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Mesenchymal stem cells (MSCs) are believed to be promising for cell administration
therapy after ischemic stroke. Because of their advantageous characteristics, such as
ability of differentiation into neurovascular lineages, avoidance of immunological problems,
and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy
have increased recently. However, several controversies are yet to be resolved before
a worldwide consensus regarding a standard protocol is obtained. In particular, the
neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction
differ depending on preclinical observations. Analyses of these differences and application
of recent developments in stem cell biology or engineering in imaging modality may
contribute to identification of criteria for optimal stem cell therapy in which reliable
protocols, which control cell quality and include safe administration procedures, are
defined for each recovery phase after cerebral ischemia. In this mini review, we examine
controversies regarding the fate of grafts and the prospects for advanced therapy that
could be obtained through recent developments in stem cell research as direct conversion
to neural cells.
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DEVELOPMENT OF MESENCHYMAL STEM CELL THERAPY
STUDY FOR ISCHEMIC STROKE
Ischemic stroke is a common central nervous system (CNS) dis-
ease. Despite continuous development in treatments, stroke is still
a major cause of death or disability, and therefore, more effec-
tive therapies are required. In 1990s, clinical trials neuroprotective
agents targeted single mechanism, i.e., glutamate-induced neuro-
toxicity revealed to become failure (Hoyte et al., 2004). In the lesion
insulted by brain ischemia, multiple pathogenic mechanisms are
activated. As the failures in the early neuroprotective drug devel-
opment showed (Degraba and Pettigrew, 2000), a genuine effective
therapy would be required to solve the pleiotropic pathology (Teng
et al., 2008; Guo and Lo, 2009).

Another concept to treat lost function by ischemia is to sup-
ply cells or tissue for replacement of the damaged brain tissue. In
the early days of stem cell research, stem cells were expected as a
source of tissue regeneration. Since the publication of the earli-
est reports of attempted administration of embryonic or neonatal
neural stem cells for regeneration of the CNS in the early 1990s
(Renfranz et al., 1991; Snyder et al., 1992), diverse cell types have
been investigated to identify an ideal cell line to generate tissue
grafts for CNS. Candidate cells can be categorized into embryonic,
fetal, neonatal, or adult by maturation of each origin tissue. When

categorized by a stage of differentiation, the examined cells can be
sourced from pluripotent cells (embryonic stem cells or induced
pluripotent cells), ectodermal lineage (neural stem cells, olfactory
neuroepithelial stem cells, or NT2 cell line derived from neu-
roteratocarcinoma), mesodermal lineage [mesenchymal stem cells
(MSCs), CD34+ cells, endothelial progenitor cells, hematopoi-
etic stem cells, or bone marrow mononuclear/stromal cells]. As
discussed in published reviews on stem cell therapies (Locatelli
et al., 2009; Bhasin et al., 2013; Kalladka and Muir, 2014), neural
stem cells, and mesodermal lineage listed above have already been
applied for ischemic stroke in clinical settings from subacute phase
to chronic phase.

In this mini review, the advantages of MSCs, as a source for stem
cell therapy, are summarized. Furthermore, controversial points in
preclinical experimental studies and the developing field of MSC
therapy resulting from the recent evolution in stem cell biology are
discussed by focusing on the biological features of mesenchymal
stem cells (MSCs).

Among stem cell therapies, the greatest numbers of clinical trial
for MSC have been conducted (Rosado-De-Castro et al., 2013a),
thus MSC therapy can be the most practical stroke treatments in
cell-based therapies (Eckert et al., 2013). More than 30 years after
when Friedenstein et al. (1966) isolated osteogenic cell population
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from bone marrow, MSCs have been identified in bone marrow
(Pittenger et al., 1999), adipose tissue (Zuk et al., 2002), umbili-
cal cord (Erices et al., 2000), peripheral blood (Ukai et al., 2007),
dental pulp (Gronthos et al., 2000), and a wide range of meso-
dermal tissues including perivascular site in brain (Kang et al.,
2010; Paul et al., 2012). The criteria for identifying MSCs as
proposed by the Mesenchymal and Tissue Stem Cell Committee
of the International Society for Cellular Therapy are (1) plastic
adherence of isolated cells in culture; (2) in cell surface marker
analysis, >95% of the culture positively expressing the cell sur-
face markers CD105, CD73, and CD90, while being negative for
CD34, CD45, CD14, or CD11b, CD79a, or CD19, and human
leukocyte antigen-DR; and (3) in vitro differentiation into three
mesodermal cell types, namely osteoblasts, adipocytes, and chon-
droblasts (Dominici et al., 2006). Moreover, the characteristics of
MSC present advantages. MSC have been shown their multipo-
tency that is beneficial to differentiate into multiple lineages to
repair neurovascular unit or neural network; they could demon-
strate multiphasic actions to modify endogenous repairing process
including reprogramming, harmful immune response, or chem-
ical reactions via secretion abilities; they are easier to prepare
for grafting due to their accessible cell source and proliferation
potential for rapid cell expansion. (Doeppner and Hermann, 2010;
Grande et al., 2013; Wan et al., 2013)

The first series of successful experiments for MSCs for the
treatment of ischemic stroke was reported by Chopp’s group
(Chen et al., 2000; Li et al., 2000; Zhang et al., 2000). They have
examined multiple protocols for bone marrow stromal-derived
stem cells (BMSCs) such as administration route (intracerebral,
transventricular, intra-arterial, transvenous), timing, or dose, as
well as have analyzed mechanisms of functional recovery focused
on restore or remodeling functional connectivity in neural cir-
cuits/tract. Subsequently, details required for the establishment of
safe and effective therapy protocols (Borlongan, 2009; The STEPS
Participants, 2009; Savitz et al., 2011) have been analyzed by a
number of investigators. Most results in the preclinical studies have
indicated that MSC administration is beneficial. In this context,
clinical trials employing systemic administration via peripheral
veins were initiated more recently (Lee et al., 2010; Honmou
et al., 2011). So far, these trials have not demonstrated severe
adverse results (Lalu et al., 2012), even during observation peri-
ods lasting longer than a few years, despite the prediction of risks,
such as embolization (Ge et al., 2014; Yavagal et al., 2014), infec-
tion, and tumorigenesis (Coussens et al., 2000; Li et al., 2007), in
experimental studies.

CONTROVERSIES IN PRECLINICAL STAGE
Overall, accumulated findings have indicated that MSC therapy
is reliable for stroke treatment. However, several points must
be clarified for achievement of consensus as a reliable protocol.
As shown in Table 1, the conditions of some preclinical studies
resulted in differing outcomes because of graft cell detection in
the lesion, infarct volume reduction, functional recovery, marker
expression (neuronal, glial, or vascular: direction of differentia-
tion), and the type of MSCs considered to have more therapeutic
effects, particularly BMSCs and adipose tissue-derived stem cells
(ASCs).

MIGRATION TO THE LESION
A major discrepancy in the results of preclinical studies is
whether graft cells have the ability to migrate to a cerebral
lesion, although mechanisms of MSC transmigration across the
blood–brain barrier (BBB) have been analyzed (Liu et al., 2013).
The accumulation of graft cells in the lesion is expected to directly
enhance neuroprotection and cell replacement in infarcted tis-
sue. A comparison of different administration routes revealed that
transarterial delivery was more successful in order to detect graft
cells in the brain than transvenous delivery, although several stud-
ies reported a decrease in the number of detected cells in the later
phase (Ishizaka et al., 2013; Mitkari et al., 2013). The transvenous
route induced fewer side effects than intra-arterial infusion; how-
ever, physiologically, graft cells must pass through several traps,
such as the lung and BBB. Although, the BBB can be disrupted
by ischemic insult around the damaged areas, MSCs may have the
basic ability to transmigrate the BBB as immune cells in response
to homing signals to the lesion (Liu et al., 2013). Nonetheless, there
are certainly successful examples demonstrating the integration of
graft cells in the peri-infarct area even after transvenous infusion
from a peripheral vessel (Table 1).

Classically, immunohistological analysis is a standard method
to detect MSC migration, but recent imaging techniques, such as
magnetic resonance imaging (MRI) with magnetic cell labeling
(Detante et al., 2012; Canazza et al., 2013) and nuclear imaging
using 99mTc-labeled graft (Detante et al., 2009; Vasconcelos-Dos-
Santos et al., 2012), have been proposed to reveal the distribution
of MSCs. Subsequently, a phase I clinical trial employing 99mTc –
single photon emission computed tomography (SPECT) for
assessment of biodistribution of the labeled grafts in subacute
patients have safely conducted (Rosado-De-Castro et al., 2013b).
The findings of these recent analytical methods may resolve the
question of accurate distribution of graft cells.

FUNCTIONAL RECOVERY
Many preclinical studies have also reported differences in infarct
volume reduction and functional recovery (Hao et al., 2014).
Assessment methods of functional recovery vary, although there
certainly are popular tests in animal studies, such as the treadmill
test or Roger’s test. Therefore, differences in functional assessment
may simply be based on differences in the employed assessment
methods. On the other hand, it is more difficult to elucidate
discrepancies in infarct volume reduction. In vivo studies with
rodents have been conducted to investigate the changes in infarct
volume reduction by direct measurement of the brain tissue after
decapitation. Regarding clinical applications, non-invasive meth-
ods, such as MRI, may be beneficial to translate the findings of
in vivo studies to clinical settings. Although the availability of
mechanical devices varies among laboratories, the development
of alternative clinical methods is recommended for future in vivo
experiments.

Another problem is whether MSCs isolated from different tis-
sues also differ. MSCs are obtained from diverse mesodermal
tissues, i.e., bone marrow, adipose tissue, dental pulp, or cord
blood. MSCs from different sources show different character-
istics in vitro (Kern et al., 2006; Hsiao et al., 2012). Therefore,
comparative study for different cell sources as conducted by
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Gutierrez-Fernandez’s group is important, however, the thera-
peutic effects in similar experimental ischemic stroke models also
differ in transvenous administration studies (Ikegame et al., 2011;
Steiner et al., 2012; Gutierrez-Fernandez et al., 2013) compared to
intra-arterial administration studies that have shown graft cells in
the lesion. (Table 1)

On the other hand, nuclear imaging is another available method
to assess the therapeutic effectiveness. Diffusion and perfusion-
weighted imaging provide information of blood supply in the
brain (Canazza et al., 2013). Furthermore, functional MRI is
employed by experimental studies in rodents, which unable to
assess functional recovery (Suzuki et al., 2013) and even neural
network by analyses of resting state functional MRI (Canazza et al.,
2013). The neural integrity has been investigated by 123I – Iomaze-
nil SPECT (Saito et al., 2013). A 18F-FDG positron emission
tomography study have measured glucose metabolism after MSC
therapy in rats for cerebral ischemia (Miyamoto et al., 2013). For
assessment of functional recovery, these methods from more bio-
functional aspect would be practical in addition to observations
of behavioral change.

DIRECTION OF DIFFERENTIATION
The direction of differentiation also remains controversial for
in vivo experimental studies. Although MSCs are derived from
mesenchymal tissue, they exhibit multipotency and transdiffer-
entiation into ectodermal lineages, including neural cells, both
in vitro and in vivo (Zuk, 2013). Previous in vitro immuno-
chemistry studies have demonstrated the ability of MSCs to
differentiate into cell types that comprise the neurovascular unit,
including neurons, astrocytes (Wislet-Gendebien et al., 2004), and
endothelial cells (Hess et al., 2002; Planat-Benard et al., 2004).
Moreover, possible differentiation abilities toward oligodendro-
cyte lineage (NG2-positive cells; Shen et al., 2006), specific types
of neurons, such as glutamatergic neurons (Yu et al., 2014), and
smooth muscle cells of vessels (Kubis et al., 2007) have been
demonstrated. In vivo studies have reported that graft cells
detected in the lesion result from neuronal or glial differentia-
tion (Guzman et al., 2008). However, one study demonstrated the
vascular fate rather than differentiation to neural lineages (Kubis
et al., 2007).

To ensure the practical differentiation, in addition to these mor-
phological, immunohistochemical, or genetic assessments, cells
should be further examined. With respect to neural differen-
tiation, neurotransmitter responsiveness or electrophysiological
recording is required to examine their function as a neuron (Yang
et al., 2011). Moreover, when MSCs are employed, absence of
cell fusion also should be excluded. Though the MSC’s rate of
spontaneous cell fusion is only 2–11 clones per million cells
(Terada et al., 2002), and the mechanism may also participate
in the tissue repair, nonetheless, biologically it should be dis-
tinguished from differentiation. BMSC and ASC are observed
the neural differentiation that can show neural function in ear-
lier studies. First, Ashjian et al. (2003) recorded K+ current on
neuronal cells induced from ASC. Cho et al. (2005) reported
synaptic transmission, and Wislet-Gendebien et al. (2005) showed
action potential of the neuron-like cells differentiated from
BMSC.

AUTOLOGOUS OR ALLOGENIC?
With the exception of the acute phase after ischemic insult, both
allogenic and autologous grafting of MSCs can be prepared.
Although the efficacy of technologies has improved, besides the
advantage of MSCs in immunomodulation, theoretically allogenic
grafts cannot ameliorate all concerns regarding transinfection or
immunological side effects. Autologous grafts can overcome the
problems related to allogenic cells. Nonetheless, at the present
stage, other than obtaining the major MSCs, the use of both
BMSCs and ASCs requires invasive procedures. Bone marrow aspi-
ration and harvesting of adipose tissue are considered safe and
established techniques; however, because ischemic stroke patients
usually take antiplatelet or anticoagulant agents, and in some case,
the patient may be intolerant to other conditions, further less
invasive methods, such as the use of peripheral blood, present
alternative sources of cells. As mentioned in the previous section,
each type of MSCs from different cell sources tend to exhibit orig-
inal traits or abilities, although they meet the criteria of MSCs.
Knowledge regarding defined factors/conditions for MSC-fate reg-
ulation could enable the preparation of homogenous MSCs, even
from peripheral blood (Meng et al., 2013).

Autologous grafts may have an additional advantage over
allogenic grafts. In preclinical observations, MSCs reportedly
developed function following contact with a conditioned media
(Egashira et al., 2013), serum (Honmou et al., 2011), or cere-
brospinal fluid from patients (Orito et al., 2010), which is reflected
in the biological responses to invasive stimulation. It is possible
that MSCs may achieve proper function in reaction to insults
(Kurozumi et al., 2005; Xin et al., 2013). Therefore, graft cells
harvested from ischemic stroke patients may gain more favorable
function than allogenic grafts from those who are not affected by
ischemic insults. Strikingly, the first nonrandomized clinical trial
for a protocol with autologous BMSCs and serum has been shown
to be safe and effective (Bang et al., 2005; Lee et al., 2010; Honmou
et al., 2011). A 5-year randomized trial also began in 2012, which
will provide further information regarding autologous stem cell
therapy (Kim et al., 2013).

POSSIBILITY OF ADVANCED MSC THERAPIES AS A
SOLUTION OF QUESTIONS
MSC MODIFICATION AND IDENTIFICATION BY DEFINED FACTORS
RELATED TO CELL FATE REGULATION
From a pharmacological viewpoint, the actions of agents should
be confirmed after administration. If MSCs are regarded as a type
of biological drug, then differences in differentiation ability should
be better clarified.

Emerging induced pluripotent stem cells (iPSC) studies have
shown promising benefits in the field of regenerative medicine
that could have at least two major impacts on MSC studies. These
findings may be useful to settle the controversies listed above, par-
ticularly those regarding the direction of differentiation of graft
cells in the host and differences in the characteristics of MSCs
originating from the cell source.

First, the appearance of iPSCs indicates the potential of
multipotency in somatic cells (Takahashi and Yamanaka, 2006),
which is supported by observations of differentiation into either
neural or endothelial cells in MSCs. Although many reports
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Table 2 | Suggested factors related to cell fate regulation for direct conversion.

Transcriptional factors microRNA

*(Yang et al., 2011; Abdullah et al., 2012; Kim et al., 2012; Lujan and

Wernig, 2012; Shi and Jiao, 2012)

*(Feng and Feng, 2011; Pham and

Gallicano, 2012; Bian et al., 2013)

NSC Brn4/Sox2/Klf4/c-Myc/E47/Tcf3; Brn2/Ascl1/Myt1L; Sox2;

Oct4/Sox2/Klf4/c-Myc

miR-134, miR-195, miR-184, miR-125,

miR-137

NPC Sox2/Oct4/Klf4/c-Myc; Brn2/Ascl1/Myt1L;

Ascl1/Ngn2/Hes1/Id1/Pax6/Brn2/Sox2/Klf4/c-Myc; FoxG1/Sox2;

Brn2/FoxG1/Sox2; Brn4/Sox2/Klf4/c-Myc

Neuron Brn2/Ascl1/Myt1L/miR-124; Brn2/Ascl1/Myt1L/NeuroD1;

Ascl1/Myt1L/NeuroD2/miR-9/9*/miR-124; Brn2/Ascl1/Ngn2;

Brn2/Ascl1/Myt1L/NeuroD1/Zic1

Let-7b, miR-125b, miR-9, miR-137,

miR-124, miR-17, miR-92, miR-106

Dopaminergic neurons Ascl1/Lmx1a/Nurr1; Ascl1/Lmx1a/Nurr1/Brn2/Mytl1L/FoxA2 miR-133b, miR-132, miR-7a

Spinal motor neurons Brn2/Ascl1/Myt1L/NeuroD1/Lhx3/Hb9/Isl1/Ngn2 miR-17-3p, miR-9

Glia

Astrocyte FoxG1/Sox2; Sox2/Oct4/Klf4/c-Myc miR-125b, miR-24, miR-29

Oligodendeoglial precursur cell Sox2/Olg2/Zfp536 (Yang et al., 2013) miR-7, miR-219, miR-23, miR-338

*Review articles.

have demonstrated the ability MSCs of mesodermal origin to
differentiate into other type of germ cells of ectodermal lin-
eages (neural cells) and endodermal lineages (insulin-producing
cells), which could indicate multipotency, the defined conditions
for MSCs to differentiate into neural cells remain uncertain. In
the infancy of stem cell research, cell fusion and contamina-
tion of neural crest cells were suggested as the mechanism of
a graft cell to express neural markers in the host tissue after
cell administration (Wrage et al., 2008; Maltman et al., 2011). If
the postulates reveal to be the main mechanism, neural marker
expression can’t be called neural differentiation, which unable
MSC to be called “stem cell.” Therefore, until recently, the term
“MSC” containing the term “stem cell” had its pros and cons,
and thus, MSCs were called stromal cells. However, success-
ful reprogramming of skin fibroblasts to the multipotent state
has provided more information to support the multipotency of
MSCs.

Second, induction techniques may contribute to further eluci-
date the quality control mechanisms for the use of MSCs. Protocols
for chemical induction to neuron or glia had been developed
recently (Safford and Rice, 2005; Franco Lambert et al., 2009; Yu
et al., 2011). Following the publication of methods to harness
and propagate iPSCs, other methods related to direct conver-
sion from fibroblasts to neuronal cells by defined transcription
factors have been reported (Vierbuchen et al., 2010; Yang et al.,
2013). The neural lineage is composed of induced neuronal (iN)
cells, induced neural progenitor cells (iNPCs), and induced NSCs
(iNSCs; Yang et al., 2011; Abdullah et al., 2012; Corti et al., 2012;
Shi and Jiao, 2012). Moreover, iPSC-derived MSCs (iPSC–MSCs)
were identified (Jung et al., 2012). There are multiple pathways
for neural induction. As listed in the Table 2, in addition to
defined transcriptional factors for direct conversion, microRNA
(Feng and Feng, 2011; Pham and Gallicano, 2012; Bian et al.,

2013) or other epigenetic factors (Namihira and Nakashima, 2011)
can contribute to differentiation. The definitive conditions to
propagate/identify iN cells, iNSCs, iNPCs, or iPSC–MSCs may
be useful to propose a standard protocol for the required type of
MSCs.

ORGANOGENESIS FOR TISSUE REPLACEMENT
Lancaster et al.’s (2013) team developed a three-dimensional brain
tissue from iPSCs by the floating culture method. To obtain
functional recovery in vivo, several groups have shown that
tissue regeneration or replacement of damaged tissue with ex
vivo materials is not always necessary (Table 1). Particularly in
the brain tissue, repair of the neural circuitry is required to
improve function. Nonetheless, tissue engineering using scaf-
folds (Mahmood et al., 2013) or novel organogenesis methods
present possible transplantation treatments to recover neurologi-
cal deficits.

CONCLUSION
Since the first report of MSC (Pittenger et al., 1999), investiga-
tors have revealed favorable cell characteristics for cell therapies
and have shown evidence for feasible stem cell therapy using
MSCs in order to achieve safe applications in clinical settings.
However, there are limited methods to ensure reliable treat-
ment. Nevertheless, further studies combined with developments
in other biological and/or engineering fields may solve these
present problems, and establish an ideal stem cell therapy beyond
categorization of MSCs.
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