began a series of monthly
teleconference meetings to discuss outputs from the monitor-
ing system. Monthly reports were requested by public health,
and the content and format of these reports was gradually
developed over a period of several months. One of the major
challenges in developing this report template was the use of
network diagrams for genetic clusters, in which nodes
representing individuals are connected by “edges” to indicate
that their HIV infections are genetically similar. These net-
work diagrams resemble epidemiological contact networks
where edges between individuals represent past interactions
with a high risk of transmitting disease. Although genetic
similarity may be correlated with the contact structure of the
population, we cannot expect the respective networks to have
the same shape. Annotating network diagrams by the most
recent plasma viral load (node size) and presence of drug
resistance mutations (node color) were well received by the
public health officers, as this visualization scheme highlighted
clusters with greatest predicted risk of onward transmission.

The role of this real-time monitoring system in detecting an
outbreak of transmitted HIV drug resistance in Vancouver was
recently reported as an implementation case study [27]. In
brief, a cluster of 25 individuals (predominantly men who
have sex with men) had grown by 11 new cases over a period
of three months. Eight of the 11 new cases carried the same
HIV mutation conferring resistance to first generation non-
nucleotide reverse transcriptase inhibitors. A provisional re-
port was issued to the provincial health authority, resulting in a
formal outbreak investigation and enhanced public health
follow-up in the affected subpopulation over the subsequent
two months. Over the following year, the cluster continued to
accumulate new cases but the frequency of transmitted drug
resistance was significantly reduced.

Transmission Along the Cascade of Care

One consistently proposed use of genetic cluster analysis has
been to guide HIV prevention strategy—to increase the effi-
ciency and effectiveness of interventions. Targeted prevention
based on transmission risk factors was successfully demon-
strated by Avahan, the India AIDS Initiative, which focused
prevention on high risk groups in India and led to > 100,000
estimated HIV infections prevented in the general population
between 2003 and 2008 [30, 31]. Avahan identified epidemic
drivers without phylogenetic analyses, and it may be that
existing epidemiologic data adequately identifies groups at
high risk for transmitting HIV in the USA as well. However,
they may not. An example relates to the problem of identify-
ing the stage of individual infections that are the source of the

majority of new infections. In another study that was not based
on phylogenetic analysis, the United States Centers for
Disease Control estimated that most new HIV infections are
transmitted from persons who are diagnosed and out of care
[32] and that ~30% of new infections are from undiagnosed
individuals. Yet phylogenetics can be used to address this
specific question, or, at minimum, to augment the standard
approach to understanding transmissions along the cascade
of care. Recent such studies have focused on the resurgent
HIV epidemic among men-who-have-sex-with-men (MSM)
in the Netherlands [33, 34]. Notably, [34] focused on trans-
missions to MSM with confirmed recent HIV infection at time
of diagnosis. The goals of this study were (1) to reconstruct the
probable transmission events to these recipient MSM; (2) to
estimate the proportion of these transmissions from differ-
ent stages in the infection and care continuum; and (3) to
estimate, via mathematical modeling, the proportion of
infections that could have been averted through counter-
factual prevention programs. Phylogenetic analysis of
1045 (anonymized) potential recipients included > 6000
total sequences from the Netherlands and an additional
700 contextual sequences obtained from the Los Alamos
National Laboratory HIV Sequence Database. The
resulting phylogeny was used to exclude potential pairs,
leaving 903 phylogenetically probable transmitters to 617
recipients. Phylogenetic transmission probabilities were
ascribed to each remaining pair based on independent data
on “known” HIV transmission pairs that were previously
confirmed through detailed interviews and subsequent
phylogenetic analysis [35]. Linked clinical records, avail-
able over time, were used to identify the stage of infection
of each probable transmitter during infection windows of
recipients. From this, the probability of transmission for
each stage in the HIV infection and care continuum was
estimated at the population level. The role of undiagnosed
infections in driving the Dutch epidemic was estimated:
they found that 71% of probable transmissions were from
undiagnosed MSM, 43% from those in their first year of
infection, 6% from men who had initiated ART, and 1%
from men with no contact to care for at least 18 months.
First, these results suggest that viral suppression due to
ART is effective in decreasing transmission rates, as expected
[36]. Second, 71% (from undiagnosed individuals) is substan-
tially greater than the ~ 30% estimated by Skarbinski et al. for
the USA (in 2009) (a comparison of the Dutch MSM popula-
tion with the overall epidemic population of the USA, how-
ever). Third, they estimated that very few transmissions (1%)
were attributable to temporary or permanent loss to follow-up,
compared to studies from the USA that estimate > 50% of all
transmissions among MSM originate from men not retained in
care [32, 37]. However, the 40% of transmissions estimated to
come from early infection was similar to that estimated by a
phylodynamic analysis of MSM in Detroit (45%) [11].
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Better understanding of the characteristics of persons who
transmit HIV, including where they are located within the HIV
infection and care continuum, and the factors that may impede
their early diagnoses and effective treatment could allow pub-
lic health officials to better target resources to maximize pre-
vention impact.

Application of Phylogenetics to Generalized HIV
Epidemics of Sub-Saharan Africa

Despite accounting for more than two thirds of HIV infections
and AIDS-related deaths worldwide, the African HIV epidem-
ic is poorly represented within the phylogenetic literature [8].
Historically, most African HIV phylogenetic studies have fo-
cused on characterizing viral diversity and drug resistance
from sparsely sampled populations in HIV treatment and care
programs. Few studies have assessed HIV emergence and
geographic patterns of viral spread and an even smaller num-
ber have assessed modern-day epidemic dynamics and risk
factors for viral transmission.

Phylogenetic studies of African HIV epidemics reveal strik-
ingly different clustering patterns compared to those observed
in concentrated epidemics. Unlike American and European
HIV phylogenies from specific outbreaks, injection drug
users, or MSM populations, African HIV phylogenies are typ-
ically characterized by small cluster sizes (< 5 persons/cluster)
with limited geographic and epidemiological substructure [8,
15]. For example, a multi-pronged analysis, including spatial,
partner network, and phylogenetic analysis, [38] showed that
within rural Ugandan villages, there were numerous small
phylogenetic clusters, nearly half of which were two individ-
uals residing in the same household, and that many of these
small clusters were connected to other infections in different
villages. The phylogenetic results suggested that HIV is fre-
quently introduced in villages with limited onward transmis-
sion. These findings were supported by spatial analyses show-
ing limited geographic clustering of viruses outside of house-
hold and in analyses of partner networks revealing a high
probability of infection among those with sexual contacts out-
side their community, particularly among women. In another
phylogenetic study of the Kenyan HIV epidemic, [39] found
extensive geographic mixing between MSM living in coastal
Kenya and the capital city, Nairobi.

The small cluster sizes observed in African epidemics are
most likely the consequence of a low sampling fraction, de-
fined here as the fraction of extant HIV infections in the stud-
ied population that are represented by HIV sequence data (see
Box 1). The lower the sampling fraction, the more challenging
it is to identify putative transmission chains, a requirement for
source attribution studies aiming to identify high risk trans-
mitters. Simulation studies also show that local network struc-
ture and parameters (e.g., the momentary degree distribution,
assortativity) are difficult to discern at low sampling fractions

@ Springer

[40]. This is a critical problem in African settings with large
epidemics and limited surveillance, because the sampling
fraction is usually under 10%. Compare this to the
ATHENA cohort, which includes sequence data from 60%
of all HIV-infected persons in the Netherlands [41]. There
are ongoing efforts to improve sampling of African HIV se-
quences, including the PANGEA-HIV consortium [42] that
has generated more than 16,000 partial and full-length HIV
genomes from several well-characterized East and Southern
African epidemics. Analyses of these data are presently
ongoing.

Box 1 Definitions of common terms in HIV genetic clustering

Bootstrap support value: An estimate of confidence in the accuracy of
reconstructing a particular section of a phylogenetic tree. A section
(subtree) is defined by a branching point in the tree that represents the
common ancestor for certain sequences.

Cluster growth: A genetic cluster “grows” when a reanalysis of a database
results in the addition of sequences to a previously observed cluster,
representing infections that have been sampled since the previous
clustering analysis. To date, there is no consensus on how to quantify
growth rates for comparison among genetic clusters.

Genetic cluster: A group of gene sequences representing sampled
individuals that are more similar to each other than to sequences from
outside of the cluster. The composition of a cluster can be determined
by an algorithm (set of rules), but these rules ultimately depend on one
or more subjective criteria.

Genetic distance: Any method for converting two genetic sequences into
a number that measures how different they are. A simple example of a
genetic distance is to count the number of differences between a pair of
aligned sequences.

Sampling fraction: Generally, this term refers to the proportion of
individuals who have been sampled from the infected population.
However, this definition is ambiguous because the number of sampled
infections accumulates over time and may also refer to the proportion
of diagnosed infections for which genetic sequences are available. In
some models, the sampling fraction is the proportion of “extinct” virus
lineages that were terminated due to being sampled with the
assumption that the individual then receives effective treatment [28].

Transmission network: A graphic representation of the transmission
history in a population of infected individuals. Each individual is
represented by a node in the network. A directed edge (arrow) drawn
between nodes indicates that the pathogen was transmitted. A trans-
mission network usually does not contain information about the timing
of transmission events. Hence, it can be viewed as a “flattened” trans-
mission tree. It is implicitly assumed that a transmission network rep-
resents a complete sample of infections in the population from the start
of the epidemic to the present time. Genetic clusters are often equated
with transmission networks; although they may be similar in shape,
there are several reasons for discordance including incomplete sam-
pling of infected individuals, variation in sampling times, and variation
in rates of virus evolution

The importance of sampling fraction is illustrated in two
recent studies. In a phylogenetic assessment of age-disparate
partnership and HIV risk in South Africa [43], the sampling
fraction of the local HIV-infected population was no more
than 4%. Nevertheless, the authors identified putative hetero-
sexual transmission pairs from phylogenetic clusters, assum-
ing that within clusters, older partners always transmitted to
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younger ones. Predictably, the authors concluded that older
men were an important source of HIV infection to younger
women, but because they did not account for low sampling
and because of assumed directionality of transmission within
clusters, the results provide limited insight into sources of HIV
infection among young women. In another source attribution
study, assessing the contribution of HIV transmission among
MSM to HIV incidence in Nigeria, [44] explicitly account for
incomplete and differential sampling within a complex coa-
lescent population genetic framework. Here, the authors esti-
mated that ~9% of new HIV cases among reproductive age
women could be attributed to transmission from untreated
infections among MSM.

Recombination is another critical problem, related but distinct
to sampling fraction, in phylogenetic studies of African epi-
demics. In some settings, inter-subtype recombinant infections
range from ~20 to 50% of all HIV infections [38, 39, 45].
Intra-subtype recombination is likely just as common but difficult
to identify using existing statistical tools. Recombinant infections
are problematic because they violate the assumptions of strictly
bifurcating and non-reticulating lineage evolution that underlie
most phylogenetic approaches; consequently, sequences that are
identified as likely recombinants are almost always discarded
from analytic datasets.

Caveats About HIV Clusters

The emphasis within HIV molecular epidemiology on clusters
(as defined by genetic similarity) has been influenced by quali-
tative observations and by simplifying assumptions.
Observations (i.e., looking at pathogen phylogenies) have result-
ed in the assumption that an outbreak (whether spatial, temporal,
or both) will commonly be reflected as a cluster. But the converse
is not always true; a cluster does not always reflect an outbreak.

A related, and perhaps more implicit, assumption relates to
the use of clusters to identify risk factors linked to high relative
rates of transmission. One may postulate that all viral lincages
in a phylogeny are cases of HIV infection (acquisition), but
that only lineages in a cluster are likely cases of infection
followed by transmission (on average, given sampling and
linkage probabilities). Thus, the individual risk factors over-
represented in clusters have been assumed to contribute more,
on average, to transmission in an epidemic.

However, several recent studies have attempted to explic-
itly identify the processes through which genetic similarity
clusters arise. For example, [46] demonstrated that the excess
genetic clustering of individuals sampled in early infection is
at least partially explained by the minimal genetic divergence
experienced by such viral lineages (i.e., early infections are
connected by short phylogenetic branch lengths to the trans-
mitting individuals), rather than the expected elevated rates of
transmission during acute HIV infection. Similarly, using

epidemic simulations, [18] found that the majority of cluster
identification methods were biased to detect variations in sam-
pling rates among subpopulations, rather than variations in
transmission rates. This study stressed that these variations
in sampling rates may be due to the method of sampling in
resource rich settings: high-risk individuals, who are already
engaged in primary care, are more likely to be sampled than
subpopulations with less access to primary care who may also
be burdened by high rates of transmission. This suggests that
the contribution of phylogenetic clustering studies to inform
public health interventions and prevent transmission may be
limited in such settings—without appropriate corrections for
sampling in the statistical analysis of risk factors. The epidem-
ic model used by [18] represents an epidemic scenario typical
of concentrated epidemic dominated by MSM; sampling is
perhaps not random with respect to risk or behavior and is
driven by individuals themselves. It is unclear if similar pat-
terns of clustering would be found in the generalized HIV
epidemics of sub-Saharan Africa. In such epidemics, cluster-
ing studies are (perhaps) more likely to be carried out on
community/population cohorts in which individuals are sam-
pled irrespective of their individual risk. Examples of such
community cohorts include the Rakai Community Cohort
Study in Uganda, and those administered by the Africa
Health Research Institute, the Centre for the AIDS
Programme of Research in South Africa, the University of
Washington Partners in Prevention/PrEP Study, and the
Botswana Harvard AIDS Institute Partnership. Phylogenetic
analyses (based on full HIV genomes) of these cohorts are
underway by the PANGEA-HIV consortium [42]; the full
genomes are expected to result in improved phylogenetic res-
olution [47, 48], although the question of what process is the
primary driver of genetic clustering will remain.

An additional issue is when pairs of individuals within
genetic clusters are interpreted as transmission partners absent
additional epidemiological information. This tendency to
equate genetic similarity with transmission at the level of in-
dividuals is particularly dangerous in settings where HIV is
criminalized, since the same methods used to generate clusters
have also been used in the prosecution of individuals for HIV
transmission without disclosure of their infection status. The
identification of group-level associations with phylogenetic
clustering may also result in marginalization of vulnerable
subpopulations, such as migrants. Hence, applications of ge-
netic clustering studies to HIV-infected populations carry sig-
nificant ethical and legal implications that have not been ade-
quately addressed in the research community.

Conclusion

Recent years have seen exciting advances in HIV molecular
epidemiology, including the push for real-time analyses linked
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directly to public health interventions, and the application of
phylogenetic approaches to describing patterns of transmis-
sion in the generalized epidemics of sub-Saharan Africa.
Critically, the field has also begun to reevaluate key assump-
tions about clusters and the inferences that can be drawn from
them. Evidence now supports greater caution is needed for the
design and implementation of clustering studies that attempt
to answer epidemiological questions. In short, analyses of
viral gene sequences have great promise to contribute to our
understanding of HIV transmission and to inform the targeted
deployment of public health resources, yet the full potential of
these methods will only be realized through continued devel-
opment and critical evaluation.
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