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Multi-modal magnetic resonance imaging (MRI) segmentation of brain tumors is a hot

topic in brain tumor processing research in recent years, which can make full use of

the feature information of different modalities in MRI images, so that tumors can be

segmented more effectively. In this article, convolutional neural networks (CNN) is used

as a tool to improve the efficiency and effectiveness of segmentation. Based on this,

Dense-ResUNet, a multi-modal MRI image segmentation model for brain tumors is

created. The Dense-ResUNet consists of a series of nested dense convolutional blocks

and a U-Net shaped model with residual connections. The nested dense convolutional

blocks can bridge the semantic disparity between the feature maps of the encoder and

decoder before fusion and make full use of different levels of features. The residual blocks

and skip connection can extract pixel information from the image and skip the link to solve

the traditional deep traditional CNN network problem. The experiment results show that

our Dense-ResUNet can effectively help to extract the brain tumor and has great clinical

research and application value.

Keywords: brain tumor, multi-modal image segmentation, MRI, CNN, ResNet, UNet

1. INTRODUCTION

Tumors are localized cell growths in the body that constitute a tumor for various reasons. There are
two classifications of tumors, benign and malignant. Cancer is usually a malignant tumor, and is
a common malignant diseases that threaten human health. Therefore, accurate segmentation and
subsequent quantitative analysis of tumor images is a routine and critical step in treatment.

MRI is based on the principle that the electromagnetic signal released by the instrument has
different attenuation in different structures in the body to obtain the electromagnetic signal from
the body and reconstruct the body information (Vaughan et al., 2006). Compared with other
traditional medical imaging techniques such as X-ray and CT imaging, MRI can provide early
detection of smaller andmoremicroscopic lesions (Nandpuru et al., 2014). Due to the complexity of
human organ tissues, the same imaging technique usually results in images of different modalities,
where different modalities also reveal different pathological information (Legg et al., 2015).
MRI provides four different imaging sequences obtained by several different imaging display
techniques, and these four different imaging sequences can provide complementary information
for clinical diagnosis.

At present, the segmentation of MRI brain tumor images is mainly based on the experience
of expert doctors, but it is difficult to accurately segment MRI brain tumor images preoperatively
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because of the time-consuming and repetitive work, and
the subjective judgment of the physician can interfere
with it. In recent years, many researchers have improved
natural image segmentation algorithms and then migrated
them to brain tumor segmentation tasks, resulting in a
large number of effective research methods and findings. As
shown in Figure 1, we can classify them into two categories:
(i) Fully automated segmentation methods based on deep
learning and (ii) Traditional semi-automatic medical image
segmentation methods.

Edge-based detection: The basic idea of the edge detection-
based image segmentation method is to first find its edge pixels
in the image and then aggregate these pixels to form the desired
region edges and segment the image with the region edges. Aslam
et al. (2015) proposed an improved edge detection algorithm
for brain tumor segmentation based on the operator (Sobel,
1970) of the first-order derivatives, which combined the Sobel
method and the image dependent thresholding method and used
a closed contour algorithm to find the different regions. Finally,
the intensity information within the closed contours was used to
extract the tumor from the image.

Threshold-based: The idea of the algorithm is that first, the
grayscale features of the image are computed to obtain one or
more grayscale thresholds, and then the grayscale values of each
pixel in the image are compared with each other and with the
computed thresholds. Finally, based on the comparison results,
the pixels can be classified into different classes. Kittler and
Illingworth (1986) proposed a computationally efficient solution
to the minimum error thresholding problem applicable to
multiple threshold selection. Saad et al. (2010) used the histogram
thresholding technique in segmentation to detect pixels with high
or low intensity.

Region-based: Region-based image segmentation algorithms
can be divided into two basic forms: (i) The global departure
form, where segmentation is performed gradually until the
desired region and (ii) The region growth form, where individual
image pixels are started and gradually merged, which in turn
forms the segmented region we need. Kaus et al. (2001) used a

FIGURE 1 | Classification of brain tumor image segmentation methods.

region-growing approach to segment MRI brain tumor images
based on signal intensity values.

Since the main idea of traditional segmentation algorithms
is to start from features such as texture and grayscale values
between different tissues in medical images, the main challenges
of this type of algorithms are the large grayscale similarity
and uneven distribution between brain tissues in MR images,
while the grayscale values contain too little information and
the variability between different cases, which can affect the final
segmentation accuracy.

Machine learning-based: Machine learning-based image
segmentation algorithms require training a model from a certain
number of images with well-defined mapping relationships
between image features and labels to learn the segmentation
laws. Weakly supervised learning methods and semi-supervised
learning methods were first developed, mainly random forests
(Shi and Horvath, 2005), Adaboost (Rtsch et al., 2001), K-
Means clustering (Hartigan and Wong, 2013), support vector
machines (SVMs) (Zhang et al., 2006), etc. The method proposed
by Abdelmaksoud et al. (2015) can not only take advantage of
the fuzzy C-means algorithm to obtain high accuracy, but also
make full use of K-Means clustering to obtain the minimum
computation time, which decreased the segmentation time while
improving the segmentation accuracy. Tustison et al. (2014)
combined the random forest model with regularized probability
and used the probability map generated by this model for
Markov random field, which finally obtained better results for
brain tumor segmentation. Mahmood and Basit (2016) proposed
an automatic segmentation framework for ischemic stroke
lesion segmentation in multi-spectral MRI based on random
forest. However, the problem with the machine learning-based
approach is that the selection and labeling of image features
require the use of specialized medical knowledge, which limits
the development of such methods.

CNNs were originally used in areas such as handwritten
alphabet classification, but the input of such images was already
fixed in size, so when migrating such networks to the field
of image segmentation, it also started by classifying blocks of
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images of fixed size. Moeskops et al. (2016) came up with
a method to automatically segment MRI brain images. Their
network obtained multi-scale information for each voxel, using
multiple convolutional kernels of different sizes. The method
did not rely on explicit features but learns to identify important
information about the classification based on the training data.
However, this method was used only for a single modality MRI
image. Hou et al. (2016) proposed a segmentation network
that cut a complete image into fixed-size image blocks, after
which they were convolved separately to extract features and
finally classified for the central pixel points to obtain the final
segmentation results. Their method focused the classification
from the image level to the pixel level. Brosch (2015) proposed
a 3D deep neural network, this model had both convolutional
and deconvolutional layers and combined feature extraction and
segmentation prediction, this method has high accuracy but was
too computationally intensive.

The high cost of acquiring medical images and the relatively
small dataset for medical image segmentation also pose a
problem for deep learning that requires large amounts of data.
And due to the layer-by-layer convolution of neural networks,
the accuracy of segmentation is reduced while increasing the
computational effort. Multi-modal MRI brain tumor image
segmentation can make full use of the feature information of
different modalities in MRI thus improve the effectiveness of
segmentation, which is one of the recent research hotspots in the
field of brain tumor image processing. Using artificial intelligence
technology, a fully automated method for brain tumor image
segmentation can be designed so that it can support physicians’
analysis and diagnosis, which is the best way to solve the
above problem.

In general, this article focuses attention on how to fully and
efficiently utilize multi-modal MRI image information, proposes
a multi-modal nested dense ResU-Net segmentation network,
and validates the effectiveness of the algorithm on an open-source
dataset of brain tumors.

2. MATERIALS AND METHODS

The model proposed in this section, given the abbreviation
Dense-ResUNet, is a multi-modal MRI brain tumor
segmentation model based on the traditional U-Net
(Ronneberger et al., 2015) and U-Net++ (Zhou et al., 2018),
and the network structure is shown in Figure 2. The left is the
downsampling path, which effectively extracts the image features
through a series of successive convolution and downsampling
operations, and reduces the image size while increasing the
number of channels; the right is the upsampling path, which
successfully recovers the image size, improves the image
segmentation accuracy and allows better reconstruction of
details through a series of successive transposition convolution
operations; the middle is a series of nested dense convolutional
blocks. The structure bridges the semantic disparity between the
feature maps of the encoder and decoder before fusion. Based on
this modular design, our model can train the network by adding

a small number of convolutional layers to extract good medical
image features.

The shalllow convolution structure cannot fully capture the
complex structure of the image, but the deep convolution and
redundant structure of the stack lead to the gradient vanishing
and tearing problem. Therefore, we use a residual unit to extract
pixel information from the image and skip the link to solve the
traditional deep CNN network problem. The structure of the
residual unit is shown in Figure 3 and the specific embedding
method is shown in Figure 5. Each layer in the constructed
Dense-ResUNet model needs to use convolutional blocks so that
feature extraction can be performed. Each of these convolutional
blocks consists of 2 convolutional units. In each of these 2
convolutional units, a BatchNorm (BN) layer is included to
improve model convergence. The activation is then performed
with the ReLU function, which is used to improve the non-
linearity of the function.

2.1. ResNet Architecture Overview
Each of the convolutional layers contains feature maps. When
a pixel in the image is scanned by the convolution kernel
and makes full use of the complex content information in the
environment to generate semantic image features, the image
features with content and space are expressed by the activation
function (ReLU) as Equation (1):

Xl+1
j = f (tl+1

i +
∑

i∈Ij

Xl
i > kl+1

ij ) (1)

Where Xj
l+1 represents the feature map after the (l+1)−th layer,

t represents the offset term, Xi
l represents the input feature in the

(l+ 1)− th layer, f is the activation function (rectifier linear unit,
ReLU), Ij represents a series of input eigenmatrices,> represents
the convolution operation, k represents the convolution kernel.

By reducing the dimension of the image features, the pooling
layer can represent the high-level content and semantics:

Xl+1
j = tl+1

j + Xl
j ⊛ kl+1

j (2)

Where ⊛ refers to pooling operations in the convolutional
structure. Finally, the fully connected layer takes the maximum
likelihood function as the prediction layer to carry out the image
classification task.

Figure 4 illustrates how a building block works in ResNet.
A quick connection mechanism between each initial input X
and the module output H(X) is introduced, so that the input
can learn the residual expression F(X) = H(X) − x directly to
model the target output [F(X)+X]. With such a mechanism, the
precision problem and performance degradation due to toomany
stacked convolution structures can be avoided, and such a quick
connection mechanism can perform identity mapping in multi-
layer structures. It serves as a reference for the input elements in
each layer and learns to form the corresponding residual function
instead of some function blocks with no practical value [F′(X)].
It is easier to optimize the propagation using such a mapping
method and thus can significantly increase the number of layers
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FIGURE 2 | The overall structure of our proposed Dense-ResUNet.

FIGURE 3 | The framework of residual unit.
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FIGURE 4 | The basic block of ResNet.

in the network structure. The formula for the residual mapping
function is as follows:

F = W2f (W1x) (3)

y = F(x,Wi)+Wsx (4)

Where f (·) represents the ReLu activation function and then
generates the corresponding output y through a Shortcut
Connection and the second ReLU function. When we switch the
dimensions of the input and output representations, we can use
Ws for linear transformation.

2.2. UNet Architecture Overview
Medical images usually have small samples and most medical
images have complex modalities, and the U-Net model proposed
by Ronneberger et al. (2015) has an excellent performance
in processing medical images with small samples due to its
excellent learning ability. The main idea of U-Net is to connect a
network with a similar structure to the previous layer behind the
downsampling stage, and then recover the resolution of the image
output by applying upsampling and combining the output of
upsampling with downsampling having high-resolution features
combined in these ways to better extract the edge features of the
image. Figure 5 demonstrates the network framework.

Suppose Fmn denotes the convolution operation performed
at position (m, n), the size of the two-dimensional convolution
kernel is a×b, and the two-dimensional convolution is calculated
as Equation (5).

Fmn = f (smn +
a−1
∑

i=0

b−1
∑

j=0

wij · X(m+i)(n+j)) (5)

Where s refers to stride, w refers to convolution kernel and X is
the input.

From Figure 2, we can see that the feature maps of the
encoder go through a dense convolution block. The convolution

layers’ number of the blocks depends on the pyramid level. We
assume that Xld ,lc is a node in the model, where ld refers to
the downsampling layer along the encoder and lc refers to the
convolution layer of the dense block along the skip connection.
Meanwhile, we define xld ,lc as the output of Xld ,lc , then the xld ,lc

can represent the feature maps as Equation (6).

xld ,lc =

{

∆(xld−1,lc ), where lc = 0

∆([[xld ,lk ]
lc−1
lk=0

,F(xld+1,lc−1)]), where lc > 0
(6)

Where ∆(·) refers to the convolution operation followed by
ReLU, F(·) refers to the upsampling operation and [] refers to
the concatenate operation.

The role of the pooling layer is to perform merge operations
on the input data.We conducted themaximumpooling approach
in this article. We calculate the height and weight of the output
according to Equations (7) and (8).

Hout = ⌊
Hin + 2× pi − di × (ki − 1)− 1

si
+ 1⌋ (7)

Wout = ⌊
Win + 2× pj − dj × (kj − 1)− 1

sj
+ 1⌋ (8)

Where p refers to the padding, d refers to the dilation,H refers to
height andW refers to weight.

The objective function used in the network proposed in this
article is dice loss, which is a concept first proposed by Milletari
et al. (2016). Its functional expression is shown in Equation (9)
and the function takes values in the range [0,1].

D =
2
∑N

i pigi
∑N

i p2i +
∑N

i g2i
(9)

where pi is the pixel value of point i in the prediction result and
gi is the pixel value of point i in the label, resulting in the gradient
equation as in Equation (10).

∂D

∂pi
= 2[

gi
∑N

i p2i +
∑N

i g2i − 2pi
∑N

i pigi

(
∑N

i p2i +
∑N

i g2i )
2

] (10)

2.3. Multi-Modal MRI
MRI is performed by varying the direction and intensity of
the magnetic field thus obtaining different imaging sequences,
which is called multi-modal. Four main imaging forms of
multi-modal usually exist, namely: T1-weighted form, T1c-
weighted form, T2-weighted form, and FLAIR-weighted form.
The four modalities are shown in order from left to right in
Figure 6, and these pictures also show that the brain tumor
image has complex texture and obvious structural information.
The imaging of different modalities can highlight different
characteristic information of the tumor. By deeply analyzing
and thinking about multi-modal images, we can obtain more
comprehensive information of brain tumor images and provide
help to the research related to brain tumor lesion regions.
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FIGURE 5 | Dense-ResUNet model framework diagram.

FIGURE 6 | MRI images of four different modalities.

2.4. Datasets
We use BraTS 2018 dataset to train the modal, and it consists
of high-grade gliomas (HGG), low-grade gliomas (LGG), and
real known tumor segments repeatedly hand-drawn by several
medical experts. Four MRI sequences were performed in
each case. All imaging sequences of the same subject were
preprocessed and stripped from the skull, and all 3DMRI images
were volume sized 240 × 240 × 155 and they were aligned,
interpolated, and rescaled to achieve the same resolution (1mm3).
A total of five types of intra-tumor structures were available in
the dataset: (i) normal tissue; (ii) edematous regions (Peritumoral
Edema, ED); (iii) necrosis (NCR); (iv) Non-enhancing Tumor
(NET); and (v) Enhancing Tumor (ET).

2.5. Multi-Modal Fusion of Brain Tumor
Images
Multi-modal brain tumor image fusion is the synthesis of
multiple images into a new image. The fusion result is
more beneficial to human recognition and automatic machine
detection due to the ability to exploit the spatio-temporal
correlation and information complementarity of multiple brain
tumor images, and to make the fused image obtained a more
comprehensive and clear description of the scene.

Our proposed method performs pixel-level image fusion of
images and constructs multi-modal image channels, as show in
Equation (11). The image obtained after pixel-level image fusion
preserves the original information to themaximum extent, which
is conducive to further analysis, processing, and understanding of
the image, and is also able to expose potential targets, facilitating
the operation of judgment to identify potential target pixel points,
which is the only way to preserve asmuch information as possible
in the source image, making the fused image increased in both
content and detail, an advantage that is unique and exists only in
pixel-level fusion.

F
(i)
COMB = F

(i)
Flair

+ F
(i)
T1 + F

(i)
T1c + F

(i)
T2 (11)

3. EXPERIMENTAL CONFIGURATIONS

3.1. Evaluation Metrics
In this article, the evaluation metrics proposed by MICCAI
BraTS are used to evaluate the performance of the proposed
segmentation method. The dataset MICCAI BraTS provides five
types of labels for training the network. Different structures in
the five types of labels are divided into three regions to meet the
medical clinical applications in real situations, and the evaluation

Frontiers in Neuroscience | www.frontiersin.org 6 March 2022 | Volume 16 | Article 832824

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. Brain Tumor Image Segmentation

method described in this chapter also focuses on these three
tumor regions.

(i) Enhancing tumor (ET), which is present only in high-
grade gliomas and is a characteristic enhancing core structure; (ii)
Tumor core (TC), a collection of three types of tumors: necrotic,
non-enhancing and enhancing tumors; (iii) Whole-area tumor

(WT), which is a collection of all intra-tumor structures.
T1 denotes the real brain tumor area (Ground Truth). T0

denotes other parts, i.e., normal brain regions. P1 denotes the
predicted brain tumor area, P0 denotes the other parts are the
predicted normal brain regions. It is assumed that brain tumor is
a positive sample and normal brain tissue is a negative sample. In
the actual evaluation, (i) TP: the part of brain tumor correctly
segmented by the model; (ii) TN: the part of normal tissue
correctly segmented by the model; (iii) FP: the part of normal
tissue but segmented as brain tumor; and (iv) FN: the part of
brain tumor but segmented as normal tissue, which have also
been shown in Table 1. Thus, we utilize the following evaluation
metrics to evaluate our image classification model:

(i) Dice Similarity Coefficient (DSC) is a kind of set similarity
measure, usually used to calculate the similarity of two samples,
the higher the Dice coefficient means that the segmentation result
of the algorithm is closer to the real result.

Dice(P,T) =
|P1 ∩ T1|
(|P1|+|T2|)

2

=
2TP

FP + 2TP + FN
(12)

(ii) Sensitivity indicates the intersection of the results of the
segmentation algorithm and the real results than the value of the
real results, the larger the value of this evaluation index means
that the segmentation results are closer to the real results.

Sensitivity =
|P1 ∩ T1|

|T1|
=

TP

TP + FN
(13)

(iii) Positive Predictive Value (PPV) refers to the proportion of
cases that are tumors among the number of positive samples of
tumor segmentation results to be evaluated.

PPV =
TP

TP + FP
(14)

(iv) Hausdorff distance, which represents the maximum distance
between the edge points segmented by the algorithm and the
actual edge points.

Hausdorff (P,T) = max{h(P,T), h(T, P)} (15)

3.2. Data Pre-processing
The dataset has completed the basic steps of brain MRI image
processing (image alignment, cranial separation, etc.), but due to
the specificity of medical images, there are some differences in
MRI images obtained from the same patient machine trial in the
same scanner at different time points. Considering the variability
of MRI brain tumor image data distribution, to make the contrast
and intensity range of patient MRI images similar, this section
standardizes and normalizes the pixel intensity to balance the

TABLE 1 | Pixel point classification labels.

Classification Aa

Classification Bb

Brain tumor area Normal tissue area

High-grade glioma TP FN

Tumor Tag FP TN

aClassification of pixel dots in the standard.
bClassification of pixel points in prediction.

FIGURE 7 | The process of data pre-processing.

TABLE 2 | Training parameters setting.

Parameter Value

Learning rate 0.0003

Batch_size 10

Early_stop 20

Epochs 1000

Optimizer Adam

difference of gray value between images, and the process is as
follows (also shown in Figure 7):

(1) Removal of 1% of the lowest and highest intensity
pixel values.

(2) For each case, the mean value of the image is subtracted
and divided by the standard deviation of the image, and data
normalization is performed on the data within each input
channel to obtain the standardized image.

F =
X − µ

std
(16)

In Equation (16), the X denotes the image matrix, and µ

represents the pixel-average value of the image.

std = max(σ ,
1

√
N
) (17)
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FIGURE 8 | Results comparison between the baseline methods and our proposed methodology.

In Equation (17), the σ denotes the standard variance of the
image, and N denotes the total number of pixels of the matrix
X represented by the image.

(3) Normalization operation is performed for image slices to
compress their pixel intensities.

The intensity of the MRI images of the brain after the three
processing steps described above is in the range of [0, 1]. Most
medical images are 3D data, but the expert annotations in the
BraTS dataset are for 2D axial slices rather than 3D images. In
this article, two-dimensional brain tumor images were used for
analysis as using 2D slices as network input can also provide
enough features to identify each tumor region; therefore, the only
way to fit the two-dimensional network was to slice the three-
dimensional data into two-dimensional data. The problem of
segmenting brain tumors inMRI images is associated with a large
data imbalance. To reduce the imbalance of categories, we crop
the image slices from the axial plane extraction into 2D image
blocks of 128 × 128. The cropped sampled image blocks not
only well avoid the zero-intensity pixel blocks, but also reduce
the size of normal tissue regions, which are helpful to alleviate
the data imbalance problem. In addition, this also reduces the
computational effort and the training time.

3.3. Implementation Details
The Pytorch framework is used to implement the model and
the experiments are done on Ubuntu 20.04 system with an
Intel Core i7 3.5GHz processor and an NVIDIA TITAN 2080Ti

TABLE 3 | Results comparison.

Evaluation metrics FCN32s UNet Attention-UNet ResNet-UNet Ours

WT Dice 0.7376 0.8450 0.813 0.8384 0.8529

TC Dice 0.7070 0.8454 0.7633 0.8228 0.8705

ET Dice 0.5610 0.7817 0.7218 0.7685 0.7908

WT PPV 0.7287 0.8859 0.8567 0.8887 0.8686

TC PPV 0.7599 0.8775 0.8105 0.8478 0.9050

ET PPV 0.5634 0.8154 0.7583 0.8127 0.7991

WT Sensitivity 0.7986 0.8595 0.8296 0.8553 0.8818

TC Sensitivity 0.8082 0.9069 0.8739 0.9102 0.9145

ET Sensitivity 0.6329 0.8203 0.7698 0.8099 0.8453

WT Hausdorff 3.3011 2.5787 2.7640 2.6126 2.5804

TC Hausdorff 2.2013 1.6516 2.0579 1.7696 1.5660

ET Hausdorff 3.6041 2.7487 3.0706 2.8314 2.7331

graphics card. Eighty percent (i.e., 233 patients) was used to
train the model There are four hyperparameters set for Adam
in Pytorch: lr (learning rate), smoothing constant betas, eps and
weight_decay. The parameters of our proposed model are shown
in Table 2.

3.4. Baseline Methods
We compare our model with the following baseline methods:
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FIGURE 9 | Segmentation results for four cases. C1 are the images represent one axial MRI slice obtained in T1-weighted, C2 are the T1c-weighted, C3 are the

T2-weighted, C4 are the FLAIR-weighted, C5 are the the standard tumor segmentation results manually labeled by experts, and the C6 show the segmentation results

obtained in this section.

FCN32s (Shelhamer et al., 2016): It can accept input image
of arbitrary size, and use a deconvolution layer to upsample the
featuremap of the last convolution layer. It recovers images to the
same size as the input image, which can produce a prediction for
each pixel while preserving the spatial information in the original
input image.

UNet (Ronneberger et al., 2015): The main idea is to connect a
network with a similar structure to the previous layer behind the
downsampling stage, and then recover the resolution of the image
output by applying upsampling. Finally combine the upsampled
output with the downsampled output which has high-resolution
features. By these steps the edge features of the image can be
better extracted.

Attention-UNet (Oktay et al., 2018): The attention
mechanism is introduced to learn the importance of each
element with respect to the target. It limits the activation to the
region with segmentation and reduces the activation value of the
background to optimize the result.

ResNet-UNet: UNet with residual block helps to solve the
gradient vanishing and gradient exploding problems and train
deeper networks while ensuring good performance.

3.5. Performance Comparison
Table 3 and Figure 8 summarize the baseline results compared
to our proposed methodology. It is apparent from Table 3 that
our proposed framework outperforms the other four approaches

across 9 metrics and achieves the highest Dice and Sensitivity,
and the results are shown in bold values.

Figure 9 shows the segmentation results for the four cases
obtained from the segmentation network of our proposed
model. In these graphs, each row represents a real clinical
case. From left to right, the images represent one axial MRI
slice obtained in T1-weighted, T1c-weighted, T2-weighted,
and FLAIR-weighted, the standard tumor segmentation results
manually labeled by experts, and the last column shows the
segmentation results obtained in this section. The tumor
categories are highlighted with different colors: enhancing tumor
regions (yellow), peritumor edema regions (green), and necrotic
and non-enhancing tumors (red). It can be seen that the
tumor size, shape, location, and category differ in the four
brain MRIs. As can be seen from the comparison graph,
the segmentation network of the Dense-ResUNet model is
close to the standard segmentation results of cancer tumors
manually labeled by experts, which proves the effectiveness of the
Dense-ResUNet model.

4. CONCLUSION

In this article, we design a model based on 2D UNet brain
tumor segmentation model and named it as Dense-ResUNet. By
combining the features of multi-modal brain tumor MRI images,
the attributes of each phase in MRI images were improved. The
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Dense-ResUNet makes full use of the nested dense convolutional
blocks to fill in the gaps of traditional UNet, which capture
different levels of features. Then it uses a residual unit to
extract pixel information from the image and skip the link to
solve the traditional deep CNN network problem. Finally the
multi-scale feature maps are fused to obtain the segmentation
results. Experiment results show that our proposed method is
better than other comparative approaches. The result can prove
the effectiveness of our framework and show that the Dense-
ResUNet can help extract the fusion of multi-modal of brain
tumor images through the image convolutional network, which
has clinical research and application value.
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