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Early Oncology, Research and Development, AstraZeneca, Cambridge, United Kingdom

Immunotherapy has transformed cancer treatment by promoting durable clinical
responses in a proportion of patients; however, treatment still fails in many patients.
Innate immune cells play a key role in the response to immunotherapy. Crosstalk between
innate and adaptive immune systems drives T-cell activation but also limits
immunotherapy response, as myeloid cells are commonly associated with resistance.
Hence, innate cells have both negative and positive effects within the tumor
microenvironment (TME), and despite investment in early clinical trials targeting innate
cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and
immunotherapy resistance through TME remodeling and inhibition of adaptive immune
cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill
transformed cells, playing a key immunosurveillance role in early tumor development.
Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status
or antigen presentation and NK effector function, respectively. Crosstalk between myeloid
cells and the NK immune network in the TME is especially important in the context of
therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape
anti-tumor responses by influencing an immunosuppressive TME and how this may
influence outcomes of treatment strategies involving drugs that target myeloid and
NK cells.

Keywords: immunotherapy, cancer immunotherapy, myeloid cell, NK cell, tumor microenvironment
INTRODUCTION

Immunotherapyhas transformedcancer treatment byharnessing the immune system to target solid and
hematological cancers (1), achieving durable responses across multiple tumor types (2). However, only
approximately 20% of patients have a durable response, and intrinsic or acquired resistance is
often observed in the clinic (3, 4). Therefore, novel combination approaches are needed to expand
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.633685/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.633685/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.633685/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:larissa.carnevalli@astrazeneca.com
mailto:simon.t.barry@astrazeneca.com
https://doi.org/10.3389/fimmu.2021.633685
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.633685
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.633685&domain=pdf&date_stamp=2021-04-19


Carnevalli et al. Myeloid-Natural Killer Cell Interactions
the therapeutic benefit of these drugs. Currently, several
anticancer therapies employing multiple drug modalities
and combinatorial approaches are being tested clinically (5), but
few have been found to enhance benefit in combination with
checkpoint inhibitors.

Because the balance of immunosuppressive versus
immunostimulatory cells varies among individual tumors, a
major goal of these approaches going forward is to understand
immune contexture and segmentation.Most solid tumors include a
variety of immunosuppressive cells, such as regulatory T cells,
polymorphonuclear (PMN) myeloid-derived suppressor cells
(MDSCs), mononuclear MDSCs (M-MDSCs), tumor-associated
macrophages (TAMs) [as defined by Bronte et al., (6)]
and neutrophils that can suppress effector CD8+ T cells and NK
cells (7).

Two cell types of the innate immune system that shape the tumor
microenvironment (TME) and can initiate anti-tumor immune
responses are natural killer (NK) cells and cells of the myeloid
lineage, including immunosuppressive PMN-MDSCs, M-MDSCs,
and immune-activating macrophages, dendritic cells, and
neutrophils. Although the individual roles of these cell types in the
anti-tumor immune response have been extensively studied [for
review, see Neophytou et al., (8)] the ways in which interactions
between these cell types affect immune responses is only just
emerging. Consideration of the interplay between NK cells and
suppressive myeloid cells could give new insight into the effects of
therapies combiningPD-1/PD-L1andCTLA-4blockade in the clinic
and may also have an impact in early-stage cancers and
hematological diseases.

The most advanced therapies are those that modulate myeloid
cells, depleting or inhibiting recruitment or promoting
reprogramming to activate or de-repress tumoricidal mechanisms
(9), but these modalities have been disappointing in the clinic
(Table 1). These trials include inhibitors of CSF1R, CCR2, CXCR2,
CXCR4, andmost recently, PI3Kg (10, 11). Althoughmany of these
modalities have been tested clinically, few have passed beyond
phase 2 studies, due to either lack of efficacy or associated adverse
effects. It is important to gain insight into the mechanism of action
and biomarker changes associated with efficacy in order to refine
therapeutic strategies for myeloid-targeting agents and to identify
patients who could benefit from these therapies as monotherapies
or in combination with immune checkpoint blockade.

n contrast, only a few drugs targeting NK biology to reverse
NK tumor immune tolerance have been progressed to clinical
trials (Table 1). These therapies include the anti–KIR2DL-1, -2,
and -3 antibody IPH2102/BMS-986015 (lirilumab), the anti-
NKG2A antibody IPH2201 (monalizumab), and the anti-CD16
innate cell engager AFM13.

To date, the concept of modulating NK-myeloid cell interactions
to relieve tumor immunosuppression is underexplored. However,
further consideration of NK-myeloid cell interactions in the TME
and periphery may provide insights into both innate and adaptive
immune anti-tumor responses. Here we discuss possible
mechanisms that can attenuate or enhance a productive immune
response through innate cell–mediated responses and the
consequence for activation of effector cell types in the TME.
Frontiers in Immunology | www.frontiersin.org 2
NK CELL BIOLOGY AND THE TME

NK cells are large, granular lymphocytes that can kill target cells
without previously encountering an antigen. NK cells also
produce proinflammatory cytokines like interferon-alpha
(IFN-a), tumor necrosis factor-alpha (TNFa), and granulocyte
macrophage–colony-stimulating factor (GM-CSF), as well as
chemokines such as CCL1, CCL3, CCL4, CCL5, CCL22, and
CXCL8. Their activity is regulated by a balance of signals from
activating and inhibitory receptors (12). Most of the inhibitory
receptors bind to major histocompatibility complex (MHC) class
I–like proteins, which enable NK cells to detect the
downregulation of MHC class I molecules on target cells.
Activating receptors, on the other hand, bind a variety of
molecules, some of which are derived from pathogens such as
CMV protein pp65, which is recognized by NKp30 (13), or are
induced by cell stress, transformation, or infection (e.g., MICA/B
and ULBP1-6, the ligands of NKG2D) (14). NK cells not only
play an important role as a first line of defense against viral,
bacterial, and fungal infections (15, 16), but are also important in
tumor immuno-editing (17), tumor development (18), and
control of metastasis (19–21).

Under nonpathological conditions, NK cells and myeloid cell
subtypes crosstalk through multiple mechanisms. NK cells interact
with macrophages and dendritic cells through both soluble factors,
such as IL-12, IL-15, IL-27, and IL-18, and cell-to-cell contact (22–
24). These interactions can induce maturation of NK cells,
cytotoxicity, and cytokine release. Reciprocally, NK cell–derived
cytokines can drive stimulation of macrophages. Pathogen-induced
upregulation of ligands for activating NK-cell receptors can result
in the elimination ofmonocytes andmacrophages by NK cells (25),
as well as the killing of immature but not mature dendritic cells in
vitro (26), a process thought to limit the generation of potentially
tolerogenic dendritic cells.
MYELOID CELLS IN THE TME INFLUENCE
NK FUNCTION

Tumor-derived myeloid cells are plastic and heterogeneous and
have both positive and negative roles in anti-tumor immunity.
There are two main subsets of suppressive myeloid cells in tumors,
PMN-MDSCs and M-MDSCs (6, 27, 28). Monocytes, M-MDSCs,
and TAMs are abundant in solid tumors (29) and are associated
with poor prognosis (30, 31). M-MDSCs support tumor progression
through both immune-mediated mechanisms and mechanisms not
directly associated with immune suppression (32). Macrophages
and monocytic MDSCs isolated from mouse murine and human
solid tumors can directly suppress T‐cell responses (29, 33) andNK-
cell cytotoxicity (34). M-MDSCs are implicated in the recruitment
of T regulatory cells and inhibition of T-cell cytotoxicity and have
been shown to inhibit NK cell function in vitro and in vivo (35).
Normally, neutrophils respond to tissue damage and defend against
pathogens (36), but in the TME, tumor-associated neutrophils or
PMN-MDSCs express various cytokines, including CCL2 and
CCL17, depending on their immunosuppressive or immune-
April 2021 | Volume 12 | Article 633685
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TABLE 1 | Myeloid and NK target therapies tested in clinical studies.

Target Mechanism of Action Modality Drugs/
Company

Dose
regimen

Current
clinical
status

Combinations Indications Clinical trial
number

CCR2 CCR2 is expressed by
monocytes and macrophages
and interacts with CCL2 to
mediate chemotaxis of
monocytes and TAMs,
promoting tumor progression

Small
molecule

PF-04136309
(Pfizer)

Continuous Discontinued
post-phase
1b/2

Folfirinox Pancreatic
ductal
adenocarcinoma

NCT01413022

Nab-paclitaxel NCT02732938

CSF1R CSF1 receptor (CSF1R)-
mediated signaling is crucial
for the differentiation,
recruitment, and survival of the
mononuclear phagocyte
system and macrophages

Small
molecule

Pexidartinib
(Turalio)
(PLX7486),
Daiichi Sankyo

Continuous Phase 2/
approved

Monotherapy Tenosynovial
giant cell tumor

NCT01804530

Small
molecule

JNJ-40346527
(J&J)

21-day cycle
or PO BID for
4–5 weeks

Discontinued
after phase
1b/2

Monotherapy Relapsed or
refractory
Hodgkin
lymphoma

NCT01572519

Relapsed or
refractory AML

NCT03557970

Surgery Advanced
Prostate Cancer

NCT03177460

Small
molecule

ARRY-382
(Array/Pfizer)

21-day
treatment
cycles

Phase1b Keytruda (anti–
PD-1 antibody)

Relapsed or
refractory
Hodgkin
lymphoma, AML

NCT02880371
NCT01316822

Small
molecule

BLZ945
(Novartis)

Phase I
(ongoing)

PDR001 (anti–
PD-1)

Advanced solid
tumors

NCT02829723,
NCT02404441

Antibody RG7155/
emactuzumab
(Roche)

IV Q3W Phase 2 Atezolizumab
(anti–PD-L1
mAb)

Advanced solid
tumors

NCT02323191

Selicrelumab
(anti-CD40)

NCT02760797

Paclitaxel and
bevacizumab

Platinum-
resistant ovarian
cancer

NCT02923739

Antibody AMG 820-mAb
(Amgen)

IV weekly Phase 1/2 Pembrolizumab
(anti–PD-1
mAb)

Advanced solid
tumors

NCT02713529,
NCT01444404

Antibody
(human
mAb)

LY3022855
(Lilly)

IV Q4W Phase 1 Durvalumab
(anti–PD-L1
mAb) or
tremelimumab
(anti–CTLA-4
mAb)

Advanced solid
tumors

NCT02718911

GVAX
Pancreatic
cancer

NCT03153410

CXCR2/IL8
axis

CXCR2 plays a critical role in
the regulation of neutrophil
homeostasis and recruitment
to the tumor

Small
molecule

AZD5069
(AstraZeneca)

Continuous +
PD-L1

Phase1/2 Durvalumab
(anti–PD-L1
mAb)

Head & neck/
pancreatic
cancer

NCT02499328,
NCT02583477

Enzalutamide mCRPC NCT03177187
Antibody HuMax-IL8/

BMS-986253
(BMS)

IV Q2W Phase1/2 Nivolumab +
degarelix

Hormone-
sensitive
prostate cancer

NCT03689699

Nivolumab
HCC NCT04050462
metastatic or
unresectable
solid tumors

NCT03400332

NSCLC/HCC NCT04123379
Small
molecule

Navarixin/MK-
7123 (Merck)

IV infusion on
day 1 of each
3-week cycle

Phase 2 Pembrolizumab Advanced/
metastatic solid
tumors

NCT03473925

Phase 1 Pembrolizumab NCT03161431

(Continued)
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TABLE 1 | Continued

Target Mechanism of Action Modality Drugs/
Company

Dose
regimen

Current
clinical
status

Combinations Indications Clinical trial
number

Small
molecule

SX-682 (Syntrix
Pharmaceuticals)

SX-682
monotherapy
for 21 days,
then 90 days
with pembro

Metastatic
melanoma

Reparixin (IL-8)
(Dompe)

Phase 2;
discontinued

Paclitaxel HER2– breast
cancer

NCT02001974
NCT02370238

Small
molecule

NCT01861054

PI3Kg PI3Kg signaling promotes
macrophage pro-inflammatory
profile and anti-tumor activity

Small
molecule

Eganelisib (IPI-
549)

Continuous Phase 2 Nivolumab Advanced
urothelial
carcinoma

NCT03980041
UC

Tecentriq and
abraxane
(TNBC)/
bevacizumab
(RCC)

TNBC and RCC NCT03961698
RCC

AB928 (A2ARi)/
pegylated
liposomal
doxorubicin
(PLD)/
nanoparticle
albumin-bound
paclitaxel (NP)

TNBC and
ovarian cancer

NCT03719326
TNBC/OV
NCT03719326
TNBC/GC

CCL2 CCL2 chemokine interacts
with CCR2 in monocytes and
macrophages, impairing
migration

Antibody
(human
mAb)

Carlumab
(CNTO888)

IV Q2W Phase 2 Monotherapy MCRP NCT00992186
Chemotherapy
(SoC)

advanced solid
tumors

NCT01204996

CD47/CD47-
SIRPa

Promotes the adaptive
immune response and
enhances the phagocytosis of
tumor cells by macrophages

Antibody
(hu mAb)

Magrolimab
(Hu5F9-G4)/
Gilead Sciences

IV every 3
cycles

Phase 3 Azacitidine MDS
AML NCT03248479
DLBCL
FL

Antibody
(hu mAb)

CC-90002/
Celgene

IV infusion on
a 28-day
cycle

Phase 2 Rituximab Advanced solid
and hematologic
cancers

DOI: 10.1056/
NEJMoa1807315
NCT02367196

NK2GA NKG2A/CD94 are inhibitory
receptors expressed on T and
NK cells. Inhibition of
interaction with HLA-E relieves
inhibitory signals and leads to
cell activation and cytotoxicity

Antibody
(hu mAb)

Monalizumab IV Phase 1/2
Phase 3

Durvalumab
(MEDI4736)

advanced solid
tumors

NCT02671435

Ibrutinib Relapsed,
refractory or
previously
untreated CLL

Durvalumab Advanced
NSCLC
(resistance CPI)

NCT02557516

Durvalumab NSCLC NCT03833440
Durvalumab Resectable

NSCLC
NCT03822351

Cetuximab Metastatic
HNSCC

NCT03794544

NCT02643550
Cetuximab Recurrent or

metastatic
HNSCC

NCT04590963

CD30xCD16a AFM13 is a bispecific,
tetravalent chimeric antibody
designed for the treatment of

Affimed AFM13 Weekly IV Phase 2 Pembrolizumab Relapsed or
refractory
classical

NCT02665650

(Continued)
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activating state, and can degranulate to release various types of
bioactive molecules (37, 38). The formation of neutrophil
extracellular traps can convert dormant cancer cells, drive
aggressive lung metastases in mice (39), and accelerate
hepatocellular cancer (40) in patients and in mouse models (41).
NK CELLS IN THE TME

The TME not only shapes the adaptive immune response but
also has profound effects on NK cells, which in many tumors are
functionally distinct. Anti-tumor NK effector mechanisms such
as cytotoxicity and secretion of pro-inflammatory cytokines are
impaired due to low expression of effector molecules perforin
and granzyme in patients with lung adenocarcinoma (42),
downmodulation of activating receptors NKG2D or NKp30 in
gastric cancer (43), and upregulation of inhibitory receptors like
NKG2A in cervical cancer (44).

NK cells in tumors also acquire pro-angiogenic and pro-
tumor functions, including the secretion of vascular endothelial
growth factor (VEGF) (45), angiogenin, and MMP9 (46, 47).
Indeed, NK cells play an important role in the menstrual
Frontiers in Immunology | www.frontiersin.org 5
cycle and establishing the placenta (48). The induction of some
of these phenotypic features have been attributed to immune-
modulatory molecules present in the TME, such as indoleamine-
pyrrole 2,3-dioxygenase and tumor growth factor-beta (TGF-b),
which can be secreted by MDSCs (49). NK cells in which STAT5
has been silenced express VEGF-A at a level sufficient to promote
the growth of murine syngeneic tumors (50). NK cells with a pro-
angiogenic phenotype have been identified in non–small-cell
lung cancer (47) and colorectal cancer (51). However, it is not
clear whether there is a meaningful or broad contribution of
these potentially pro-angiogenic NK cells to drive tumor
progression or whether they represent the primary angiogenic
drive. In one study, genetic inactivation of VEGF in myeloid
cells prevented tumor growth and chemotherapy-induced
cachexia in B16 and LLC mouse tumor models (52). This
study also suggested that increased levels of circulating
chemerin by the tumor endothelium improved NK-cell
recruitment to the tumor site, suggesting that an indirect
mechanism of targeting myeloid cells affects NK recruitment
and function. It would be important to understand whether
pharmacological interventions would have a similar effect and
whether this is a dominant mechanism.
TABLE 1 | Continued

Target Mechanism of Action Modality Drugs/
Company

Dose
regimen

Current
clinical
status

Combinations Indications Clinical trial
number

CD30-expressing
malignancies. AFM13 recruits
NK and macrophage cells via
binding to CD16A as immune
effector cells. https://dx.doi.
org/10.1182%2Fblood-2014-
12-614636

Hodgkin
lymphoma

Weekly IV Phase 1/2
approved
(orphan drug
designation)

Peripheral T-cell
lymphoma

NCT04101331

EGFRxCD16A AFM24 NK-cell–engaging
bispecific antibodies to target
EGFR-expressing tumor cells
irrespective of their mutational
status.

Bispecific
engager

Affimed (AFM24) Weekly IV Phase 1 Advanced solid
cancers

NCT04259450

BCMAxCD16a Bispecific antibody (IgG-scFv)
targeting B-cell maturation
antigen and CD16a (FcgRIIIA)
being developed for treatment
of multiple myeloma

Bispecific
engager

Roche
(RO7297089)

Weekly IV Phase 1 Multiple
myeloma

NCT04434469

HER2 x
NKG2D x
CD16A

HER2 trispecific NK cell
engager; binds to HER2 on
tumor cells and simultaneously
binds to NK cells

Trispecific
engager

Dragonfly
Therapeutics
(DF1001)

Phase 1/2 Pembrolizumab Advanced solid
tumors

NCT04143711

KIR2DL-1, -2,
-3

Inhibits major inhibitory
receptors on NK cells

Humanized
mAb

Innate Pharma/
BMS (IPH2102/
BMS-986015/
lirilumab)

4 cycles
Q4W IV

Phase 1/2 Ipilimumab or
nivolumab

Advanced solid
tumors

NCT01750580
NCT01714739

CD16/IL-15/
CD33

Trispecific scFv recombinant
fusion protein conjugate
composed of heavy and light
chains of anti-CD16 and anti-
CD33 antibodies and human
IL-15

Trispecific
engager

GT Biopharma
(GTB-3550)

3x weekly IV Phase 1/2 High-risk heme
malignancies

NCT03214666
April
 2021 | Volume 1
AML, acute myeloid leukemia; BID, twice daily; CLL, chronic lymphocytic leukemia; CPI, checkpoint inhibitor; EGFR, epithelial growth factor receptor; HCC, hepatocellular carcinoma;
HNSCC, head and neck squamous cell carcinoma; IV, intravenous; mAb, monoclonal antibody; m-CRPC, metastatic castration-resistant prostate cancer; MDS, myelodysplastic
syndrome; NP, nonpegylated; NSCLC, non–small-cell lung carcinoma; PLD, pegylated liposomal doxorubicin; PO, orally; PTCL, peripheral T-cell lymphoma; Q2W, Q3W, Q4W, every 2, 3,
4 weeks; RCC, renal cell carcinoma; scFv, single-chain variable fragment; SoC, standard of care; TNBC, triple-negative breast cancer.
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Some of the factors that are known to contribute to functional
impairment of NK cells, such as hypoxia, are tumor intrinsic,
whereas others are secreted by tumor-associated cells, in
particular MDSCs and TAMs. In mouse models, one such
mechanism is induction of NK-cell scavenger receptor
expression, which is involved in lipid metabolism. Uptake of
MDSC-derived factors leads to lipid accumulation and
functional impairment (53).

NK cells have also been implicated in anti-tumor immune
responses after checkpoint blockade. PD-1 is expressed on about
25% of NK cells in some healthy donors, usually at low levels
(54), but has been found to be expressed at substantial levels in
patients with ovarian cancer (54); digestive cancers, including
esophageal, liver, colorectal, and gastric cancers (55); multiple
myeloma (56); Kaposi sarcoma (57); and renal cell carcinoma
(58). However, infiltrating NK cells in non–small-cell lung
cancer do not express PD-1 (59), although a recent systematic
study using multiple methods to detect PD-1 protein and mRNA
concluded that NK cells showed only minimal expression of PD-
1 in primary human tumor samples of round-cell sarcoma and
colorectal cancer, as well as in multiple mouse tumor models
(60). Despite these findings, several studies have reported
upregulation of PD-1 expression on NK cells in various mouse
models (61, 62), and although blockade of PD-1/PD-L1
interaction has been shown to enhance activity of NK cells in
vitro and in animal models (63), this is suggested to be mediated
mainly through expression of PD-L1 by NK cells (64). Moreover,
it is not clear how NK cells contribute to anti-tumor responses in
patients. NK cells have also been implicated in playing a role in
response to treatment with agonistic anti-CD137/4-1BB
antibodies. CD137 is upregulated by Fc receptor cross-linking
on NK cells (65) and in patients after treatment with monoclonal
antibodies (66). CD137 ligation contributes to activation in vitro
(67) and in humanized mice (68) but reports that enhances
antibody-dependent cell cytotoxicity have been retracted
(69, 70).
HUMORAL VS. CELL-CELL INTERACTION
CROSSTALK BETWEEN NK AND
MYELOID CELLS

In the TME, cell-cell interactions and humoral responses build
an anti-tumor immune response; therefore, it is important to
consider how different therapeutic approaches can affect these
interactions. The role of myeloid cells in the TME has been
extensively studied, and a number of therapeutics have been
developed to target these cells. Both neutrophil/PMN-MDSC
and macrophage/M-MDSC–like myeloid cells can influence both
T-cell and NK-cell activation and play both positive and negative
roles in tumor growth and metastatic progression.

During infection, macrophages can modulate NK function
either through direct cell-to-cell contact or through secretion of
soluble mediators such as IL-18, IL-12, and TGF-b (25) (Figure
1A). CD56bright NK cells accumulate in inflammatory lesions in
Frontiers in Immunology | www.frontiersin.org 6
the presence of IL-12, IL-15, and IL-18 and engage with CD14+

monocytes in a reciprocal activation loop, amplifying the
inflammatory response by increasing TNFa production by
monocytes and IFNg by NK cells (71). In vitro, appropriately
activated myeloid cells can also facilitate activation of NK cells
via cell-cell interactions, enhancing CD69 expression and
secretion of IFNg in co-cultures (71, 72). In contrast,
monocytes and macrophages isolated from hepatocellular
carcinoma patient samples (34) and gastric cancer (73) tumors
can induce NK-cell dysfunction via direct cell-cell interaction
and indirectly, e.g., through soluble TGF-b signaling. In
other studies, macrophages and monocytes isolated from
hepatocellular carcinoma samples expressed high levels of
CD48, driving NK-cell dysfunction. This effect was attenuated
by blocking the NK-cell CD48 receptor 2B4 (34). Macrophage or
M-MDSC secreted factors can have direct and indirect effects on
myeloid and NK-cell crosstalk. Soluble TGFbmodulates NK-cell
function via activating receptors NKG2D and CD16 antibody-
dependent cell-mediated cytotoxicity in tumors by impairing
cytotoxicity potential in vivo and in co-culture experiments with
acute myeloid leukemia and colon cancer models (74, 75).
Conversely, IL-15 plays a role in maintaining NK activation to
suppress tumor escape and metastasis (76). Other secreted
factors may act indirectly; these include tumor-derived
prostaglandin-E2, which induces MDSCs and inhibits NK-cell
function in melanoma samples (77). Restoring NK-cell function
by co-targeting immunosuppressive myeloid cells may be an
important therapeutic strategy to prevent tumor immune escape
(Figure 1A).

Pro-inflammatory macrophages, such as IL-12–secreting
macrophages (9, 78), that promote NK function in infection
and mouse tumor models highlight the importance of
understanding the difference between specific myeloid
phenotypes and their influence on NK activation and function
(79). Some myeloid-targeting therapies rely on cell depletion
mechanisms, whereas others attempt to block recruitment or to
reprogram these cells into a pro-inflammatory anti-tumor state
(9). This is an important consideration when developing
therapies, given the high plasticity of myeloid cell types and
multiple cell interactions, including activating and suppressive
impacts on T- and NK-cell effector functions.

Most studies have focused on the effects of myeloid-cell
inhibitors (e.g., CSF1R inhibitors) on primary tumors, but not
much information is available in the context of metastasis.
CSF1R inhibition reprograms the TME to increase responses
to chemotherapy and checkpoint inhibitors and to decrease
metastatic spread (80). In some studies, inhibition of CSF1R
depleted tumor-associated macrophages but unexpectedly
promoted metastasis in 4T1 orthotopic syngeneic models. In
one report, CSF1R inhibition reduced the number of NK cells
due to a decrease in IL-15, a T-cell and NK-cell survival factor
secreted by myeloid cells (22). Moreover, dosing exogenous IL-
15 during CSF1Ri treatment restored NK-cell numbers and
metastasis control. Genetic ablation of IL-15 in mice and in
Th2-polarized CD4 T cells has been found to promote the
formation of M2 macrophages that are thought to contribute to
April 2021 | Volume 12 | Article 633685
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metastasis formation (81). NK cells may control the seeding of
circulating tumor cells due to crosstalk with myeloid cells, a
process that is affected when tumors are treated with depleting
CSF1R antibodies (82). It is interesting to contrast this finding
with the observation that neutrophils or PMN-MDSCs
promoted metastasis in this model (83). Other therapeutic
approaches can influence this axis. Blocking CD39 activity in
myeloid cells has been shown to improve control of metastases
via NK-cell effector function (84). CD39 expression by myeloid
cells, but not NK cells, was required for efficacy, suggesting that
blockade of CD39 on myeloid cells limits the impact of eATP in
driving intratumor myeloid pyroptosis or the release of IL-18,
both of which have been shown to stimulate NK-cell effector
function (84).
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CCL2 (MCP1), which interacts with CCR2, is an alternative
mechanism that influences macrophage-related myeloid
recruitment to tumors and subsequent tumor progression (85).
Inhibition of CCL2 has been shown to limit early metastatic
processes in breast cancer; however, after cessation of therapy,
increased metastatic spread is observed due to enhanced
recruitment of monocytes to micrometastatic lesions in breast
(86, 87) and lung (88, 89) metastasis mouse tumor models.
Importantly, it has been suggested that combined inhibition of
CCL2 and IL-6, a cytokine expressed by myeloid cells, reduced
metastasis and improved survival in prostate cancer (90).
Targeting CCR2 also reduces tumor progression associated
with an influx of T cells in preclinical glioma (91) and
pancreatic models (92).
A

B

FIGURE 1 | Direct and indirect interaction of NK and myeloid cells in the TME and therapeutic concepts. (A) Interaction of NK and myeloid cells in the TME. NK cells
can directly target tumor cells via cytolytic granules, independent of antigen recognition. Macrophages with immunostimulatory properties can independently induce
tumor-cell killing through antigen presentation and production of pro-inflammatory cytokines. In the TME, myeloid cells, including TAMs, M-MDSCs, neutrophils, and
PMN-MDSCs, can secrete a variety of soluble factors that inhibit NK activation and therefore suppress NK-mediated cytotoxicity. Cytokines secreted by NK cells
(e.g., IFNg, TNFa, and GM-CSF) can stimulate macrophages, driving a pro-inflammatory activated state. These two cell types can also interact at the receptor level,
where myeloid cell-surface ligand and NK receptors interact, attenuating downstream signaling, e.g., NKG2D. (B) Proposed therapeutic approaches targeting
myeloid-cell subsets in the TME and proposed alternative treatment sequences that can be explored to maximize immune-mediated anti-tumor response. CPI,
checkpoint inhibitor. Figure created with BioRender.com.
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Although macrophages can contribute to anti-tumor
immunity, both monocyte-derived MDSCs and TAMs can also
promote cancer initiation, stimulate angiogenesis, and suppress
anti-tumor immunity during malignant progression. Pro-
inflammatory, or “anti-tumor”, macrophages contribute to an
anti-tumor response by producing pro-inflammatory cues such
as IFNg and IL-12 secretion or by acquiring an antimicrobial and
tumoricidal phenotype (93, 94). Therefore, “reprogramming”
macrophages into an anti-tumor and proinflammatory state is
an attractive strategy to tip the balance on tumor immunity.
Targeting STAT3 (95) or PI3Kg signaling has been shown
preclinically to change the TME in tumors by remodeling
suppressive macrophages into proinflammatory macrophages.
Selective targeting of PI3Kg signaling in combination with
checkpoint blockade is thought to promote reprogramming of
macrophages into a pro-inflammatory state, leading to cytotoxic
T-cell–mediated anti-tumor response in preclinical mouse
models (96, 97). The combination of PI3Kg with PD-1
blockade is currently under investigation in clinical trials and
recently received FDA Fast Track designation in urothelial
cancers (ClinicalTrials.gov NCT03980041).

In normal physiological processes, neutrophil depletion impairs
NK-cell maturation, function, and homeostasis (98). The role of
neutrophils and PMN-MDSCs in cancer has been extensively
studied, and these cells play an important role in facilitating
tumor progression. In various tumor models, targeting or
depleting neutrophils or PMN-MDSCs reduces metastasis in both
autochthonous models of pancreas (99), colon cancer (100), breast
(101), and metastatic syngeneic models (83, 102). This metastatic
process may be through gdT-cell–orchestrated suppression of CD8
T cells by modified neutrophils (101). However, there is evidence
that immunosurveillance of metastatic 4T1 cells by NK cells is
inhibited by interaction with CD11B+/Ly6G+ neutrophils (most
likely PMN-MDSCs), increasing residence time for metastatic
tumor cells arriving at the lung and enabling extravasation and
establishment of the metastatic niche (83). Soluble factors such as
IL-17, granulocyte-CSF (G-CSF) (101), and TGFb signaling (100,
103) play pivotal roles in establishing this suppressive network. The
crosstalk between neutrophils and PMN-MDSCs is not a one-way
process. In MCA205-Luc2 tumors, depletion of NK cells with
antibodies or CXCR3 blockade has been shown to promote
tumor growth due to reduced IFNg and upregulation of IL-17A
and VEGF-A, modifying the TME and recruitment of suppressive
neutrophils of PMN-MDSCs (104).

Therapeutic targeting of CXCR2 (or IL-8) inhibits
neutrophil-granulocytic myeloid cells or PMN-MDSCs, leading
to suppression of metastasis in mouse models of pancreatic
cancer (99) and colorectal cancer (100), as well as in metastatic
syngeneic models 4T1 and B16F10 (105). In preclinical efficacy
studies, CXCR2 inhibition resulted in an influx of T cells (99,
100, 105, 106); however, the impact on the broader immune
environment, including NK biology, has not been explored.
Although CXCR2 blockade inhibits recruitment of granulocytic
myeloid cells to the tumor, it may also inhibit NK recruitment.
CXCR1 and CXCR2 are highly expressed by cytotoxic CD56dim

NK cells (107), and increasing CXCR2 expression on NK cells
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promotes recruitment to tumors that overexpress CXCR2
ligands (108). Importantly, the CXCR2 ligand CXCL8 is
secreted within the TME of melanoma-infiltrated lymph nodes
and may play a role in the efficient recruitment of highly
cytotoxic NK cells (109). Because it has been suggested that
chronic combined inhibition of both CXCR2 and CSF1R can
increase the efficacy of checkpoint inhibition in syngeneic
models (110), understanding the potential impact of
comprehensive myeloid suppressor cell inhibition on NK-cell
activity should be considered.

Taken together, these studies of different myeloid lineages
exemplify how depletion of specific subsets of myeloid cells can
affect different features of the TME, modulating innate effector-cell
activity and promoting tumor progression andmetastasis. However,
because myeloid cells, and particularly macrophages, play an
important role in assisting NK- and T-cell activation, it is
important to target the right population of cells. Moreover, given
that these are essential cell types, translation to a clinical setting may
be limited by tolerability, as observed in studies targeting the CSFR1
axis with antibodies or small molecules (80, 111, 112), which
resulted in increased liver enzymes and induction of periorbital
edema. Less toxicity was observed when the alternate macrophage
regulating receptor CCR2 was targeted (113–115).

Nontargeted therapies, such as chemotherapy, can also
deplete myeloid cells from tumor. Paclitaxel-carboplatin
treatment was shown to alter circulating and intratumoral
myeloid cell populations and to promote anti-tumor responses
when combined with vaccination in HPV-16–positive tumors in
mice (98). In a phase 2 trial in patients with extensive small-cell
lung cancer, it was reported that ipilimumab treatment
beginning with the third cycle of paclitaxel-carboplatin
treatment produced better clinical outcomes than giving the
drugs during cycles 1 to 4 (116). An understanding of the
pivotal points in these complex signaling and transcriptional
networks that program the myeloid cell phenotypes is essential to
guide more effective therapeutic approaches.
PERSPECTIVE: IMPACT OF DOSE
AND SCHEDULE IN MYELOID
TARGET THERAPIES AND
CHECKPOINT INHIBITORS

Translation to the clinic of preclinical concepts, which were
largely developed using fast-growing subcutaneous in vivo
models, presents a challenge. Subcutaneous models are limited
because they do not reflect the variations observed in the tissue of
residence, and the speed of cell growth in these models does not
enable elucidation of the longer-term consequences of the
treatment strategy. As shown in Table 1, most clinical studies
have taken a standard approach in which the myeloid therapy is
co-administered with the checkpoint inhibitor or chemotherapy
and then dosing is maintained chronically (80, 111–113, 115).
This approach has a number of drawbacks. Myeloid cells exhibit
both positive and negative effects on the TME, as described
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above. Accumulation of myeloid cells in the tumor (macrophage-
like and neutrophil-like cells) clearly defines a resistance
phenotype, and depletion of macrophages and neutrophils can
remodel the TME. In addition to preventing the suppressive
crosstalk to immune cell types, including T cells and NK cells,
removal of these cells results in remodeling of the stroma and, in
some cases, reprogramming of the tumor cell compartment.
These changes make the tumor more susceptible to appropriate
recruitment of activated immune cells. Hence, it is likely that
pretreatment with a myeloid modulation agent prior to treatment
with immunotherapy or even chemotherapy would “prime” the
TME by reversing the resistant features in the tumor, facilitating
more effective stimulation of the immune system. However, once
the immune response is progressing, then more “normal”myeloid
cells could be required to sustain that response, especially in
situations where there is less effective immune recognition of the
tumor. Paradoxically, chronic suppression of the myeloid cells
may result in attenuation of the immune response in certain
situations, mitigating the advantages gained from targeting the
suppressive cells. Therefore, therapies that deplete myeloid cells or
prevent recruitment to the TME may be more effective with
intermittent or sequenced dosing, using the myeloid therapy for
a short time prior to treatment to “prime” the TME, but then
stopping dosing after introduction of the checkpoint inhibitor to
allow the more normal immune response to progress (Figure 1B).
These types of intermittent approaches could also mitigate
clinical toxicity.
DISCUSSION

The development of cancer immunotherapies, specifically
immune checkpoint blockade, has shifted the treatment of
Frontiers in Immunology | www.frontiersin.org 9
cancer by promoting complete and durable responses (117,
118). Immunotherapies focus on enhancing the activities of T
cells; however, the complexity of the TME limits the response.
The pivotal role of tumor myeloid cells, particularly
macrophages, in conditioning the TME and regulating the
broader response to host immune response and therapy is
broadly appreciated. Unfortunately, the development of
targeted therapeutics has only just started to teach us about the
complexity of this cross-regulation, particularly in the context of
different tumor mutational backgrounds and TMEs, as well as
the broader systemic immune response. To enhance success, it is
worth considering the positive influence of myeloid cells on the
other components of the immune system, such as NK cells, and
their role in sustaining persistent T-cell responses. Although
myeloid therapies have largely been combined with checkpoint
inhibitors and, to a lesser extent, chemotherapeutics, little
consideration has been given to combinations with therapies
targeting other functional nodes, such as NK cells or stimulators
of innate immunity. As we seek to improve responses in patients
earlier in disease progression, at the point of metastatic spread,
such alternative strategies could become important.
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