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Inhibition of the STAT3 target SGK1
sensitizes diffuse large B cell lymphoma
cells to AKT inhibitors
Li Lu 1,2, Fen Zhu1,2, Yangguang Li1,2, Shuichi Kimpara1,2, Nguyet Minh Hoang1,2, Sheida Pourdashti1 and Lixin Rui1,2

Diffuse large B cell lymphoma (DLBCL) is the most
common non-Hodgkin lymphoma, including two main
molecular subtypes termed as activated B-cell-like (ABC)
and germinal center B-cell-like (GCB)1. ABC DLBCL
shares gene expression signatures with activated B cells
and STAT3 is a critical transcriptional regulator of this
subtype1. To investigate the gene regulation mechanism
by STAT3 in ABC DLBCL cells and activated B cells, we
performed ChIP-seq analysis. We treated ABC DLBCL
cell line TMD8 with the JAK1/2 inhibitor AZD1480 that
inhibits STAT3 phosphorylation as a control1. We used
phospho-STAT3 antibody to increase specificity of
STAT3 binding. Using the model-based analysis of ChIP-
seq (MACS) for peak calling, we identified a total of 7470
STAT3 binding sites (peaks) in TMD8 cells when com-
pared with the AZD1480-treated control sample (Fig. 1a,
Supplemental Table 1). More than 60% of peaks are
present in the promoter, upstream enhancer, and gene
body regions (Fig. 1b). Specificity of these STAT3 binding
sites was confirmed by the MEME motif enrichment
analysis (Fig. 1c).
Stimulation of the B cell receptor (BCR) can activate

STAT3 in lymphoma cells2. To test whether this is the
case in naive B cells, we stimulated peripheral blood B
cells with anti-IgM antibody. Indeed, we detected STAT3
phosphorylation after 24 h treatment with a peak at 48 h
(Fig. 1d). B cell activation was confirmed by IRF4, a
downstream effector of BCR signaling (Fig. 1d). Then, we
used 24 h-stimulated peripheral blood B cells for STAT3
ChIP-seq analysis and identified a total of 21,548 STAT3

binding sites (peaks) when compared with the input
control (Fig. 1e, Supplemental Table 1). We observed 75%
of peaks present in the promoter, upstream enhancer, and
gene body regions (Fig. 1b).
Based on genomic loci of these peaks, we mapped

individual genes within a window extending from −15
kilobases (kb) 5′ of the transcriptional start site (TSS) to
the 3′ end of any annotated transcript associated with the
gene, as for our previous study1. We identified 3456
potential STAT3 target genes in TMD8 cells and 10,337
in activated B cells, with an overlap of 2442 genes between
TMD8 and activated B cells (Fig. 1f, Supplemental
Table 1). Considering these overlapped genes as common
STAT3 targets in normal and malignant cells, we per-
formed PANTHER gene ontology analysis. The results
revealed that these common target genes were enriched
for biological processes that include B cell activation,
apoptosis, cytokine signaling, EGF/PDGF signaling, Toll
receptor signaling, and inflammation (Fig. 1g). Consistent
with our previous study1, these common STAT3 target
genes include STAT3 itself, the type I interferon pathway
genes (STAT1, STAT2, IRF7, IRF9), NFκB genes (NFκB2,
NFκBIA, NFκBIZ), and apoptosis pathway genes (BCL2,
MCL1, BCL2L11, CASP8) (Fig. S1). Most of these STAT3
target genes change their expression in ABC DLBCL cells,
based on our previous RNA-seq analysis (Fig. S2, Sup-
plemental Table 1)1. Taken together, the data suggest an
important role for STAT3 in the pathogenesis of ABC
DLBCL, as well as in the normal immune response.
The above STAT3 ChIP-seq analysis also revealed 1014

genes that are ABC DLBCL specific (Fig. 1f). Among
them, 85 genes reduced their expression while the
expression of 49 genes was increased after STAT3
knockdown (Fig. 1h, Supplemental Table 1). Some of
these STAT3 target genes are highly expressed and
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Fig. 1 (See legend on next page.)
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significantly contribute to DLBCL biology. MEF2B, a
transcriptional activator, directly activates BCL6 in nor-
mal germinal center B cells and is required for DLBCL
proliferation3. Expression and activation of hematopoietic
cell kinase (HCK) is induced due to activating mutations
in MYD88 that are present in ∼40% of ABC DLBCL4.
HCK activity promotes the survival and proliferation of
ABC DLBCL cells by enhancing BTK, PI3K/AKT, and
MAP kinase signaling in mutated MYD88 ABC DLBCL
cells4.
In addition, the tumor specific STAT3 target genes

include those that are involved in immune regulation and
cell metabolism, such as CD274 (PD-L1) and the high-
affinity HDL receptor, scavenger receptor type B1
(SCARB1) (Fig. 1h, Fig. S3). PD-L1, an immune check-
point molecule, is overexpressed in ~25% of non-GCB
DLBCL but rarely expressed in GCB DLBCL5. PD-L1
expression on DLBCL cells is associated with poorer
overall survival5. Recent studies suggest that PD-L1
overexpression can result from genomic amplifications
and translocations, and BCR-mediated NFATc1 activa-
tion through IL-10/STAT35,6. In support of these find-
ings, our genome-wide analysis revealed that PD-L1 is a
direct target gene of STAT3 in ABC DLBCL cells (Fig. 1h,
Fig. S3). PD-L1 expression allows ABC DLBCL cells to
escape the immune surveillance of tumor-specific cyto-
toxic T cells5. Therefore, the above and other STAT3
tumor specific target genes identified from the study can
be used for the development of a targeted therapeutic
strategy in DLBCL.
Serum-regulated and glucocorticoid-regulated kinase 1

(SGK1), a serine/threonine kinase of the AGC kinase
family7,8, is a STAT3 binding gene in ABC DLBCL and
activated B cells (Fig. 2a). Our previous RNA-seq analysis
revealed that SGK1 expression decreased after STAT3
knockdown in ABC DLBCLs (Fig. 2b). Notably, SGK1
expression was induced by anti-IgM antibody in activated
B cells (Fig. 2c) in which STAT3 is activated (Fig. 1d). As

expected, the level of SGK1 protein expression was
reduced after STAT3 inhibition by the JAK1/2 inhibitor
AZD1480 (Fig. 2d) while increased by overexpression of
the constitutively activated form of STAT3 (STAT3-C),
with activating mutations (A661C and N663C) in the SH2
domain (Fig. 2e)1. These data suggest that STAT3 directly
regulates SGK1 expression in both ABC DLBCL and
activated B cells.
JAK1/STAT3 signaling is activated in ABC DLBCL but

not in the GCB subtype1. The mechanism of SGK1
expression in GCB DLBCL remains unknown. Recent
next generation sequencing studies demonstrate that
SGK1 is mutated in 10–13% of GCB DLBCL but rarely in
ABC DLBCL9. Most concurrent mutations are located on
the N-terminus (1–98) of SGK1 (Fig. S4A, B)9, which
contributes to its constitutive degradation by the
ubiquitin-proteasome pathway (Fig. S4C)10. To test whe-
ther the N-terminal mutations prevent proteasomal
degradation, we selected three most concurrent mutations
(A26V, A48V, H51P) from the 1001 patient database9 for
protein turnover analysis. We expressed these mutants in
parallel with SGK1 wild-type (isoform 1; NM_005627.3)
in 293T cells. SGK1 isoform 3 (NM_001143677.1) served
as a control as it has a different N-terminal sequence that
does not mediate proteasomal degradation. We found
that, unlike stabilized SGK1 isoform 3, all three SGK1
mutants and wild-type protein (SGK1-ISO1) were
expressed at a lower level in the DMSO control but
increased after proteasomal inhibition by PS-341 (Fig.
S4D), suggesting the SGK1 mutations do not stabilize the
protein. A similar result was observed for SGK1 endo-
genous protein both in several SGK1 wild-type cell lines
and in OCI-Ly1 cell line that harbors SGK1 N70K
mutation (Fig. S4B–E). Given that SGK1 mutations are
frequent and specific in the GCB subtype, the function of
mutant SGK1 would be worth investigating further.
In recent years, PI3K inhibitors have emerged as a tar-

geted therapy in DLBCL11. However, their use has been

(see figure on previous page)
Fig. 1 Genome-wide analysis of STAT3 target genes in TMD8 cells and activated B cells. a Heat maps of pSTAT3 ChIP-seq in TMD8 cells, after
4 h treatment with either DMSO or 4 μM AZD1480. pSTAT3 peak summits were centered with 5 kb of flanking sequence either side. Blue color
indicates higher density of reads. pSTAT3 peaks were ranked by signal intensity at the peak center, and the same order was used to display the
AZD1480 treated sample. b pSTAT3 peaks show a major distribution in the gene promoter (±1 Kb to TSS), upstream enhancer (−15 Kb to TSS) and
gene body. c The CentriMo plot shows the distribution of known STAT3 motif in the ChIP-seq peak summit regions (p < 0.001). d Immunoblot
analysis of pSTAT3 and IRF4 in anti-IgM (10 μg/ml) stimulated naive B cells. β-actin served as a loading control. e STAT3 ChIP-seq peaks in normal
activated B cells show a major distribution in the gene promoter (± 1Kb to TSS), upstream enhancer (−15 Kb to TSS) and gene body. f Venn diagram
shows 2441 genes shared in pSTAT3 ChIP-seq in TMD8 cells and STAT3 ChIP-seq in activated B cells (ABC) and 1014 genes specific for TMD8 cells.
g Gene ontology analysis of 2442 STAT3 common target genes between TMD8 and activated B cells (p < 0.05). h Heat maps show mRNA levels of
pSTAT3 binding genes after knockdown of STAT3 in TMD8 cells (Data from GSE106844)
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limited by some of their associated adverse events11. The
development of combination therapies is necessary to
overcome drug resistance and to minimize overlapping
toxicities. In DLBCL, SGK1 was highly expressed and its
expression was correlated with STAT3 expression (Fig.
2f). Varied levels of SGK1 expression were observed in
DLBCL cell lines as well (Fig. 2g). To test whether SGK1
expression is essential for cell survival, we generated two
different shRNAs against SGK1 (Fig. S5A) and expressed
them in 5 ABC and 8 GCB DLBCL cell lines (Fig. S5B).
After 12 days of shSGK1 expression, none of these cell
lines were sensitive except two ABC DLBCL cell lines
TMD8 and SUDHL2 that showed a moderate sensitivity
(Fig. S5B). The similar result was obtained using the SGK1
inhibitor GSK650394 (Fig. S5C)12.
Since both AKT and SGK1 are expressed and activated

in ABC and GCB DLBCL cells13, which have the ability to
engage in opportunistic compensation when one of the
two kinases is genetically repressed or pharmacologically
inhibited8, we hypothesized that inhibiting SGK1 enhan-
ces anti-tumor effects of AKT inhibitors in DLBCL. To
test this hypothesis, we used AKT inhibitor V14 to treat
two ABC DLBCL cell lines (TMD8 and HBL1) and two
GCB DLBCL cell lines (OCI-Ly1 and OCI-Ly7), all of
which expressed shSGK1#2. Immunoblot analysis con-
firmed a reduction in AKT phosphorylation by the drug
(Fig. 2h). Indeed, knockdown of SGK1 increased the
cytotoxicity of AKT inhibitor V in all four cell lines (Fig.
2i). We found a similar result using another AKT inhi-
bitor AZD5363 (Fig. S6A)15. Notably, synergistic cell
killing was observed using the two kinase inhibitors (Fig.
2j, Fig. S6B). Cell viability was not significantly reduced by
the treatment of the SGK1 inhibitor alone except for
TMD8 cells, which showed a moderate sensitivity.
Therefore, our study suggests that co-targeting SGK1 and
AKT is more effective, which can be considered a
potential therapeutic strategy for the treatment of DLBCL.
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