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ABSTRACT

Predicting the binding specificity of transcription
factors is a critical step in the characterization and
computational identification and of cis-regulatory
elements in genomic sequences. Here we use
protein–DNA structures to predict binding specifi-
city and consider the possibility of predicting
position weight matrices (PWM) for an entire protein
family based on the structures of just a few family
members. A particular focus is the sensitivity of
prediction accuracy to the docking geometry of the
structure used. We investigate this issue with the
goal of determining how similar two docking
geometries must be for binding specificity predic-
tions to be accurate. Docking similarity is quantified
using our recently described interface alignment
score (IAS). Using a molecular-mechanics force
field, we predict high-affinity nucleotide sequences
that bind to the second zinc-finger (ZF) domain from
the Zif268 protein, using different C2H2 ZF domains
as structural templates. We identify a strong
relationship between IAS values and prediction
accuracy, and define a range of IAS values for
which accurate structure-based predictions of
binding specificity is to be expected. The implica-
tion of our results for large-scale, structure-based
prediction of PWMs is discussed.

INTRODUCTION

In eukaryotic gene regulation, highly specific patterns of
gene expression are established by cis-regulatory elements
(CREs)—modular domains of several hundred base pairs
containing multiple short DNA sequences (�5–15 bp) that
serve as binding sites for transcription factors (TFs) (1)
Given a genome, a major challenge is to identify CREs in
the sequence and to identify the TFs that bind to them (2)
A common situation is that one or more TFs are believed

to regulate the expression of a set of genes, and one wants
to identify the CREs responsible. Using a description of a
TF’s binding specificity such as a consensus sequence or
position weight matrix (PWM) (3), the genomic regions of
interest (e.g. gene upstream and intronic regions) can be
searched for binding sites that would indicate a potential
CRE. However, since TF-binding sites are commonly
short and sequence degenerate, many sites will often be
identified while only a few will actually be part of a CRE.
This is particularly evident in the large non-coding regions
present in higher eukaryotic genomes (4). To confront this
problem, additional criteria have been used to refine the
initial list of identified sites such as the PWM score (3),
clustering of the sites(5–8); models based on previously
identified CREs(9–11); or phylogenetic conservation of the
sites (12–14). Critical to the success of all these approaches
is an accurate description of the TF’s binding specificity.
Databases such as TRANSFAC (15) and JASPAR (16)

provide data on experimentally determined DNA-binding
specificities and provide PWMs for many eukaryotic TFs.
Unfortunately, for most TFs there is currently little or
no data as to the DNA sequences they bind to. The most
recent release of TRANSFAC database (version
7.0–public), the larger of the two databases, has approxi-
mately 400 PWMs for all eukaryotic TFs. In comparison,
the human genome has approximately 1850 predicted TFs
(17); therefore many remain without well-characterized
binding specificities. High-throughput experimental
approaches, such as SELEX (18), quantitative multiple
fluorescence relative affinity (QuMFRA) assay (19),
genome-wide location analysis (ChIP-chip) (20), DNA
immunoprecipitation with microarray detection
(DIP-chip) (21) and protein-binding microarrays (PBM)
(22) are increasingly being used to efficiently determine the
binding-specificity of individual TFs; however, obtaining
high-quality data for many TFs still proves challenging
(23). Additional approaches for determining binding
specificities that combine computational methods and
structural information with sequence data (24) and
experimental data (SELEX, phage display) (25) have
also been proposed. Recently, various computational
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methods have been reported for using structures of
protein–DNA complexes to predict binding specificities
directly (26–34), providing a potential complementary
strategy to high-throughput determination of TF PWMs.
All purely structure-based methods require either an

experimentally determined structure or a computationally
derived model of a protein–DNA complex. Given a
structure of a TF bound to one or more DNA sequences,
a scoring function can be used to evaluate relative
affinities. One type of scoring function uses knowledge-
based potentials that have been developed through the
statistical analysis of many protein–DNA structures.
Such potentials have been used to estimate pair-wise
amino-acid–nucleotide interaction energies (26–30,35),
amino-acid–polynucleotide interaction energies (30) and
DNA-deformation energies (36–38). The potentials are
based on structural parameters (e.g. amino-acid–
nucleotide distances; twist, roll and tilt parameters of
base-pair steps) chosen so as to be independent of the
residue identities. Therefore, a single template complex
can be used to predict affinities for many different protein
and DNA sequences by simply changing the identities of
the amino acid or the base and re-evaluating the potential.
In this case, one generally only needs knowledge of the
coordinates of the protein and DNA backbones since, in
most current applications, the detailed atomic nature of
amino-acid–base interactions are ignored. However, it is
possible that specificity will depend in part on side-chain
orientation. Indeed, alternate side-chain conformations
that affect DNA-binding specificity have been observed in
response to both the mutation of neighboring side-chains
and the binding of different DNA sequences (39), and
likely contribute to the inter-dependent effects on binding
affinities that have been observed for amino acid and base
residues (19,40).
Another approach to scoring is to build an all-atom

model for a set of complexes of interest and to evaluate
relative affinities with molecular-mechanics energy func-
tions (31,32,41); physically based, atomic-level energy
functions (33,42); or statistically derived atom–atom
potentials (42,43). In most recent studies, the protein
and DNA sugar–phosphate backbone atoms are held
fixed in the original, experimentally derived structure, and
alternate DNA sequences are modeled by constructing
DNA bases that are co-planar with the original template
bases. For each DNA sequence, amino-acid side-chains
are then modeled onto the fixed protein backbone by
choosing conformations from a rotamer library that
minimize the energy function (32,33,42). An alternative
method used by Paillard et al. (31,41) is to begin with the
side-chains in the original template conformations and
to perform an energy minimization in the presence of
a multi-copy representation of the DNA bases (44,45),
where all DNA bases are present at each position
simultaneously.
Despite the increasing number of protein–DNA com-

plexes in the Protein Data Bank (PDB), TF sequences
still greatly outnumber TF structures. Therefore, for the
majority of TFs an experimentally derived structural
template containing the TF will not be available. Since
many structurally similar proteins dock on the DNA

in a similar fashion (46–48), one solution is to use a
protein–DNA complex of a structurally homologous
protein as a template for a TF for which no DNA-
bound complex is available. Recent papers by Morozov
et al. (42) and Contreras-Moreira and Collado-Vides (35)
have used all-atom modeling and knowledge-based
approaches, respectively, to predict PWMs using struc-
tural homologs as templates. The homology modeling of
protein–DNA complexes provides a broadly applicable
method for PWM prediction as there are currently enough
protein–DNA complexes in the PDB to represent the
majority of TF structural families. Integral to a homology
modeling approach is the assumption that a protein–DNA
complex can serve as the template structure for a
structurally homologous protein. This requires that the
docking geometry—the spatial orientation of the protein
backbone to the DNA molecule—of structural homologs
is sufficiently similar that the difference in docking
orientation does not affect the outcome of the predictions.

In this article, we test this assumption by using different
protein–DNA complexes of structurally homologous
C2H2 zinc fingers (ZF) as templates in atomic-level
modeling predictions of TF-binding specificity. Extensive
structure–based predictions of ZF binding specificity are
carried out and the sensitivity of prediction accuracy
on differences between the model and actual docking
geometries is analyzed. Relative docking geometries are
quantified in terms of an interface alignment score (IAS)
that we recently described (48). The algorithm that
calculates IAS values aligns amino acids from the binding
interface of two protein–DNA complexes based on the
spatial relationships between the amino-acid backbone
and DNA base atoms and provides a quantitative measure
of the similarity between two protein–DNA interfaces.
The IAS has been shown to provide a robust and sensitive
measure for comparing the docking geometry of protein–
DNA complexes.

The C2H2 ZF proteins constitute a large family
of eukaryotic TFs that have been studied extensively
both experimentally (49–51) and computationally
(24–26,31–33,42) as a model system for understanding
protein–DNA-binding specificity. The proteins in the
family are often composed of multiple, structurally
homologous, concatenated ZF domains of approximately
30 amino acids that bind successively along the DNA
major groove. From the twenty-one available ZF protein
structures listed in Table 1, ninety-three individual ZF
domain templates could be defined (Materials and
Methods), representing the largest set of structurally
homologous protein–DNA complexes currently available
from the PDB. Fourteen of the twenty-one structures
listed in the table are based on the well-studied Zif268
protein and include: two wild-type structures at different
resolutions; one structure with two wild-type Zif268
proteins bound in tandem; nine structures with mutations
in the ZF domain 1 (ZF1) in complex with various
off-consensus DNA sites of the form GCGTGGNNN;
and two modified Zif268 structures bound as head-to-
head dimers. Three of the twenty-one structures are
designed ZF proteins engineered to bind novel DNA
sequences, and the remaining four structures are of
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various wild-type ZF proteins containing between two and
six ZF domains bound to different DNA sequences.

Pair-wise structural superimpositions of all the ninety-
three ZF domains yielded an average backbone heavy-
atom RMSD (root mean square deviation) of 0.9 Å
(variance 0.12). However, despite the overall structural
similarity, significant differences in docking geometries are
observed. These differences have an important effect on
the ability to predict nucleotide sequences that preferen-
tially bind to a ZF domain. We find a strong relationship
between the IAS and prediction accuracy, and define a
range of IAS values for which accurate structure-based
predictions of PWMs is to be expected. Our results
thus provide insight on how template choice can affect

atomic-level modeling approaches to binding-specificity
predictions and indicate ways in which prediction
algorithms can be improved in future work.

MATERIALS AND METHODS

PDB file preparation and definition of orthologous residue
positions

The twenty-one C2H2 ZF complexes from the PDB
(Table 1) were split into individual finger–DNA com-
plexes, yielding ninety-three individual ZF domains
in complex with DNA. Some crystals contain multiple
structures in the asymmetric unit; each was treated as an

Figure 1. Pair-wise docking comparison of 93 ZF domains. Pair-wise IAS values are shown as a symmetric comparison matrix. Scores below 5.0 are
in white (not shown). IAS values between domains with a wild-type-docking geometry (see text) in each of the three Zif268 groups are delineated with
a heavy dashed line. IAS values between certain ZF domains, or groups of domains, are highlighted: these include wild-type docking domains from
the Zif268 ZF1 and ZF3 clusters (region A); 1MEY ZF3 and wild-type docking domains from the Zif268 ZF1 (region B) and ZF3 (region C)
clusters. Supplementary Figure S1 contains enlarged versions of the regions along the diagonal and list PDB identifiers and interfacial residue
identities for each ZF complex.$units 6,6,5,1

Table 1. C2H2 ZF-DNA PDB files

PDB code Chains Description Res (Å) Topologya

1llm C,D Zif268-GCN4 (dimer) 1.5 2_3:3_2
1aay A Zif268 1.6 3_2_1
1a1f, 1a1g, 1a1h, 1a1i, 1a1j, 1a1k, 1a1l A Zif268 (Fn1 mutants) 1.6 3_2_1
1jk1, 1jk2 A Zif268 (Fn1 D20A) 1.9 3_2_1
1zaa C Zif268 2.1 3_2_1
1mey C,F Designed 2.2 3_2_1
1g2d, 1g2f C,F Designed 2.2 3_2_1
1p47 A,B Zif268 tandem 2.2 3_2_1 3_2_1
1f2i G,H,I,J,K,L Zif268-extension (dimer) 2.4 2_1:1_2
1ubd C YY1 (Yin Yang 1) 2.5 4_3_2_1
2gli A GLI (glioblastoma) 2.6 5_4_3_2_1
2drp A,D Tramtrack 2.8 2_1
1tf6 A,D TFIIIA n/a (NMR) 6_5_4_3_2_1

aTopology description for the individual ZF domains; 3_2_1 indicates a polydactyl ZF protein with three ZF domains, 1 refers to the N-terminal ZF
domain. Dimerization interfaces between chains are indicated with a colon.
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independent protein–DNA complex. The domain bound-
aries for individual fingers were taken from the SCOP
database (52). ZF domains for which no helical backbone
atom was within 16 Å of a DNA purine N9 or pyrimidine
N1 atom were not considered.
In order to use different ZF structures as templates,

it was necessary to define side-chain and bases in
the template structure that align with those being
predicted. For the ZF domains, this was accomplished
with a structural alignment using the SKA algorithm (53).
Bases that correspond to those in the interface
with the Zif268 ZF2 domain were identified by manual
comparison of each structure. Side-chain and base
identities for each template that correspond to those
shown in Figure 2 for Zif268 ZF2 are shown in
Supplementary Figure S1.

Interface alignment algorithm and docking similarity
measures

The interface alignment algorithm used in this work is
described in detail in Siggers et al. (48); however, a brief
overview is presented here for clarity. A geometric
similarity score s(i, k:j, l) quantifies the spatial relationship
of residue i and base k in one complex relative to that
of residue j and base l in another. The measure is
independent of the amino acid or base identities and is
based on three geometric parameters that describe the
geometric relationship of the amino-acid backbone with
the DNA base atoms. The set of s(i, k:j, l) scores is used to
define a residue–residue similarity score, S(i, j), that
quantifies the spatial relationship of amino acid i to the
local DNA–nucleotides (in a complex m) with that of
amino acid j to its local DNA (in complex n). The S(i, j)
values, when computed for all pairs of amino acids in two
complexes (m and n), define a similarity matrix that is used
in a dynamic-programming algorithm to define a
geometry-based alignment of the amino acids in the
interfaces of the two complexes. The interface alignment
score (IAS) is the sum of the S(i, j) values for all aligned
amino-acid residues. In this work, pair-wise interface
alignments between ZF domains (Figure 1) were per-
formed using only the seven amino-acid residues at

canonical ZF positions �1 through 6, and bases similar
to those at positions 4–6, and 40–60 for ZF2 in Figure 2 (i.e.
the canonical base-triplet associated with each ZF
domain). The computed IAS values were normalized by
dividing by seven and resulted in scores ranging from zero
to ten. The interface alignment software is freely available
at the Honig lab website.

DNA-based structural superimposition of ZF helices

The DNA sugar and phosphate heavy atoms from
the three nucleotide pairs (six nucleotides) used in the
IAS calculations were structurally superimposed
by minimizing their RMSDs. The transformation
used for the superimposition was then applied to the ZF
helix atoms.

Modeling side-chains and bases

Conformations of the amino acids and nucleotides being
modeled into each template structure were predicted by
choosing the lowest-energy set of conformational rota-
mers using the Monte Carlo procedure outlined in Xiang
and Honig (55), with DNA–nucleotide rotamers being
treated in an analogous fashion to the amino-acid
rotamers. Protein side-chain conformations were taken
from a torsion-angle rotamer library derived from
the conformer library of Xiang and Honig (55).
DNA–nucleotide conformations were obtained from a
rotamer library generated by local sampling of the
template DNA backbone as described in detail below.
Correct base pairing was retained in all cases. The
positions of the protein backbone atoms and DNA
phosphate atoms were held fixed at all times. Starting
from an initial, randomly chosen set of rotamers
(i.e. initial conformation set), residue conformations
were iteratively minimized by selecting rotamers that
yielded the lowest energy for the complex; this procedure
continues until no new rotamer leads to a lower energy.
From 20 initial conformation sets, the complex with the
lowest energy was chosen. Twenty initial conformations
was found to be sufficient for the modeling described in
this work, additional starting conformations did not
results in lower energy predictions. The structure of the
low-energy complex was then further refined using
a modified version of the minimize routine in the
TINKER software package (56) that incorporates
a sigmoidal dielectric-screening function (see energy
description below). Minimization was performed to an
RMSD gradient tolerance of 0.0001 kcal/mol/Å. During
the course of the minimization, atoms for all residues
not being specifically modeled were held fixed. Protein
backbone and DNA phosphate atoms for residues being
modeled were also held fixed.

An all-atom energy function was used to compute
the energy of the complex. The AMBER param98
force-field (57) was used to describe bonded and non-
bonded energies; an additional hydrogen-bond term is
included to account for the fine geometric dependence
of hydrogen bonds. The hydrogen-bond term is a product
of four Gaussian functions chosen to approximate
the geometric parameter distributions described in

Figure 2. Canonical binding schema for Zif268 bound to its cognate
DNA sequence. Arrows indicate hydrogen-bond interactions. Base
identities appear as in the PDB file 1aay. Amino acids are numbered
according to a canonical ZF numbering scheme (54). Solid shaded
regions indicate the amino acids and bases used to calculate the
docking-geometry IAS values; the solid plus hashed region indicates the
interfacial residues that define the ‘binding interface’ used for modeling
Zif268 ZF2 binding specificity.* IAS scores were computed using all
amino acid positions �1 through 6.
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Chen et al. (58) and Kortemme et al. (59). The function
has the form:

EHB ¼ �2:0� Gð�HAÞGð ÞGð�ÞGð�Þ ð1Þ

where GðxÞ ¼ exp
�ðx� �Þ2

2�2

� �

The value �2.0 defines the strength of an optimal
hydrogen bond in units of kcal/mol. The geometric
parameters dHA, c, f are as shown in Figure 1 of
Kortemme et al. (59): dHA—distance from H (hydrogen)
atom to A (acceptor) atom; c—angle made by H, A and
AA (acceptor antecedent) atoms; f—angle made by D
(hydrogen donor), H and A atoms. The p parameter is
used only for nitrogen acceptor atoms in DNA bases and
describes the smallest acute angle made a line drawn
between the nitrogen acceptor and the donor hydrogen
atoms and the plane defined by the nucleobase atoms.
Parameters used for G(dHA) were m¼ 1.95 Å and
s¼ 0.25 Å; above 2.45 Å G(dHA) was set to 0 (upper
cutoff), and below 1.95 Å was set to 1, to account for
rotamer sampling error (i.e. close approach). Parameters
used for G(c) were m¼ 1208 and s¼ 208, with a lower
cutoff of 808. Parameters used for G(f) were m¼ 1808 and
s¼ 308, with a lower cutoff of 1008. Parameters used for
G(p) were m¼ 08 and s¼ 408, with an upper cutoff of 908.

Solvent screening was described with a sigmoidal
distance-dependent dielectric function (dielectric permit-
tivity ranging from 2.0 to 78.3 with a slope of 0.4), and
salt effects were approximated by reducing the charge
on the phosphate groups to �0.5 e (41,60,61). During the
rotamer prediction stage of the iterative procedure,
a VDW-softening scheme was used where atom pairs
with an interatomic distance between 0.9*Rmin and
1.0*Rmin (Rmin is the distance at which the VDW function
is a minimum), had the inter-atomic distance reset to Rmin;
this distance re-scaling was similarly applied to the
coulomb energy term. This VDW-softening scheme was
not used in the energy minimization step that yielded the
final predicted complex geometry, or when computing a
relative binding energy for the complex. The geometry-
dependent hydrogen-bond term was not used during the
final minimization of each complex, as it was not
implemented in TINKER, but was used when computing
relative binding energies. The interface modeling software
is freely available at the Honig lab website.

DNA–nucleotide rotamers

The DNA–nucleotide rotamer library consists of a set of
nucleotide conformations that are generated at runtime by
locally sampling around the nucleotide conformations
present in the template structure. The nucleotide con-
formations (rotamers) are generated by applying the
wriggling procedure described by Cahill et al. (62) to four
of the six endocyclic DNA backbone torsion angles:
x(i� 1) {C3*-O3*-P-O5*; C3* and O3* from 50 nucleo-
tide}; a{O3*-P-O5*-C5*; O3* from 50 nucleotide};
b {P-O5*-C5*-C4*}; g {O5*-C5*-C4*-C3*}. The wriggling
algorithm defines angle perturbations for each
dihedral angle so as to keep the overall structural

perturbation local. Angle perturbations were between
�0.05 and 0.05 radians and conformations were selected
every 150 iterations. The wriggling procedure breaks the
backbone chain between the O3* atom and the P atom of
the 30 nucleotide which is then closed with a short energy
minimization that allows only the nucleotide being
sampled to move. While the endocyclic torsion angles d
and e, and the glycosidic torsion angle (w), are not
explicitly altered, they are perturbed during the chain-
closure minimization procedure and are therefore also
locally sampled.
The identity of the rotamers can be changed prior to the

wriggling procedure by introducing a new planar base
moiety and setting the glycosidic angle to that of the
template nucleotide. The choice of dihedral angles for the
wriggling procedure leaves the phosphate atom positions
fixed for each set of rotamers. These phosphate atoms are
also held fixed during the chain-closure procedure. Fifty
nucleotide rotamers were used in the prediction of each
modeled nucleotide. This procedure generates a small
ensemble of nucleotide rotamers with conformations close
to the template conformation.

RESULTS

Variations in docking geometry

All-on-all alignment of the 93 ZF-DNA interfaces
(Figure 1) reveals a range of IAS values from 10 to
below 5. As will be discussed below, this corresponds to a
fairly wide, and functionally significant, range of docking
geometries. IAS values were calculated using the amino
acid and base residues represented by the solid-shaded
region of Figure 2 and were normalized to range from
10 to 0 (Materials and Methods). The (m,n) and (n,m)
entries in Figure 1 correspond to the IAS values between
ZF domains m and n. Scores below 5.0 are shown in white.
Zif268 and Zif268-derived ZF domains (Table 1)
are listed first according to their relation to the three
Zif268 domains ZF1-ZF3. For these three Zif268
groups the ZF domain from the high-resolution, wild-type
Zif268 structure (hrZif268) (54) is listed first and
subsequent domains are organized by decreasing
IAS value with this domain. Domains from non-
Zif268-derived complexes are listed by protein with the
most N-terminal domain listed first. For example, for
‘Designed (1g2*)’ domains (1g2d and 1g2f, chains C and
F) all ZF1 domains comes first, followed by ZF2 and ZF3
domains.
To illustrate the relationship between the IAS measure

of docking geometry similarity and a common structural
measure such as RMSD we performed a DNA-based
structural superimposition of five ZF domains with the
hrZif268 ZF2 domain and relate the RMSD of the
superimposed ZF helix atoms with corresponding IAS
values (see Materials and Methods). Structural super-
imposition of ZF complexes was performed by minimizing
the RMSD between the DNA sugar–phosphate backbone
atoms from the three nucleotide pairs nearest each ZF
(i.e. nucleotides 4–6, 40–60 for ZF2 in Figure 2).
This superimposition allows a structural comparison of
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the ZF docking geometry from a common DNA frame of
reference. Table 2 lists the pair-wise IAS values, the
backbone RMSD of superimposed ZF helices and the
RMSD of the DNA sugar-phosphate atoms used for the
DNA-based superimposition. An inverse relationship is
observed with decreasing IAS values corresponding to
increasing RMSD values of both the helix and DNA
backbone. The highest IAS value of 9.2, between hrZif268
and ZF2 from 1zaa, corresponds to very low RMSDs of
0.2 Å and 0.3 Å for the superimposed helices and DNA
backbones respectively. When the IAS value is 7.8
(1f2i chain J) the helix RMSD is 1.8 Å. Because the IAS
is sensitive to deviations in the protein orientation relative
to the DNA, as well as structural differences in the DNA
bases themselves (i.e. roll, twist, tilt), the IAS differences
are not fully captured by either RMSD measures alone.
Figure 3 shows ZF helices from three of the five structures
(1zaa, 1llm, 1f2i chain K) superimposed with hrZif268
ZF2 helix to further illustrate the degree and nature of
docking variation exhibited by different ZF domains and
characterized by the corresponding IAS values.
High IAS scores within the three Zif268 groups in

Figure 1 indicate that many of the ZF domains exhibit a
conserved docking geometry. However, docking-geometry
variation is clearly evident within the three groups,
particularly for Zif268 ZF1. Within each group, ZF
domains that have an IAS greater than 9.0 with the
domain from the hrZif268 structure will be referred to as
exhibiting a wild-type docking geometry. Pair-wise com-
parisons between wild-type-docking Zif268 domains
are enclosed by the heavy dashed line. In all three
Zif268 groups, domains from proteins involved in dimeric
complexes (see Table 1) exhibit non-wild-type docking.
The designed Zif–GCN4 complex (1llm) has two ZF
domains linked to a helical region derived from GCN4;
dimerization occurs via a leucine-zipper interface between
the two GCN4-type helices. The modified Zif268 protein
(1f2i) has an N-terminal peptide extension that makes
contact with a hydrophobic patch on the neighboring ZF
domain and mediates dimerization. While not strictly
a dimer, the two tandemly bound ZF proteins, 1p47
chains A and B, do interact with each other and we
observe that the three ZF domains from chain B are all

bound in a non-wild-type fashion. The ZF1 cluster also
contains many sequence variants where either the DNA or
the protein sequences have been mutated (Table 1: 1a1*,
1jk*; Supplementary Figure S1). With the exception of
1jk1, these domains also exhibit non-wild-type docking.
Thus, interactions between apposing ZF proteins and
sequence mutations within a ZF complex (protein or
DNA) can both alter the docking geometry.

The majority of interface alignments between different
ZF domains both from the same protein and from
different proteins have IAS values below 5.0 (white
space). This suggests considerable docking variation
within the C2H2 ZF family. It is of interest, however,
that docking similarities are observed between different
ZF domains both within the same ZF proteins and from
different ZF proteins (e.g. Figure 1, regions A, B and C);
these similarities are discussed in more detail below.
In the following section, we investigate the effect that the
observed variation in ZF docking geometry can have on
TF-binding-specificity predictions.

Effects of template-docking geometry on prediction of
binding-specificity

Binding-specificity predictions were performed for the
ZF2 domain from Zif268 using different templates as a
basis for the predictions. For each template, IAS values

Figure 3. DNA-based structural superimposition of four ZF helices.
Worm representation of ZF helix residues (canonical numbering 1–11)
are shown for four ZF2 domains: two wild-type Zif268 proteins, 1aay/
hrZif268 (gray) and 1zaa (red); and two modified Zif268 proteins, 1llm
chain C (yellow) and 1f2i chain K (blue). Colors correspond to IAS
color scale used in Figure 1. DNA sugar-phosphate heavy atoms used
for the structural superimposition are shown in stick form. IAS values
for comparisons of hrZif268 ZF2 (gray) with the three other ZF
domains are shown and colored accordingly.

Table 2. IAS and RMSD measures of docking similarity between

hrZif268 ZF2 and five ZF domains

PDB codea IASb RMSD ZF helixc RMSD DNAd

1zaa_C2 9.2 0.2 0.3
1llm_C2 8.6 1.2 0.6
1f2i_J2 7.8 1.8 0.7
1f2i_K2 5.4 2.4 0.9
1g2d_C1 1.6 1.9 1.1

aPDB identifier, chain ID and ZF domain number as in Table 1.
bIAS values from an alignment with 1aay, chain A, ZF2 domain
(1aay_A2).
cRMSD of ZF helix atoms after a DNA-based superimposition of
each complex with 1aay_A2.
dRMSD of the DNA sugar-phosphate backbone atoms used to perform
the DNA-based structural superimposition.
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obtained from an interface alignment with the Zif268 ZF2
(hrZif268) complex were calculated. The scores
were derived from all amino-acid–base pairs within the
‘binding interface’ defined in Figure 2 (solid-shaded
region). Prediction accuracy was determined by compar-
ing predictions to the results of Bulyk et al. (51) who used
a protein-binding microarray technology to determine
binding affinities between Zif268 (ZF1-ZF3) and all sixty-
four GCGNNNGCG sequence variants of the Zif268
consensus-binding site shown in Figure 2. Since the three
central bases are recognized by the ZF2 domain, the
affinity measurements provide a comprehensive data set
against which ZF2 binding-specificity predictions can be
compared (Table 3).

IAS values (IASZif268) were calculated between all
ninety-three template structures and the ZF2 domain
from the hrZif268 structure. Based on the IAS values,
twenty-three ZF domains (including hrZif268 ZF2 itself)
spanning a range of IAS values were chosen as templates
for the prediction of nucleotide sequences that preferen-
tially bind to Zif268 ZF2. For each template, we generated
sixty-four models of a complex between the modeled
structure of Zif268 ZF2 and DNA, each corresponding to
a different tri-nucleotide sequence at nucleotide positions
orthologous to 4–6 (40–60) in Figure 2. For each template,
amino acids at the canonical positions �1, 2, 3 and 6 were
changed to Arg, Asp, His and Arg, respectively, so as to
correspond with those present in the Zif268 ZF2 domain.
Nucleotides as positions 3 and 7 in Figure 2 that flank the
tri-nucleotide sequence were built as Gua to better agree
with the GCGNNNGCG consensus sequence. Finally, for
templates with an adjacent C-terminal ZF domain, the
amino acids at the canonical �1 and 2 positions were built
as Arg and Asp, respectively, to correspond with the
Zif268 ZF3 domain. Previously it had been suggested that
the Asp(2) residue of Zif268 ZF3 domain might contribute
to the selectivity of nucleotides at the 40 position (Figure 2)
(54). However, our predictions were largely insensitive to
the treatment of these additional residues and their
inclusion did not appreciably affect the results
(data not shown).

For each of the sixty-four complexes generated per
template, side-chain and base conformations were pre-
dicted as discussed in the Materials and Methods section.
Relative binding energies for each of the sixty-four
nucleotide sequences were calculated as the difference
between the energy of the complex and the energy of an
unbound DNA molecule generated by removing the
protein from the complex and then energy minimizing
the DNA structure using the protocol described in the
Materials and Methods section. Protein and DNA
sequence differences outside of the interfacial residues
explicitly being modeled can contribute to the calculated
binding energies and therefore present a potential source
of prediction variability between different template com-
plexes. However, test predictions performed for several
templates in which the energetic contribution from these
non-interfacial residues (protein and DNA) was ignored
did not appreciably affect the predicted relative binding
energies (data not shown).

hrZif268 ZF2 template yields accurate
predictions. Table 3 lists the seven high-affinity
binding sequences identified by Bulyk et al. and the ten
highest-affinity predicted sequences using hrZif268 ZF2 as
the template for itself. As can be seen from the table,
the high-affinity TGG sequence is correctly predicted as

Table 4. Dependence of Zif268 ZF2 binding-specificity predictions on

template docking geometry

PDB codea IASZif268
b Topseq

c Toprank
d Top 3e Top 6e Top 7e

1aay_A2
(hrZif268)

10.0 TGG 1 3 7 8

1jk1_A2 10.0 TGG 1 3 7 59
1p47_A2 10.0 TGG 1 3 8 55
1a1k_A2 9.9 TGG 1 4 7 9
1a1l_A2 9.9 TGG 1 3 7 12
1a1f_A2 9.5 TGG 1 3 9 13
1a1i_A2 9.5 TGG 1 6 7 16
1zaa_C2 9.2 TGG 1 4 8 9
1p47_B2 8.6 AAG 3 8 9 19
1llm_C2 8.6 AGG 2 6 15 18
1f2i_J2 7.8 GGG 4 7 7 12
1f2i_H2 7.3 GGG 10 21 14 21
1f2i_L2 6.8 GGG 9 16 16 21
1f2i_G2 5.5 AGG 4 7 7 11
1f2i_K2 5.4 GGG 4 6 6 16
1f2i_K1 4.5 GAT 18 18 32 52
1jk1_A1 4.0 GGA 8 11 11 57
1p47_B1 3.3 GAG 25 25 33 40
1aay_A3 3.0 AAG 4 9 9 16
1aay_A1 2.7 GAT 8 8 22 27
1g2f_F2 2.1 GGG 14 31 31 57
1g2f_C2 1.9 TGG 1 33 32 33
1g2d_C1 1.6 GGG 13 30 47 57

aPDB identifier, chain ID and ZF domain number as in Table 1.
bIAS value between each template and 1aay_A2 (hrZif268 ZF2).
cTop predicted sequence NNN (i.e. GCGNNNGCG).
dPredicted rank of the consensus TGG (i.e. GCGTGGGCG) sequence.
eIndicate how far down the list of ranked predicted sequences you need
to go to include the top N binding sequences determined by Bulyk et al.
(51). For example, a 7 in the top 6 column indicates that the 6 highest-
affinity experimentally determined sequences are present within the top
7 predicted sequences.

Table 3. Highest affinity GCGNNNGCG sequences bound by Zif268

Experimenta Exp. rel.�Gb Predictionc Calc. rel.�Gd

TGG 0.0 TGG 0.0
TAG 0.5 GGG 3.6
GGG 1.3 TAG 4.0
CGG 1.5 CGG 6.6
AGG 1.7 GAG 8.4
TTG 1.9 TGA 8.6
GAG 1.9 TTG 9.7

AGG 10.5
GGA 12.3
CAG 12.8

aNNN base triplet identities from the seven highest-affinity
GCGNNNGCG sequences identified by Bulyk et al. (51).
bMeasured relative binding free energies (kT) of each sequence for
Zif268 (51).
cHighest affinity predicted sequences listed according to calculated
relative binding energies. hrZF268 was used as template structure for
all predictions.
dCalculated relative binding affinities (kT) for each predicted sequence.
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the strongest binder, the TGG, TAG, and GGG sequences
are correctly identified as the three highest-affinity
sequences, and all seven of the highest-affinity experimen-
tally determined binding sequences are present in the top-
eight predicted sequences. Noteworthy is the correct
prediction of the TTG sequence as a high-affinity
sequence. In the complex modeled with the TTG
sequence, the His(3) side-chain adopts a conformation
considerably different from those predicted for all other
sequences. His(3) rotates out of the major groove and
forms a hydrogen bond with a DNA-backbone phosphate
group (Figure 4). Predicting this alternate side-chain
conformation is required to correctly identify the TTG
sequence as a high-affinity site demonstrating both the
importance of allowing side-chain flexibility in the
modeling process and that a template structure can
be used to effectively model bound complexes where the
side-chain conformations are different than those in the
original template. The striking agreement of the high-
affinity predicted sequences with all seven high-affinity
sequences demonstrates that our atomic-level modeling
approach can yield highly accurate predictions given an
appropriate template structure. Furthermore, it suggests
that the docking geometry of the hrZif268 ZF2 template
bound to the TGG sequence is a reasonable representation
of the docking geometry when bound to the alternate
high-affinity sequences.
We found that the use of the geometry-dependent

hydrogen bond improved the accuracy of the binding-
specificity predictions. In the case of the Zif268 ZF2
domain discussed here, we found that not including the
hydrogen bonding term did not greatly affect predictions

when the 1.6 Å Zif268 structure (1aay) was used as
a template. However, when the 2.1 Å Zif268 structure
(1zaa) was used TGG was no longer predicted to be
the top sequence, and recovery of the top 3 and top 7
experimental sequences (Table 4, columns 5 and 7)
changed from 4 and 9, to 5 and 12, respectively. Thus,
the constraints imposed by requiring that good hydrogen
bonds be formed appear to reduce inaccuracies due to
errors in the structures that are used.

Allowing some flexibility in the DNA structure by using
DNA rotamers rather than requiring that all the bases be
co-planar with the bases of the original template also
improved prediction accuracy. For example, when the
modeled bases were assumed to be co-planar with those
in the 1.6 Å Zif268 template structure (1aay), the AGG
sequence (see Table 3) was no longer ranked in the top
eight. When the same assumption was applied to the
2.16 Å Zif268 template (1zaa) the effects were even larger;
TGG was no longer ranked number 1 and recovery of the
top 3 and top 7 experimental sequences (Table 4, columns
5 and 7) changed from 4 and 9, to 9 and 20, respectively.
Our results clearly illustrate the importance of allowing
maximum flexibility for both the DNA and the protein
side-chains, thus allowing for the energetic optimization
the interface that is formed between the two
macromolecules.

Relating prediction accuracy to IASZif268 scores. Table 4
lists the binding-site predictions for Zif268 obtained from
each of the 23 templates. The templates are ordered
according to their IASZif268 scores. For each template, we
report the top nucleotide sequence that is predicted and,
in addition, the number of nucleotide sequences that must
be predicted in order to recover the top 1, top 3, top 6 or
top 7 experimentally determined sequences, respectively.
Thus for example, using hrZif268 ZF2 as a template
(top row of Table 4), the top experimental sequence
(TGG) is recovered as the one with the best score, the
top 3 experimental sequences are included in the top 3
predicted sequences, 7 predicted sequences are required
to recover the top 6 measured sequences, and 8 predicted
sequence are required to recover the top 7 experimental
sequences.

As can be seen in the table, TGG is correctly predicted
as the highest-ranking sequence using all templates with
IASZif268 scores above 9.0, while only one template
(1g2f_C2) with a score below 9.0 identified TGG as
the top sequence. However in the 1g2f_C2 template, the
predicted side-chain base contacts for the complex
modeled with the TGG sequence were different from
those observed in the hrZif268 ZF2 complex so that the
agreement is likely to be fortuitous. Consistent recovery
of the top 3 and top 6 experimental sequences within the
top 6 and 10 predicted sequences, respectively, is observed
for templates with IASZif268 scores 9.0 and above.
Accurate recovery of all top 7 sequences appears more
problematic and this appears to be primarily due to poor
prediction of the TTG sequence; however, reasonable
recovery within the top 16 predicted sequences is observed
for most templates with IASZif268 scores above 9.0.
These results demonstrate that templates with docking

Figure 4. Native and predicted His(3) side-chain conformations. Side-
chain conformations for the His residue at canonical ZF position 3 are
shown from hrZif268 ZF2 (1aay His149; white), and from the
complexes modeled with the TGG sequence (red) and TTG sequence
(brown) using hrZif268 ZF2 as a template. DNA bases are shown in
CPK coloring and correspond to the modeled TG (TGG) and TT
(TTG) bases. Residue numbering as in Figure 1.
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geometries more closely resembling the hrZif268
ZF2 structure yield consistently more accurate results.
Finally, it is worth noting that the hrZif268 ZF2 template
itself resulted in the most accurate predictions, demon-
strating that the high-resolution structure of the Zif268
ZF2 domain does in fact provide the best template
geometry.

In order to gain another perspective on the relationship
between IAS score and prediction accuracy, we organized
the templates into five groups and, for each, the three
highest-affinity predicted sequences from each template
were submitted together to WebLogo (63,64) to generate
a DNA sequence logo representing the binding-specificity
predicted using that group of templates. Groups one
through three (Figure 5B–D) were defined based on their
IASZif268 values and consists of the ZF2 domain templates
from Zif268 and Zif268-derived proteins (Table 1). Group
four (Figure 5E) consists of the four ZF1 domains from
Zif268-derived proteins. Group five (Figure 5F) consists
of the two ZF2 domains from the designed TATA-binding
ZF 1g2f.

As can be seen from Figure 5, the predicted specificity
for the first group of templates (Figure 5B; 9.05IASZif268)
is in excellent agreement with experiment (Figure 5A).
Slightly poorer agreement is exhibited for the second
template group (Figure 5C; 8.05IASZif26859.0); how-
ever, there were only two templates in this group, so the
statistics are not good. For the third group of templates
(Figure 5D; 5.05IASZif26858.0), there is excellent agree-
ment with the experimental logo at base positions 2 and 3;
however, we observe no selectivity for thymine at base
position 1 (i.e. Thy(4) in the canonical ZF2 numbering
scheme, Figure 2). This group of templates consists of five
ZF2 domains from different chains of the 1f2i complex
(Table 1). The intermediate IASZif268 values for these
templates are almost entirely due to an altered geometric
relationship between helix position 6 and the bases
at position 1. The Thr side-chain modeled at position 6
interacts both with the base at position 1 as well as the
His(3) side-chain, which in the hrZif268 complex makes
strong van der Waals interactions with a Thy at base
position 1. This altered template geometry results in
higher relative binding energies when a Thy base is present
at position 1, as compared to predictions using the
hrZif268 template, which result in a reduced selectivity
for Thy at this position. For template groups four and
five (Figure 5E and F; ASZif26855.0), we observe poor
agreement with the experimental logo and qualitatively
different specificity predictions at most base positions.
These incorrect predictions are the result of incorrect side-
chain predictions resulting from the use of an incorrect
docking geometry.

Factors that affect docking geometry

The preceding results demonstrate that IASZif268 values
correlate well with prediction accuracy. This suggests
that the IAS calculated between two ZF domains provides
a good indicator of whether one structure can be used as
a template to model the binding specificity of the other.
Perhaps the most striking feature of the pair-wise docking

comparisons in Figure 1 is the low-docking similarity
between most ZF domains indicated by the large number
of IAS scores below 5.0 (shown in white). Indeed as
discussed above, there is even considerable variation in
docking geometry within Zif268 groups. These results
suggest that the majority of ZF domains would not
provide good template structures for modeling the binding
specificity of different ZF domains. For example, if based
on Table 4 and Figure 5B we use an IAS cutoff score of
9.0 to define an appropriate template, only the Zif268
ZF1 and ZF3 domains would be sufficiently similar to
effectively model one another (IAS values above 9 in
Figure 1 region A). Furthermore, at an IAS cutoff of 9,
many pairs of ZF domains within the large Zif268 groups
are not similar enough in docking geometry to provide
accurate specificity predictions. How then does one know
in advance whether a known structure can be used as a

Figure 5. Predicted and experimental binding-specificity logos for
the three-base-pair sequence recognized by the Zif268 ZF2 domain.
(A) Logo generated from the three highest-affinity experimental
sequences (51) (B) to (F) Logos generated for the five template
groups using the three highest-affinity predicted sequences from each
template within the group. The range of template IASZif268 scores for
each group is shown. Logos were generated using the WebLogo (64).
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template for the prediction of the binding specificity for
a protein of unknown structure?
In the case of Zif268 groups, we have identified two

factors that affect docking geometry. First, dimerization
appears to induce deviations from the wild-type docking
geometry. For example, with the exception of ZF2 from
1llm chain D, all ZF domains in the dimeric ZF protein
structures 1f2i and 1llm exhibit non-wild-type docking
(Figure 1, Supplementary Figure S1). Perhaps surpris-
ingly, dimerization affects not only the ZF domains that
participate in the dimer interface but the ZF domains
which are adjacent to the interacting domains are also
bound in a non-wild-type manner. Wolfe et al. (65) noted
that the DNA molecules in the 1llm and 1f2i complexes
were not as significantly under-wound as in the wild-type
Zif268 complex, which would explain why all ZF domains
were affected. The three ZF domains from chain B of the
1p47 tandem dimer complex (Table 1) similarly exhibit
non-wild-type docking. The observation that only ZF
domains from chain B were affected may be an example
of asymmetric binding of homodimeric protein–DNA
complexes (29), where monomers are observed to bind in
similar but different conformations.
Docking geometries can also be affected by specific

hydrogen-bond interactions. In the wild-type Zif268 ZF3
structure, the Arg(�1) side-chain makes two bidentate
hydrogen-bond interactions: one with the Gua(3) base and
one with the Asp(2) side-chain (numbering as in Figure 2).
The Arg(�1):Asp(2) interaction is believed to help orient
the Arg sidechain so as to interact favorably with Gua(3)
(39). A further bidentate hydrogen bond is made between
the Arg(6) and Gua(1) residues. Despite the considerable
variability in docking geometry for different ZF domains,
in some cases high IAS values were observed between
different ZF domains both from within a single protein
and from different proteins. The three highest scoring such
similarities (Figure 1; regions A, B and C) correlated with
the presence of this set of three bidendate hydrogen-
binding interactions. Region A identifies the high IAS
values between the wild-type-docking Zif268 ZF1 and
ZF3 domains. Regions B and C identify the strong
similarity between the wild-type-docking Zif268 ZF1 and
ZF3 domains, and the ZF3 domain from 1mey. Apart
from the Zif268 ZF1 and ZF3 domains, 1mey ZF3
domains are the only other ZF domains with Arg residues
at both canonical position—1 and 6 that make bidentate
interactions with each Gua base of a GXG base triplet
(Figure S1, RDHR:GAG).
We suggest that the high pair-wise IAS values observed

in regions A, B and C are a result of a common docking
geometry required to correctly form the set of three,
stereo-specific, bidentate hydrogen bonds. This is sup-
ported by the observation that mutations that disrupt one
of these bidentate interactions perturb the ZF docking
geometry. Eight of nine ZF1 domains in the Zif268
ZF1 group (seven 1a1* complexes; 1jk2 complex; Table 1
and Supplementary Figure S1) that have mutations that
change at least one of Arg(�1), Asp(2) or Gua(3) exhibit
a non-wild-type docking geometry. Interestingly, in
contrast to the effect of dimerization discussed previously,
the altered docking geometry of these ZF1 domains does

not appear to affect the neighboring ZF domains which all
dock to the DNA in a wild-type fashion.

DISCUSSION

The increasing number of protein–DNA complexes whose
three-dimensional structures are available offers the
possibility of using structural information to identify
CREs selected by a particular TF. A number of workers
have already shown that it is possible to reproduce known
specificity patterns, i.e. in the form of PWMs or top-
ranked sequences, starting with the structure of a known
complex and changing the identity of bases in the interface
(30,32,33,35,41,42). The results shown in Table 3 confirm
that three-dimensional structures can be used as a basis
for calculating the DNA-binding specificity of TFs.
In addition, they extend previous studies in the sense
that the calculations are successful in identifying a series
of high-affinity binding sequences. Paillard et al. (31) also
reported good agreement with the high-affinity sequences
identified by Bulyk et al. (51); however the TTG sequence
was not identified, perhaps due to the fact that they
did not account for alternate side-chain conformations.
Endres et al. (32) predicted a PWM for the full-length
Zif268 protein in excellent agreement with experimental
data; however, a detailed comparison with the Bulyk et al.
data (i.e. the ranking of the seven top sequences
from Table 3) was not carried out. TGG was correctly
identified as the highest-affinity site by Havranek et al.
(33) using an atomic-level modeling approach and by
Liu et al. (30) using a knowledge-based potential.
However, Havranek et al. did not report results for
other than the top-scoring sequence while of the high-
affinity sequences reported by Liu et al. only TTG
matched one of the top seven from Table 3. The close
agreement we report here between our top predictions and
all seven of the top experimentally determined sequences
illustrates that an all-atom modeling approach that
incorporates side-chain flexibility can yield predictions
in excellent agreement with experiment for a series of high-
affinity sequences. The importance of accounting for
side-chain flexibility is demonstrated by the fact that the
identification of the high-affinity TTG sequence (Table 3)
required the prediction that His(3) rotates out of the
major groove (Figure 4).

The applicability of structure-based predictions would
be dramatically enhanced if a particular structure
could be used as a template for specificity predictions on
a much larger set of structural homologs. That is, given
a structure for one member of a TF family it would be of
great value to be able to predict high-affinity binding
sequences to other family members. Recent articles by
Morozov et al. (42) and Contreras-Moreira and Collado-
Vides (35) have attacked this problem using all-atom
modeling and knowledge-based approaches, respectively,
to predict PWMs using structural homologs as templates.
Although some results were in good agreement with
experimentally determined PWMs, this was not uniformly
the case. Both groups discuss the need to choose an
appropriate template structure to achieve accurate results
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and propose the use of interfacial-residue sequence
identify as a guide in selecting an appropriate template.
Contreras-Moreira and Collado-Vides introduce two
RSMD-based measures of interface similarity between
structurally superimposed template complexes (one for
protein and one for DNA) and demonstrate a strong
correlation between protein-sequence identity and their
similarity measures. However, we have seen here that
sequence identity does not in itself guarantee strong
similarity in docking geometry since effects such as
domain–domain dimerization can effect this geometry,
even for identical sequences.

In this article, we have carried out a systematic study of
the effect of docking geometry on the accuracy of binding-
specificity predictions. Our recently developed interface
alignment score (IAS) (48) is used as a measure of the
similarity in the docking geometry of different protein–
DNA complexes. Binding-specificity predictions for the
Zif268 ZF2 domain showed excellent agreement with
experiment when the protein–DNA interface was very
similar (9.05IASZif268) to that seen in the high-resolution
wild-type structure (Table 3 and 4, Figure 5). The most
accurate predictions, highlighted in Table 3, were achieved
when the hrZif268 ZF2 structure was used as the template
for itself. As can be seen in Table 4, the accuracy of
TF-binding-site predictions is extremely sensitive to the
docking geometry of the template that is used. The good
results obtained when templates with near wild-type
geometries were used begin to degrade with IASZif268
scores below �9.0, and below a score of 5.0 the
predictions are incorrect (Table 4, Figure 5). A pair-wise
IAS value above 9.0 appears to provide a reasonably high-
confidence prediction that two structures will result in
similar binding-specificity predictions.

Based on the results of Figure 1 which show that the
majority of pairs of ZF domains have IAS values below
5.0. It appears that many ZF domains could not be used
as templates to model the binding specificity of another
domain. This problem is likely to be quite general and
indeed we have seen in our previous study that there
are often significant variations in docking geometry
within a protein family (48). In some cases, as has been
suggested previously (35,42), it may be possible to select
an appropriate template structure by maximizing sequence
identity over the interfacial amino acids. Our observations
that a common set of Arg-Gua and Asp-Arg bidentate
hydrogen-bond interactions correlated with high-docking
similarity suggests that conserved stereo-specific
hydrogen-bond interactions, might be particularly infor-
mative for template selection. More generally, structural
and computational studies of individual protein families
aimed at understanding the sequence determinants of
docking geometry variations would be of particular value.

An alternate approach is to move beyond the docking
geometries provided by existing template complexes.
One potential strategy is to start with a bound complex
and to sample docking space by altering the DNA
conformation while keeping the protein backbone fixed.
In this work, we applied the local conformational
sampling wriggling algorithm (61) to the DNA backbone
(keeping the phosphate atoms fixed) to produce small

variations in the DNA–nucleotide positions so as to
facilitate the search for optimal side-chain–base inter-
actions (Materials and Methods). Extending this local
sampling approach to include all endocyclic torsion
angles and sugar-pucker conformations would provide
a means to locally sample docking geometry around a
given template structure. A recent article by Rohs et al.
(66) introducing a promising new Monte Carlo sampling
algorithm which can efficiently and accurately simulate
DNA conformations provides another promising
approach. Recent progress in protein–DNA docking
that incorporates DNA flexibility offers an alternate
approach by generating templates de novo (67), and
could be used in conjunction with local DNA sampling
to further sample docking space. Approaches such as these
could alleviate any inherent limitations due to the docking
geometries of available template structures. We note
that our interface alignment algorithm would provide a
particularly useful method for analyzing the sampling
characteristics of these algorithms and could be used to
characterize both the degree of docking geometry sampled
and how these docking geometries relate to those of
known structures.
The phenomenon that different members within a

protein family exhibit variation in their docking geome-
tries is not restricted to the C2H2 ZF proteins. Previously,
we performed a pair-wise comparison of the docking
geometry for the Homeodomain recognition helices (48)
and similarly found that many comparisons had IAS
values below 9.0. Indeed, it is likely that docking
variation, at the level described here as functionally
relevant for atomic-level modeling, will be a characteristic
of many other protein families as well. Therefore, future
approaches that address template-docking variation, such
as refined template selection or relaxing the rigid-template
approach and sampling docking space, will allow us to
more effectively use the available template structures to
predict binding specificity of whole TF families. This, in
turn, will provide an invaluable tool for addressing the
current paucity of TF-binding-specificity data.
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