
Citation: Pharoah, B.M.; Khodade,

V.S.; Eremiev, A.; Bao, E.; Liu, T.;

O’Rourke, B.; Paolocci, N.; Toscano,

J.P. Hydropersulfides (RSSH)

Outperform Post-Conditioning and

Other Reactive Sulfur Species in

Limiting Ischemia–Reperfusion

Injury in the Isolated Mouse Heart.

Antioxidants 2022, 11, 1010.

https://doi.org/10.3390/

antiox11051010

Academic Editors: Małgorzata

B. Iciek and Anna Bilska-Wilkosz

Received: 22 April 2022

Accepted: 18 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Hydropersulfides (RSSH) Outperform Post-Conditioning and
Other Reactive Sulfur Species in Limiting
Ischemia–Reperfusion Injury in the Isolated Mouse Heart
Blaze M. Pharoah 1, Vinayak S. Khodade 1 , Alexander Eremiev 1, Eric Bao 1, Ting Liu 2, Brian O’Rourke 2,
Nazareno Paolocci 2,3,* and John P. Toscano 1,*

1 Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; bpharoa1@jhu.edu (B.M.P.);
vkhodad1@jhu.edu (V.S.K.); aeremie1@jhu.edu (A.E.); ebao1@jhu.edu (E.B.)

2 Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
tliu11@jhmi.edu (T.L.); bor@jhmi.edu (B.O.)

3 Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
* Correspondence: npaoloc1@jhmi.edu (N.P.); jtoscano@jhu.edu (J.P.T.)

Abstract: Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as my-
ocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these
findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate
protein activity through redox-based post-translational modifications of protein cysteine residues
forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur
species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear
yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysul-
fides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur
species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic
post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first
time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to
maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical
post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2
cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while
preserving cell viability.

Keywords: reactive sulfur species; hydrogen sulfide; hydropersulfides; carbonyl sulfide; cardioprotection;
ischemia–reperfusion injury; post-conditioning; Langendorff; hypoxia-reoxygenation

1. Introduction

Myocardial infarction (MI) is a leading cause of death and disability in the developed
world and a significant socioeconomic burden [1]. In many cases, MI stems from the erosion
or rupture of a vulnerable atherosclerotic plaque within a coronary artery, leading to a
thrombus formation and subsequent occlusion of the same vessel. Prompt restoration of
blood flow to the ischemic myocardium via a percutaneous procedure and fibrinolytic
therapy is mandatory to limit infarct size. However, these interventions come with the cost
of the so-called “reperfusion injury”, i.e., tissue damage caused by blood flow return to
the myocardium [2]. Factors accounting for ischemia–reperfusion (I/R) injury have been
studied for decades now, and yet there are no current pharmacological tools approved for
its limitation in MI patients.

Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that reg-
ulates a myriad of physiological functions, including neurotransmission, vasodilation,
and insulin secretion [3–5]. Several studies have demonstrated its ability to protect the
myocardium against I/R injury in recent years [6–11]. For instance, the Lefer group was
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one of the first research teams to provide insights into the cardioprotective potential of
H2S, using several animal models [12]. In addition to cardiac protection, Goodchild and
colleagues reported that the daily administration of the H2S prodrug, SG-1002, preserves
vessel number and density in ischemic limbs by increasing circulating H2S and nitric oxide
(NO) levels [13].

Recently, H2S-related species, such as hydropersulfides (RSSH), polysulfides (RSS(n)SR,
n ≥ 1), and inorganic polysulfide (HSS(n)H, n ≥ 1) have been found to account for many
of the protective effects originally assigned to H2S [14,15]. Indeed, it is now increasingly
manifest that a wide range of reactive sulfur species (RSS) can be enzymatically pro-
duced [16]. Recent progress in analytical methods has revealed that RSSH, (e.g., cysteine
and glutathione hydropersulfides) and polysulfides are ubiquitous in mammalian and
other biological systems [17]. Furthermore, Kevil and co-workers have demonstrated that
RSS levels are markedly reduced in subjects with cardiovascular disease (CVD), suggesting
RSS play a central role in maintaining the cellular redox homeostasis and, thus, cardiovas-
cular health [18,19]. In the same vein, diallyl trisulfide has been shown to limit myocardial
injury in a murine model of I/R injury [20]. Thus, RSS species may have bioregulatory
roles similar to those ascribed to H2S, and their in situ coexistence complicates discerning
which particular sulfur species is responsible for a given biological/pharmacological action.
To address this conundrum, herein we compare the cardioprotective effects of H2S, RSSH,
and a dialkyl trisulfide, each individually in the ex vivo Langendorff model. This approach
permits testing whether these species have direct protective action, comparing their effec-
tiveness on the ischemic heart independently from additional possible benefits such as
those emanating from a better preserved systemic vascular function. By real-time monitor-
ing heart contractility with this model, the preserved performance of the myocardium and
tissue salvaging by bolus H2S administration is compared directly with that of slow H2S
donation or sulfane sulfur supplementation via an RSSH donor or a dialkyl trisulfide on
the post-ischemic heart. Because H2S has been reported to affect the metabolism of various
tissue types in different disease models [21–23], ultimately offering protective properties,
we also investigate the metabolic modulating capabilities of RSSH, which shows the highest
cardiac cell-protective effects of the RSS studied herein.

2. Materials and Methods
2.1. Reagents

Sodium sulfide (Na2S) was purchased from TCI chemicals. Cell Counting Kit-8 (CCK-
8) was purchased from Dojindo Molecular Technologies, Inc. All other chemicals were
purchased from Sigma Aldrich. H2S donor 1 and RSSH donors 2 and 3 were synthesized
following reported procedures [24]. N-acetyl-O-ethyl cysteine trisulfide (4) was synthesized
as shown in Scheme S1 (Supplementary Materials) [25,26]. Na2S (10 mM) stock solution
was freshly prepared by dissolving it in molecular biology grade water (Corning). Stock
solution of RSSH donors 2 and 3, and sulfane sulfur donor trisulfide 4 were prepared in
DMSO:Water (<0.001%) and diluted fresh each day before administration.

2.2. Animals

Male C57BL/6J mice obtained from Jackson Laboratories (Bar Harbor, ME, USA)
were used for all experiments. Mice were between 12 and 14 weeks of age at the time of
experimentation. All animals received humane care in compliance with the “Principles of
Laboratory Animal Care” formulated by the National Society for Medical Research and
the “Guide for the Care and Use of Laboratory Animals” published by the US National
Institutes of Health. The Animal Care and Use Committee from Johns Hopkins University
approved this study.

2.3. Perfusion Experimental Protocol

As previously described [27,28], after anticoagulation with heparin and cervical dislo-
cation, a thoracotomy was performed, and the heart was quickly excised and placed in ice-
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cold Krebs–Henseleit buffer (in mmol/L: 11.1 D-glucose, 1.2 MgSO4, 1.2 KH2PO4, 4.7 KCl,
118 NaCl, 2 CaCl2, 25 NaHCO3). The aorta was cannulated, and the heart was perfused
with Krebs–Henseleit buffer (oxygenated with 95% O2/5% CO2 and maintained at pH 7.4)
in a retrograde fashion at a constant pressure of 80 mmHg at 37 ◦C [29]. A catheter-linked
latex balloon is inserted into the left ventricle bypassing the pulmonary veins. Changes
in pressure were monitored, recorded, and processed using BIOPAC (Goleta, CA, USA)
technology. After baseline equilibration for 20 min, we monitored heart rate-pressure
product (RPP) and left-ventricular developed pressure (LVDP) (Table 1). Only those hearts
displaying RPPs of 22,000 (or above) and LVDP of 60 mm Hg (or above) were included in
the protocols to avoid poorly performing control hearts (either due to poor handling by the
operator or issues intrinsic to the heart itself) confounding the final functional outcome.
After that, the mouse heart was subjected to 20 min of no-flow global ischemia and 90 min
of reperfusion. Mechanical post-conditioning was achieved by alternating six cycles of 10-s
intervals of reperfusion and ischemia (20 s per cycle), as previously described [27]. Pharma-
cological postconditioning was performed by infusion of aqueous Na2S or compounds 1, 2,
3 or 4 (100 µM final concentration) at the onset of reperfusion for 7 min (Figure 1). Hearts
were then reperfused for a total of 90 min. Control hearts received no pharmacological
treatment or mechanical postconditioning. Coronary effluent was collected at the endpoint
of reperfusion for control and RSSH-donor-3-treated hearts (1 mL).

Table 1. Isolated heart parameters taken at the end of the stabilization time in the different
treatment groups.

Group n HR
(bpm)

LVDP
(mmHg)

RPP a

(bpm × mmHg)
+dp/dtmax

a

(mmHg/ms)
−dp/dtmax

a

(mmHg/ms)

I/R 8 370 ± 62 75 ± 16 27.8 ± 9.6 2.71 ± 0.65 −2.21 ± 0.65
IPoC 8 336 ± 63 71 ± 9 23.9 ± 8.0 2.88 ± 0.39 −2.25 ± 0.46
Na2S 8 349 ± 51 70 ± 12 24.4 ± 8.4 2.97 ± 0.54 −2.01 ± 0.33

1 8 333 ± 30 78 ± 13 26.0 ± 7.1 3.55 ± 0.87 −2.34 ± 0.50
2 8 385 ± 79 78 ± 18 30.0 ± 7.3 3.03 ± 1.0 −2.48 ± 0.66
3 8 382 ± 35 66 ± 11 25.2 ± 6.9 3.23 ± 0.46 −1.94 ± 0.33
4 8 323 ± 77 84 ± 23 27.1 ± 7.8 3.10 ± 0.73 −2.41 ± 0.92

a Values reported as ×103.
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flow ischemia followed by 90 min reperfusion; (2) IPoC, after 20 min stabilization, mouse hearts 
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Figure 1. Schematic presentation of the Langendorff experimental protocol. Experimental groups:
(1) I/R control, after equilibrium perfusion for 20 min, mouse hearts were subjected to 20 min of
no-flow ischemia followed by 90 min reperfusion; (2) IPoC, after 20 min stabilization, mouse hearts
were subjected to 20 min of no-flow global ischemia followed by alternating six cycles of 10-s intervals
of reperfusion and ischemia and then reperfusion for 90 min; (3) PostC, after 20 min stabilization,
mouse hearts were subjected to 20 min of no-flow global ischemia followed by infusion of 100 µM of
Na2S, donors 1, 2, 3 and 4 independently for 7 min and then reperfusion for 90 min. Abbreviations:
IPoC: ischemic post-conditioning, PostC: pharmacological post-conditioning.
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2.4. Determination of Infarct Size

After the end of the protocols reported above, all hearts were dismounted from the
rig. The aortic cannula was placed on an infusion line connected to a syringe pump
(Harvard Apparatus). The mouse hearts were perfused with 1% (w/v) of 2,3,5-triphenyl
tetrazolium chloride (TTC) [29] while sitting in a bath of 1% TTC at 37 ◦C for 10 min
(Flow rate = 0.5 mL/min). Then, the pump is turned off and the heart remained in the
TTC bath for an additional 5 min. Following incubation, the heart was de-cannulated,
weighed, and cooled to a semi-frozen state at −20 ◦C for 20–30 min before the heart was
sliced transversely at 1 mm thick slices. The slices were then weighed and fixed overnight
in 10% formalin, followed by imaging with a high-resolution camera. Planimetry of the
images was conducted using ImageJ (NIH).

2.5. Estimation of Cardiac Injury Markers

Necrotic cell death was evaluated by analyzing the leakage of cardiac troponin I (cTnI)
in the coronary effluent using commercially available ELISA methods [30].

2.6. Cell Culture

H9c2(2-1) embryonic rat heart myoblasts were obtained from the American Type
Culture Collection. Cells were grown in Dulbecco’s minimal essential medium (DMEM),
supplemented with fetal bovine serum (FBS) 10%. They were propagated in T75-flasks,
split before reaching 70–80% confluence (usually every day or every second day), and used
within 15 passages. Cells were passaged to tissue culture 96-well microtiter plates at the
specified density in 200 µL volumes and incubated for 24 h.

2.7. Hypoxia-Reoxygenation

Hypoxia/reoxygenation treatment was achieved by using a hypoxic chamber (New
Brunswick, United States) to create a challenge of an in vitro hypoxia environment (1%
O2) [31]. In brief, cells were firstly cultured in rich DMEM under normoxic conditions
(95% air/5% CO2) at 37 ◦C for 24 h. Then, the rich media was removed, and nutrient
deficient DMEM (without glucose, pyruvate or serum) that had been preequilibrated in
the hypoxic chamber overnight was added (200 µL). The cells were placed in the chamber
and incubated for the indicated time period. At the conclusion of the hypoxic episode, the
media was replaced with rich DMEM with or without RSSH precursor 3 and then moved
into a normoxic incubator for the indicated time.

2.8. Viability

Undifferentiated H9c2 cells were seeded at a density of 5 × 103 cells/well. After 24 h,
the nutrient-rich DMEM was replaced with glucose, pyruvate, and serum-free DMEM
(200 µL), and the cells were placed in a hypoxia chamber. Cells were incubated for 24 h
under hypoxia before replacing media with nutrient-rich DMEM containing RSSH pre-
cursor 3 or vehicle and incubated under normoxic conditions for 3 h. At the end of of
the “reperfusion” stage, each well was carefully washed three times with PBS (pH 7.4)
before adding 100 µL of media (without-FBS) containing 10% v/v CCK-8 [32] and incubated
for 3 h (95% air/5% CO2) at 37 ◦C prior to obtaining absorbance values at 450 nm. The
relative % cell viability was calculated as 100 times the Abs450 (Hypoxia) ratio over Abs450
(Normoxia) for each condition tested.

2.9. Oxygen Consumption Rate (OCR) via Seahorse Experiments

Mitochondrial respiratory function was monitored by changes in oxygen consumption
rate (OCR). Briefly, H9c2 cells were plated at a density of 2 × 103 cells per well into
96-well plates and incubated for 24 h. After 24 h, the nutrient-rich DMEM was replaced
with glucose, pyruvate, and serum-free DMEM (200 µL) and the cells placed in a hypoxia
chamber. Cells were incubated for 7 h under hypoxia before replacing media with nutrient-
rich DMEM containing RSSH precursor 3 or vehicle, and incubated under normoxia for 3 h.



Antioxidants 2022, 11, 1010 5 of 14

At the completion of this “reperfusion” stage, each well was carefully washed three times
with PBS (pH 7.4) before DMEM was replaced by Agilent Seahorse XF Base Medium
containing 1 mM of pyruvate, 2 mM of glutamine, and 10 mM of glucose (adjusted pH
to 7.4 with 0.1 N NaOH). The respiration modulating compounds were then loaded into
the appropriate ports of a hydrated sensor cartridge and added sequentially following
basal conditions. Cellular oxygen consumption rate (OCR), extracellular acidification
rate (ECAR), and different indices were determined using the Seahorse XF96 analyzer
(Agilent Technologies, Santa Clara, CA, USA). The final concentrations of compounds in
the Seahorse XFp Cell Mito Stress Test were 1.5 µM oligomycin (a complex V inhibitor
linked to ATP production), 2 µM FCCP (an uncoupling agent linked to maximal OCR),
and 2 µM rotenone and antimycin A (complex I and III inhibitors, respectively, linked to
non-mitochondrial OCR). Cell counting was used for normalizing Seahorse XF96 metabolic
data to cellular number. Briefly, H9c2 cells in each well were fixed in 4% formalin for 10 min
before nuclear staining with Hoescht 33342 (1:1000) in PBS. Cell nuclei were visualized
on a Thermo Fisher EVOS fluorescence microscope and analyzed using ImageJ (NIH).
The normalization unit of the present study was 1 × 103 cells. Data were analyzed using
Seahorse XF Cell Test Report data analysis.

2.10. Statistical Analysis

Intergroup comparisons were performed by using a one-way analysis of the variance,
followed by a post hoc Dunnett test with a family-wise alpha threshold of p < 0.05 (95%
confidence interval) using GraphPad Prism software (Version 9.3.1). Analyzed data are
represented as mean with standard error (mean ± SEM).

3. Results
3.1. Reactive Sulfur Species/Donors Used in This Study

The inorganic salt, sodium sulfide (Na2S), was used as the source of H2S. Because
Na2S dissociates instantaneously in aqueous solution to produce high local H2S concentra-
tions [33], which is different from the slow enzymatic generation in biological systems, we
also utilized precursor 1 that produces H2S slowly. In the presence of biological thiols, 1
initially releases carbonyl sulfide (COS) (with a half-life of approximately 10 min under our
experimental conditions) [24], which is rapidly hydrolyzed to H2S by carbonic anhydrase
(Scheme 1a) [34]. Because of the intrinsically unstable nature, RSSH study is difficult and
dependent on the use of donor molecules. In recent years, some small-molecule donors
have been developed that efficiently release RSSH in response to various stimuli [35,36]. We
utilized our recently developed RSSH precursors 2 and 3 (Scheme 1b) [24]. At pH 7.4 and
at 37 ◦C, precursor 2 rapidly releases RSSH (t1/2 = 1.7 min), whereas 3 releases RSSH more
slowly (t1/2 = 16.7 min). Cysteine trisulfide has been proposed as a reservoir of sulfane
sulfur in the biological systems and has also been used to increase intracellular RSSH
levels [37]. However, cysteine trisulfide is unstable under physiological conditions, likely
stemming from deprotonation of the ammonium group at neutral pH and degradation
via amine reactivity [38]. Hence, we have used N-acetyl-O-ethyl cysteine trisulfide (4)
because of its stability and potentially enhanced bioavailability. We synthesized trisulfide 4
(Scheme S1) with high purity, relatively free of polysulfides.

3.2. RSSH Improves the Rescue of Myocardial Function after I/R Injury over Na2S and Other
H2S-Related Species

We compared the efficacy of various RSS in preventing I/R injury with the protection
afforded by classical post-conditioning. To this end, we used a global ischemia approach in
Langendorff-perfused hearts and Na2S along with four different RSS donors (1, 2, 3, and 4,
as shown above). As expected, six cycles of 10-s episodes of ischemia and reperfusion at the
onset of reperfusion (IpoC) increased the recovery of developed pressure from 35.0 ± 5.7
to 58 ± 6.7% as compared to control hearts receiving complete reflow at the onset of
reperfusion (Figure 2B). Similarly, the percent recovery of the maximal rate of LV pressure
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rise (dP/dtmax) also increased from 30 ± 4.3% to 63.3 ± 9.0% in the IPoC group. Consistent
with previous reports [12,39,40], Na2S significantly improved the post-ischemic functional
recovery. Cardiac RPP was 44.2 ± 11.1% in Na2S compared with 25.2 ± 8.6% in control
I/R hearts (Figure 2A). Percent recoveries of LVDP, and dP/dtmax also increased following
Na2S infusion (Figure 2B,C). Hearts treated with 1 displayed modest improvement in
dP/dtmax after ischemia due to the benefits of slow and sustained release of H2S compared
to bolus administration of Na2S. The fast release of RSSH from donor 2 exhibited similar
protective properties to Na2S as did trisulfide 4. However, RSSH donor 3 showed superior
cardioprotection compared to all other RSS tested. RPP was 55.1 ± 7.6% in 3-conditioned
hearts vs. 25.2 ± 8.6% in control hearts. We report no significant difference in the values
obtained at the end of stabilization for all groups tested as shown in Table 1. However,
significant preservation of dp/dtmax is observed with RSSH precursor 3, but with no
notable impact on heart rate (Table 2). Consistently, we observed a two-fold increase
over control in the recovery of LVDP and dP/dtmax, confirming that RSSH donated by 3
positively impacts post-ischemic heart function in a manner that appears to be superior to
all conditions tested.
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Results are expressed as the mean ± SEM using values obtained at 90 min of reperfusion normalized
to the respective pre-ischemic value (n = 8 in each group) * p, 0.05, ** p, 0.005, *** p, 0.001, **** p < 0.0001
vs. I/R-Control.

Table 2. Isolated heart parameters observed at the end of reperfusion in the different
treatment groups.

Group n HR
(bpm)

LVDP
(mmHg)

RPP a

(bpm × mmHg)
+dp/dtmax

a

(mmHg/ms)
−dp/dtmax

a

(mmHg/ms)

I/R 8 276 ± 63 25 ± 11 6.90 ± 5.3 1.16 ± 0.59 −0.61 ± 0.20
IPoC 8 256 ± 41 46 ± 13 11.8 ± 5.7 1.84 ± 0.84 −1.05 ± 0.36
Na2S 8 244 ± 45 36 ± 8 8.84 ± 3.8 1.45 ± 0.29 −0.79 ± 0.18

1 8 287 ± 45 48 ± 16 13.8 ± 7.5 2.09 ± 0.65 −1.17 ± 0.76
2 8 315 ± 54 45 ± 10 14.2 ± 6.1 1.55 ± 0.73 −0.96 ± 0.36
3 8 290 ± 47 48 ± 10 13.9 ± 5.6 2.33 ± 0.51 −1.13 ± 0.30
4 8 297 ± 79 46 ± 14 13.7 ± 8.9 1.41 ± 0.38 −0.93 ± 0.27

Values are mean ± SD n, number of hearts; H.R., heart rate; LVDP, left-ventricle developed pressure; +dp/dt,
−dp/dt, rate of pressure rise and fall, respectively. a Values reported as ×103.

3.3. RSS Limits Infarct Size after Global Ischemia/Reperfusion in Isolated Mouse Hearts

To determine the extent to which the different RSS tested here prevent irreversible
myocyte loss after I/R injury, we assessed the infarct size by TTC staining and planimetry.
Active mitochondrial dehydrogenases convert the water-soluble compound TTC into an in-
soluble red precipitate, and the extent of staining correlates with the viable myocardium [41].
TTC staining demonstrates that 20 min of global ischemia followed by 90 min of reperfusion
resulted in 45% infarcted volume of the heart (Figure 3A,B). Post-conditioning reduced
infarct size by more than 20% with respect to the I/R control group. Na2S treatment also
significantly limited myocardial cell loss, albeit to a lower extent when compared to the
slow H2S donor 1. Equivalent protection was evident with RSSH donor 2 and trisulfide
4. Intriguingly, the RSSH donor 3 showed the highest degree of post-I/R myocardial
protection by limiting the total infarct to under 20% of the heart area, consistent with the
functional data presented above.

The release of cardiac troponin I (cTnI) is routinely used to determine the extent of
myocyte loss after a significant ischemic event [42]. Hence, we collected the coronary
effluent from I/R injured hearts at the end of reperfusion to assess the cTnI levels in I/R
control and RSSH donor 3-treated hearts. We found that total cTnI from I/R (untreated)
hearts was two-fold higher than that eluted from I/R hearts receiving RSSH donor 3
at reperfusion (Figure 3C). In aggregate, these data show RSSH, given at reperfusion,
effectively limits irreversible myocardial injury, thus dysfunction after global I/R, and does
so in a manner that seems to outperform the protection afforded by other RSS. Based on
these promising results, we chose RSSH donor 3 for further mechanistic studies.

3.4. RSSH Enhances H9c2 Cell Viability after Hypoxia/Reoxygenation

H9c2 cells are commonly used to mimic in vivo myocardial reperfusion injury, using a
hypoxia/reoxygenation (H/R) approach [43,44]. Here, we used the H/R model to dissect
the possible mechanisms involved in RSSH-granted protection against ischemic injury.
To this end, we first placed H9c2 cells under normoxic conditions after challenging them
with 24 h of hypoxia (5% CO2, 95% N2, and 1% O2) in substrate deficient media. This
procedure resulted in an approximately 50% cell loss, as determined with the CCK-8
assay. RSSH donor 3 markedly increased H9c2 cell viability at the onset of reperfusion and
dose-dependent (Figure 4A).
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Figure 4. Effect of RSSH donor 3 on H9c2 cells during reoxyenation following hypoxia. (A) Dose-
dependent protection of cell viability by compound 3 against 24 h of hypoxia followed by 3 h
reoxygenation (n = 3) * p, 0.05, ** p, 0.005 vs. normoxic controls. (B) OCR of H9c2 cells under
normoxia, or 24 h hypoxia followed by reoxygenation with or without precursor 3. (C) Mitochondrial
function parameters calculated from respiration data in (B) (n = 3) # p, 0.05, ## p, 0.005, ### p, 0.001 vs.
normoxia control; * p, 0.05 vs. hypoxia group.
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3.5. RSSH Lowers H9c2 Cell Mitochondrial Respiration Granting Cell Protection against
Hypoxia-Reoxygenation

To further interrogate the mitochondrial metabolic state of H/R injured H9c2 cells, the
mitochondrial respiration was evaluated by measuring OCR in Seahorse XF96 Extracellular
Flux Analyzer. As shown in Figure 4B,C, the basal respiration was significantly lower
in the H/R injured cells than in the normoxic group indicating that H/R specifically
impaired OCR. ATP production, maximal respiration, and spare respiratory capacity were
significantly lower in the H/R injured cells than in the normal group indicating that
H/R decreased the energy demand due to dysfunction of mitochondria. However, RSSH
donor 3 further decreased the energetic flexibility of the changes caused by H/R. When
compared with the H/R viability data (Figure 4A) demonstrating the impacts of chronic
ischemia on cell viability, we conclude that RSSH preserves the mitochondrial respiration
in H9c2 cardiomyocytes exposed to H/R, presumably by protecting mitochondria via an
induced temporary inhibition of complex IV, which is a common feature among H2S and
related species [45]. This observation is further supported by OCR data collected from
chronic (24 h) exposure to precursor 3 under normoxic conditions (Supporting Information,
Figures S3 and S4). Here, we also see lowered OCR that correlate to strong viability in vitro
(Supporting Information, Figure S5). These results suggest that RSSH-induced decreases in
OCR under H/R or normal conditions are consistent. RSSH provides protective reduction in
cellular respiration to enhance organ-protective outcomes following ischemia–reperfusion.

4. Discussion

H2S exerts many beneficial effects in the cardiovascular system [8,46,47]; however,
its action mechanisms remain elusive. Emerging evidence suggests that many biological
actions attributed to H2S may be due to H2S-derived RSS, including RSSH and polysul-
fides [14,19,48,49]. Furthermore, accumulating evidence shows RSS protection against
I/R injury [24,50,51] as well as oxidative and/or electrophilic stress [35,36,52–55]. For
example, Predmore and colleagues have shown diallyl trisulfide rescue from myocardial
injury in a murine model of myocardial ischemia/reperfusion [20]. However, questions
still arise regarding whether there are any pharmacological differences in the use of H2S vs.
RSSH and/or polysulfides. Zhang and colleagues showed that cellular polysulfides might
play a role in regulating inflammatory signaling [56]. Desensitization of macrophages to
TLR4 by polysulfides negatively regulates TLR4 proinflammatory signaling which has
potential implications in I/R injury. A recent study by Ke and co-workers, for instance, has
shown that an H2S2 prodrug exhibits elevated analgesic effects compared to its H2S and
RSSH analogs [57].

In the present study, we compared the biological effectiveness of distinct RSS against
I/R injury. Consistent with previous reports [58], ischemic post-conditioning limits I/R in-
jury in the isolated mouse heart. Mechanical manipulation of the flow of reperfusion allows
the coronaries to modulate the coronary perfusion pressure, thereby improving endothelial
cell survival and function [59]. Interestingly, IPoC has been linked to the stimulation of
endogenous H2S production resulting in improved contractile function and limiting infarct
size [10,60]. However, the effects of IPoC on aging cardiomyocytes appears to diminish
requiring exogenous supplementation to achieve cardioprotection [11]. Early studies in
the isolated heart have shown suppressed H2S production during ischemia, which was
attributed to a reduction in CSE activity [61]. Cardiac-specific overexpression of CSE in
mice was reported to protect against myocardial I/R injury [62]. In addition, H2S therapy
has been shown to be effective in various ischemic diseases including models of ischemic
heart disease [8,63]. Consistently, Na2S improved the post-ischemic functional recovery
under our experimental conditions. However, inorganic sulfide salts are not ideal sources
of H2S because of its rapid release, thus failing to mimic endogenous production and also
raising toxicity concerns. Hearts treated with H2S donor 1 show modest improvement in
the contractile rate compared with Na2S, suggesting the benefits of slow and sustained H2S
release. For the RSSH donors tested here, precursor 3 (t1/2 = 16.7 min) shows superior car-
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dioprotection, suggesting that the rate at which RSSH is released can significantly influence
the pharmacological outcome. Given its very short lifetime, the weak beneficial actions
afforded by precursor 2 (t1/2 = 1.4 min) compared with 3 is likely due to the rapid release
of RSSH in extracellular medium, thus reduces its efficacy. In contrast, a slow RSSH release
appears to be beneficial. These results suggest that not only is the type of RSS important
for improved recovery post-ischemia, but the rate of delivery is also significant. Possible
explanations for RSSH being a better cytoprotectant than H2S and RSH include stronger
nucleophilic and reducing ability [54,64–67]. Furthermore, RSSH can achieve direct protein
S-persulfidation on reduced thiols, whereas H2S-induced persulfidation is dependent on
oxidized target thiol residues. We speculate that RSSH-mediated modification of protein
cysteine residues protects them from irreversible modification during oxidative and/or
electrophilic insult.

As previously discussed, we choose an in vitro H/R model to dissect the possible
mechanism of RSSH-mediated cardioprotection. Our data reveal that RSSH indeed protect
cardiomyocytes from reoxygenation injury following hypoxia, which parallels our Lan-
gendorff findings. Furthermore, RSSH preserves the mitochondrial respiration in H9c2
cardiomyocytes exposed to H/R potentially by protecting mitochondria via inhibition of
oxidative phosphorylation. Importantly, our findings are consistent with previous research
which shows H2S can reversibly induce a hypometabolic state in mice via a reduction in
O2-consumption, CO2-production, and heart rate [23]. Reducing infarct size following my-
ocardial ischemia is paramount because myocardial necrosis is a risk factor for developing
heart failure [68]. Cardiac metabolism changes during ischemia, with the oxygen shortage
halting oxidative phosphorylation, which depolarizes mitochondrial membranes leading
to ATP depletion and overall inhibition of myocardial contractile function. When reperfu-
sion begins, the electron transport chain is reactivated, generating ROS. The subsequent
ROS is then believed to induce a variety of damage, including sarcoplasmic reticulum
dysfunction and Ca2+ overload [69]. These abrupt metabolic changes contribute to a large
extent of the reperfusion injury. Similar to the shuttering of O2 and nutrient in IPoC, the
preserved RSSH-induced metabolic status of the myocardium in the presence of RSSH
donor 3 may smooth the transition from ischemia to reperfusion by priming the cells
with low O2 consumption, which also slows the leakage of electrons to superoxide that
otherwise accumulate with high demand. A similar salutary action has been reported
for the reversible complex I inhibitor, amobarbital [70,71]. Other have speculated that a
H2S-rich environment may be utilized by invertebrates as well as by some vertebrates,
as an alternative source of energy involving oxidation of H2S at the mitochondrial level,
perhaps coupled to mitochondrial bioenergetics [72]. We note that sulfane sulfur donated
by RSSH carries the same oxidation state as molecular oxygen, priming its utilization in
the ETC during stress situations analogous to the previously observed effects of H2S [9].
Hence, reducing the rate of O2 consumption during early reperfusion is considered as a
promising strategy to alleviate the impact of I/R injury.

The results observed with RSSH are promising, but not fully understood. We speculate
that some portion of the cytoprotection might be due to the potent antioxidant capacity
of RSSH, either via direct scavenging of ROS and/or activating endogenous antioxidant
pathways or by RSSH-mediated modification of protein thiols to provide protection against
irreversible modification. These cytoprotective features of RSSH make it an attractive
candidate for therapeutic reduction in the damaging effects of hypoxia. In this study, we
have demonstrated that different RSS exhibit different biological potencies, with RSSH
providing the most beneficial impact.

5. Limitations and Future Studies

The present study comes with some limitations that deserve future, fully dedicated
investigations. First, we did not assess the reversibility of RSSH-imparted modulation
of mitochondrial respiratory chain function. In the current study, we observed the in-
hibition of oxidative phosphorylation for a duration of 24 h with RSSH precursor 3
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(Supporting Information, Figures S3 and S4) that goes well beyond the half-life of this com-
pound (16.7 min). For the time being, we can only assert that, despite their potency, RSSH
impact on mitochondrial respiration is well tolerated. Another limitation is that we do
not yet know whether and how decreased oxidative phosphorylation leads to in vivo
cardioprotective effects. Additionally, how RSSH interact with cellular membranes remains
to be determined. Previous studies have highlighted that H2S-related species can limit
post-ischemic myocardial cell loss by limiting apoptosis/necrosis, thus preserving myocyte
function [20,73]. However, these questions remain to be explored in detail specifically for
RSSH-derived protection.

6. Conclusions

This study compared the cardioprotective effects of various RSS with Na2S and the
canonical mechanical post-conditioning of isolated perfused mouse hearts. We observe the
most positive influence on the recovery of heart function with RSSH donor 3, whereas the
other RSS species examined perform similarly to ischemic post-conditioning. All RSS were
capable of reducing the amount of irreversible damage done to the heart. Further investiga-
tion of the effects of RSSH donor 3 on rodent cardiac myoblasts suggests an induction of
hypometabolic status to the mitochondria of cells experiencing exposure to hypoxia and
subsequent reperfusion in the presence of RSSH. The lowered metabolic demand of these
cells in the early phase of reperfusion correlates with an increased viability following the
hypoxic episode. We propose that by lowering the OCR and overall metabolic demand of
the mitochondria, the cells avoid severe reperfusion injury. Further studies are needed to
understand how exactly RSSH modulate mitochondrial metabolic/functional status.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11051010/s1. Synthesis of N-acetyl-O-ethyl cysteine trisul-
fide, OCR traces for H9c2 cells, and NMR spectra. Scheme S1: Synthesis of N-acetyl-O-ethyl cysteine
trisulfide; Figure S1: Langendorff functional recovery at 30 min reperfusion; Figure S2: Langendorff
functional recovery at 60 min reperfusion; Figure S3: OCR trace for normoxia + 3; Figure S4: Calcu-
lated respiration parameters for normoxia + 3; Figure S5: H9c2 viability data for normoxia + 3 vs.
hypoxia + 3.
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