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Abstract: A lightweight on-device liquid consumption estimation system involving an energy-aware
machine learning algorithm is developed in this work. This system consists of two separate on-device
neural network models that carry out liquid consumption estimation with the result of two tasks: the
detection of sip from gestures with which the bottle is handled by its user and the detection of first
sips after a bottle refill. This predictive volume estimation framework incorporates a self-correction
mechanism that can minimize the error after each bottle fill-up cycle, which makes the system robust
to errors from the sip classification module. In this paper, a detailed characterization of sip detection
is performed to understand the accuracy-complexity tradeoffs by developing and implementing
a variety of different ML models with varying complexities. The maximum energy consumed by
the entire framework is around 119 mJ during a maximum computation time of 300 µs. The energy
consumption and computation times of the proposed framework is suitable for implementation in
low-power embedded hardware that can be incorporated in consumer grade water bottles.

Keywords: drink volume estimation; sip detection; embedded machine learning; on-device classification;
neural networks; TinyML

1. Introduction

Ample hydration is a key to healthy living for people of all age groups. Inadequate
water consumption can lead to a variety of health issues that include urinary tract infection,
kidney failure, sticky mouth, headache, dizziness, electrolyte imbalance, tissue shrinkage,
sunken eyes, and many more [1]. Severe lack of water intake can also affect the heat
dissipation of the human body, resulting in feverish conditions. The effects of dehydration
can be particularly adverse for the elderly population. These underscore the importance of
appropriate hydration for a healthy lifestyle.

Many automated hydration-tracking and reminding technologies have emerged to
improve individuals’ fluid consumption habits. These hydration-tracking systems can
be categorized into wearable and non-wearable devices. The wearable devices mainly
include wrist band-based systems [2] that monitor the fluid intake based on the wrist
motion. The wrist band-based devices require an individual to always wear such a device
and restricting the person to hold the water bottle/cup with the hand on which the device
is worn. There are several fabric-based wearable devices to track different drinking and
eating activities of a person [3]. Some prominent non-wearable approaches include the use
of smart bottles [4]. These smart bottles can sense liquid level, bottle weight, and other
parameters for estimating liquid consumption. However, there are reliability and durability
issues since the level sensors require exposure in liquid for an extended period. There is
also involvement of image-based approaches that measures liquid intake by analyzing
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bottle-tilt from phone-captured video, which is not user-friendly, as it also brings a threat
to the user’s privacy by accessing a camera [5].

A common component across all these approaches is that on-bottle or on-cup (i.e.,
on-device) sensors are used for data collection during the drinking process. These data
are then transferred through a wireless link to a connected phone or cloud-based entity
for liquid consumption estimation. This approach enjoys the availability of ample off-
device computing and memory resources, which are beneficial for complex detection
and estimation tasks having a true positive rate for detecting a sip of around 98% [6].
However, it suffers from shortcomings such as heavy communication energy overhead and
privacy concerns.

In this paper, we propose an on-device liquid consumption estimation framework. Two
separate neural network models decide whether the data collected from an accelerometer
are sips or not, and whether a sip in question is a first sip after a bottle is refilled, thus
estimating the volume of fluid intake. The involvement of pre-trained and person non-
specific neural networks ensures better data privacy since the no runtime user data are
transferred to and from the device.

Based on this information, the consumed volume of liquid intake is estimated. An
overarching goal in this approach is to avoid any raw data upload from a smart bottle to
a phone or any other device. The final consumption estimation can be displayed on an
on-bottle display. By doing away with any wireless link, the convenience and privacy of
smart bottle users is improved.

The real-time estimation of the volume of consumed fluid is performed using a post-
sip-detection unit. The volume estimation module detects the first sip intake after each
bottle refill using a pre-trained neural network. The network uses information on maximum
bottle inclination during a sip. From the detected first-sips and the known bottle volume, the
system estimates cumulative volume of drink consumption using a self-correcting algorithm.

This work has the following scope and contributions. First, it develops low-complexity
ML models for both sip detection and volume estimation tasks that are specifically opti-
mized for embedded on-device implementations. This embedded setup overcomes the
limited processing and memory resources together with energy constraints. Second, a de-
tailed characterization of sip detection is performed to understand the accuracy–complexity
tradeoffs by developing and implementing a variety of different ML models with varying
complexities. Third, a predictive algorithm for consumed volume estimation is developed
and implemented for its accuracy characterization. All these experiments are performed on
a smart bottle created by integrating an embedded processor system on a regular grade
water bottle.

2. Related Work

Embedded machine learning (ML) has been explored in many real-world applications,
such as smart watches, sensors, hearing aids, etc. Most of the generic ML algorithms are
computationally complex, thus leading to high power consumption and making them
inapplicable for embedded applications with limited energy and memory budgets.

There are several papers such as [7] that aim at increasing embedded ML algorithm
efficiency in terms of computational time and energy consumption by the means of an ML
accelerator via decomposition of the most dominant high-dimensional operations, such as
convolutions, matrix multiplications, and other methods of calculating the weights, into a
series of vector reductions. A key challenge in the design of accelerators is to balance the
tradeoff between efficiency and storage scalability, which by itself can be a challenge for
implementation in embedded devices.

The work reported in [7,8] propose to increase computational efficiency of embedded
ML algorithms by adopting various types of approximations at different levels including
circuit, architecture, and algorithms. It has been observed that in most cases, the accuracy
of the algorithms is heavily sacrificed to make it more efficient in terms of memory footprint
and latency when these approximation methods are implemented.
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The work described in [9] demonstrates on-hardware training of ML algorithm using
customized data structure and computation sequence which relies on a Gaussian mixture
model (GMM) that uses an expectation maximization (EM) algorithm with the minimum
description length (MDL) criterion. This method of onboard training involves storage of
large volumes of data, thus needing high memory usage. Moreover, onboard training
and using the additional feature of the analytics services in [10] result in high power
consumption. In this work, a low complexity machine learning framework suitable for
low-power embedded hardware is utilized.

Fluid intake monitoring has primarily been done as questionnaire-based self-reporting
with indirect estimation [10], which is usually not very accurate since it relies on manual
and subjective inputs from the users. A few automated hydration tracking, and fluid-intake
monitoring systems have recently been developed, which can be broadly classified into
wearables and non-wearables.

Conventionally used wearable devices generally rely on a motion sensor fitted to the
wrist of the subject with a help of a wrist band [2] that detects the motion of the bottle
from the gestures of the wrist and can classify whether the bottle’s movement was that of a
“fetch” or “sip”. The device has an inherent drawback that the person must always wear
the band on the hand by which he/she holds the bottle; the sensor can also record gestures
very similar to that of the sip movements, thus leading to loss of classification accuracy.

Among the non-wearable alternatives, there are systems that use vision-based ap-
proaches involving cameras and computer vision techniques coupled with deep-learning
algorithms to track drinking activities [10] that can result in higher power consumption
and a privacy threat.

There are a few commercial products available including the “Hidrate Spark” bottle
by Apple Inc. [9] that uses a few on-bottle level sensors to monitor fluid intake subject,
which are usually expensive and not long-lasting due to their constant exposure to liquid.

In [11], data are collected by a set of on-device accelerometers, and subsequently
sent to an Android device using a Bluetooth link. Algorithms on the Android device
classify the sips, and finally the consumption volume is estimated from the data collected.
In [12], three IMU sensors were used to collect user gesture data from bottle movements,
and a “temporal partitioning technique” was used to detect drinking windows from the
time-series accelerometer data. Bluetooth-based data uploads in both the approaches are
expensive, which is avoided in the system presented in this paper by running embedded
ML algorithms on a bottle-attached microcontroller, as shown in Figure 1, thus making the
overall system more energy efficient.
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3. System Setup and Functional Overview
3.1. Bottle Instrumentation

The instrumented bottle setup is shown in Figure 1. A self-contained embedded
microcontroller card, Arduino-based Nano 33 BLE Sense [13], is attached to a regular
consumer-grade water bottle using Velcro. A small lithium-poly rechargeable battery is
also provided (i.e., tucked underneath the Nano BLE card) to power the system. Nano
BLE is a 3.3 V AI enabled board with dimensions of 45× 18 mm. It comes with a set of
embedded sensors including a nine-axis inertial sensor with a 120 Hz sampling rate, which
is used extensively for this work. This board also consists of a microcontroller, nRF52840,
from Nordic Semiconductors [14], and a 32-bit ARM Cortex-M4 CPU [15] running at
64 MHz. An ultralow power mode, suitable for embedded machine learning applications
with power constraints, is a striking feature of this board.

For the system presented in this paper, all run-time neural network-based classifica-
tions are done within the Nano BLE card, which is pre-loaded with the NN models for
both sip detection and volume estimation, as presented in Sections 4 and 6. The models are
trained on a PC using TensorFlow, which is then converted to a TensorFlow lite version
and loaded on the Nano 33 BLE board for subsequent on-device classification.

Implementation of maximum energy economy would require a sleep–wake cycle
in which the default state of the system would be sleep, and it would wake up only
when any physical bottle movement is detected. Nano 33 BLE does not have an inbuilt
idle/sleep mode. As a result, maximum energy economy is not implementable with this
hardware. However, the research presented in this paper demonstrates how maximum
energy economy can be achieved during the non-idle state when the actual sip and volume
detection are executed. As a result, the research results from this paper are applicable for
future commercial systems with hardware that supports the default idle/sleep state.

Figure 2 depicts the entire workflow of the proposed system, which includes the
machine-learning-based processing pipeline: data collection, pre-processing, feature engi-
neering, neural-network-based sip classification, and neural-network-based consumption
volume estimation. The processing pipeline is executed in the on-bottle embedded device
from the gestures of the user’s motion while drinking.

3.2. Function Overview for On-Device Sip Detection

The framework proposed in this paper possesses real-time ability to detect a sip, and
subsequently to estimate the consumed volume of fluid from the number of sips and their
specific features. All components of the end-to-end system for the sip detection module are
shown in Figure 3. The embedded device (Nano 33 BLE) is fitted to the bottle in such a way
(as shown in Figure 1) so that the x-axis of the accelerometer is aligned to the vertical axis
of the bottle. To record any tilting gestures performed on the bottle, the x-axis data of the
accelerometer [16], which is a part of the IMU sensors of the embedded device, is recorded.
Since the tilt angle is used as the primary information for sip and volume detection, only
the data from the x-axis of the accelerometer in the IMU sensors are used.

The accelerometer time-series data are first pre-processed in the on-bottle hardware
where the peaks that can depict a possible sip are detected by finding one or more local
maxima points between two consecutive local minima. Such peaks are extracted, nor-
malized within a range of values, and fitted to a fixed length window. Features are then
extracted from those fixed length windows, and subsequently fed into an on-device neural
network (NN) classifier that classifies whether the activity performed on the bottle is a sip
or non-sip. The on-device NN model is pre-trained on a PC and the model weights are
stored on the embedded device’s memory to perform the on-device classification.

We used Google’s TensorFlow [17] to train neural network (NN) models on a PC.
The trained models using the architectures as defined in Section 4.3.2 are first saved on
the PC, and then optimized into a compressed version using TensorFlow Lite [18]. These
compressed versions are optimized for low-power consumption embedded platforms.
TensorFlow Lite models are meant for low-memory and low-processing platforms such
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as the Nano BLE 33 used in our system, which is implemented using the Arduino IDE
platform [19].
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Figure 3. Schematic diagram of the proposed system for on-device sip detection.

4. On-Device Experimental Data Collection, Pre-Processing, and Classification
4.1. Data Collection

To assure that the NN model loaded on the hardware makes accurate predictions, the
data used for training the model incorporate different types of scenarios and activities.
Instances of sip data are shown in Figure 4. Unlike for the sips, non-sip data can belong
to many different subclasses resulting from different gesture scenarios performed on the
bottle. Data were collected for non-sip scenarios including walking on flat ground with the
bottle in hand, walking on stairs with the bottle held in hand, walking on flat ground with
the bottle in a bag, walking on stairs with the bottle in a bag, keeping the bottle stationary
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in a constant position, and keeping the bottle in a constant position in a moving car and
some in-hand fidgeting movements.
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The objective here is to collect data from enough representative scenarios so that the
NN training can be sufficiently general while classifying the non-sips.

For real-time testing, a combination of different activities, both sips and non-sips,
was performed with the instrumented bottle, as shown in Figure 2. All experiments were
performed by different subjects, each having specific signature drinking gestures. The
number of different subjects used for data collection and the size of training and testing
dataset are summarized in Table 1.

Table 1. Training and testing datasets for SIP classification.

Training Dataset

Number of sip episodes 1918

Number of non-sip episodes 1918

Testing Dataset

Number of sip episodes 424

Number of non-sip episodes 1157

4.2. Real-Time Data Pre-Processing

Filtering, Peak Detection, and Extraction: The data pre-processing step begins with
filtering the raw IMU sensor data using the moving average method [20]. For moving
average, a consecutive window of 5 samples is used whose mean is calculated and used
as the new sample. In this way, noise in the raw data is filtered out, which is useful in the
subsequent stages of detecting peaks.

Peak Detection and Extraction: To detect a peak from the filtered data, two consecutive
local minima points less than a threshold height Th are identified. Between those two local
minima, if there exists one or more local maxima, then it is assumed that there exists at
least one peak between those two local minima points. In that case, all the points between
the local minima are extracted.

Peak Normalization and Window Fitting: All the points in the extracted peaks are nor-
malized in the range 10 to 20 by using the equation below:

normx =

{(
x−min(x)

max(x)−min(x)

)
+ 1
}
× 10 (1)

where normx = normalized values of the sample x, and min(x) and max(x) are the minimum
and maximum values in the extracted peak episode, respectively.
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The normalized samples of the extracted peaks are fitted in a window of a fixed size
to have a constant length of episodes to be considered for classification of the sips and
non-sips. Thus, each second of a gesture consists of 20 samples (accelerometer frequency
is 20 Hz). A window of 120 samples is considered as an episode (maximum duration of
a normalized sip: 6 s). Any episode with less than or more than 120 samples is padded
with the value ”10” (minimum normalized value) at the end until the window length of
episode becomes 120 samples or is pruned off, respectively. All classification operations are
performed on such 120-sample data windows, which are referred to as the episodes for the
rest of the text.

4.3. On-Device Sip Classification

To estimate the volume of fluid intake by a subject, the number of sips taken by the
subject between two consecutive bottle refills needs to be detected with high accuracy. Thus,
from the gesture data recorded by the embedded device fitted to the bottle, the gestures
must be properly classified into the sips and non-sips classes. This classification is done
by a trained neural network model for sip/non-sip classification. The NN model requires
features extracted from the gesture signatures in order to classify the sip and non-sip classes
accurately. Additionally, the neural network model needs to be lightweight in order to cater
to the memory and energy limitations of the embedded device. Thus, an efficient feature
engineering and selection of a lightweight NN model is highly required for the bottle-fitted
embedded device.

4.3.1. Feature Engineering

Five features representing each episode are extracted from the pre-processed data
and are fed as inputs to an on-device neural network classifier. The features used for
classification follow.

Number of peaks in an episode: It is calculated from the number of local maxima above a
threshold value Th (normalized x-axis value from accelerometer as 10), which indicates the
number of times a bottle is tilted during an episode. As an example, the number of peaks
in the episode shown in Figure 5 is two (marked with red circles). The rationale behind
using this feature is that the number of peaks in sip episodes are generally found to be less
than those in non-sip episodes, although not always.
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Maximum peak height: It is the height of the highest peak in a normalized episode, as
shown in Figure 5. This feature represents the maximum tilt that the bottle experiences
during an episode.
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Peak duration: Peak duration represents the time in an episode for which the sample
value remains above the threshold Th(10). This duration is generally found to be larger for
sips as compared to non-sips.

Number of samples within the stable portion of a peak: Samples that are within 20% from
the highest peak are counted and termed as the number of samples at the highest point in
an episode. The higher this value, the larger is the probability of an episode being a sip.

Height of the last point in an episode: There exist some drinking episodes that are not
completed within an episode of consideration. In such cases, the value of the last sample of
the episode does not fall to the minimum normalized value in the episode. Usually for the
non-sips, the value of this feature is the minimum normalized value in a gesture episode.

4.3.2. Neural Network Architecture

In this proposed system, artificial neural networks (NN) [21,22] are used both to
classify between sips and non-sips gestures, and to detect a first-sip after a bottle refill
(Section 6.2). In order to cater to the limitations in memory and computational overheads of
the bottle-fitted embedded device, selection of a proper NN architecture is very important.
The NN selected must be such that the classification accuracy is high without having much
complexity in compuatation and should not occupy much memory space on the device.

We experimented with a wide range of on-device NN architectures that were im-
plemented within the on-bottle embedded device. Details of the architectures used for
sip/non-sip classification are tabulated in Table 2. To keep the system computationally
lightweight for the on-bottle embedded platform, the number of weights in the NN is
attempted to be kept as low as possible. To accomplish this, performance is tested mostly
for models with a single hidden layer, while changing the number of neurons in that
layer. It is shown in Section 5 that a sip detection accuracy as high as 94% can be achieved
with just one hidden layer. Experiments with a wider and deeper NN revealed that the
performance of the NN does not improve by adding more neurons or hidden layers.

Table 2. Neural network models used for sip/non-sip classification.

Architecture
Type

No. of
Hidden Layers No. of Inputs No. of Neurons in the

1st Hidden Layer
No. of Neurons in the

2nd Hidden Layer No. of Weights

1HL, 1N 1 5 1 0 8

1HL, 2N 1 5 2 0 15

1HL, 3N 1 5 3 0 22

1HL, 4N 1 5 4 0 29

1HL, 5N 1 5 5 0 36

1HL, 20N 1 5 20 0 141

2HL, 20, 15N 2 5 20 15 451

5. Experimental Results
5.1. Performance Accuracy

All the architectures from Table 2 are experimentally evaluated with the general NN
features, as summarized in Table 3.

Sip/non-sip classification performance are captured in terms of true positive (tp) and
false positive (fp) [23–25], where

tp =
number of sips corectly detected

total number of sips actually taken
(2)

fp =
number of non− sip gestures corectly detected

Total number of non− sip gestures actually taken
(3)
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Table 3. Neural network architecture details.

Model Sequential

Layer Connectivity Fully Connected

Optimizer SGD

Loss Function Binary Cross-Entropy

Epochs 300

Train–Validation Split 80:20

Batch Size 100

Additionally, an overall accuracy
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=
Nsd + Nnsd
Ns + Nns

(4)

where Nsd = number of sips correctly detected, Nnsd = number of non-sips correctly
detected, Ns = total number of true sips, and Nns = total number of true non-sips.

Each neural network architecture from Table 2 is tested with sip and non-sip episodes
for four different subjects. The results for true positive %, false positive %, and accuracy for
the one hidden layer model are reported in Figure 6a–c, respectively. These figures show
the variation of the performance metrics with increase in the width of the hidden layer
that leads to an increase in the number of NN weights. It can be observed from the figure
that the classification accuracy increases with increase in the NN width, and it saturates
at 94.8% for networks with four neurons in the hidden layer. False positive is maximum
(100%) for the simplest model with one neuron, and it decreases with increase in the width
of the only hidden layer. As the number of neurons in the hidden layer increases, the false
positive decreases to 5% for the model with five neurons. On widening the only hidden
layer with 20 neurons, the false positive does not change significantly. For true positive %,
the neural network with one neuron gives 100% true positive, but false positive for that
network is also 100%, which decreases the accuracy to 26%. Apart from this model, true
positive also follows an increasing trend with increase in the width of the hidden layer. It
should be noted that there is no increase in accuracy with the addition of hidden layers or
neurons in the model.

5.2. Classification Energy Consumption

One of the important metrics for on-device embedded sip classification is the clas-
sification energy consumption. For measuring energy consumption, an arrangement as
shown in Figure 7a has been arranged. Since Nano 33 BLE has a voltage limitation of
3.3 V, a voltage regulator is used to step down to 6 V power from the source to 3.3 V. A
Tektronix 2024B Mixed Signal Oscilloscope is used for this experiment. The oscilloscope,
with a sampling rate of 1470 Hz, is connected across the resistor to measure the voltage
drop Vdrop. The output signal from the oscilloscope is shown in Figure 7b, where each peak
signifies the rise in voltage drop across the 10 ohms resistor (R) when the Nano 33 BLE
performs the classification operation. Thus, each peak in the voltage-drop values shown in
Figure 7b represents a classification operation by the Nano BLE device. The voltage drop
values in a classification cycle are considered for the calculation of power consumption.
The k-th sample of the input voltage (Vk

in) in the Nano 33 BLE is calculated as:

Vk
in = 3.3−Vk

drop (5)

where Vk
drop is the of voltage drop across the resistor R at kth time index, read from the

oscilloscope. Current (Ik) through the Arduino is computed as:

Ik =
Vk

drop

R
(6)
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Figure 6. Sip detection performance results: (a) true positive vs. weights, (b) false positive vs.
weights, and (c) overall accuracy vs. weights.

Each sample has a sampling period (∆t) of 680 µs. The power (Pk) consumed by the
device for performing classification operation at time index k is given by:

Pk = Vk
in.Ik (7)
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Figure 7. (a) Experimental setup to measure the energy consumption. (b) Voltage reading by the
oscilloscope. (c) Average energy consumption (mJ) for each sip classification.

Thus,

Pk =
(

3.3−Vk
drop

)
.
Vk

drop

R
(8)

The energy consumed during a classification cycle T is then computed as:

E =
T/∆t

∑
k=1

Pk∆t (9)

where T is the classification computation time for a single cycle of classification, which is
described in Figure 8a. To isolate the consumption only by the sip classification code, all
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other codes from the microcontroller are blocked during these experiments. For each of
the NN models in Table 2, energy consumption is measured for 120 classification cycles,
and the corresponding average is reported as a function of NN weight-counts in Figure 7c.
The average energy consumption values reported in Figure 7c are computed from the
Vk

drop values from the oscilloscope and using Equations (8) and (9). It can be observed
that classifications take more energy in networks with wider hidden layers due to more
computational overheads.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. (a) Average computation time (µs) for each sip classification. (b) Energy–accuracy tradeoff. 

5.3. Classification Computation Time 
Figure 8a reports sip classification computation duration for different network archi-

tectures. With increase in the number of neurons in the hidden layer, the number of net-
work weights increases. This results in increase in number of computations and time taken 
by the hardware to carry out each classification operation. 

5.4. Energy–Accuracy Tradeoff 
Energy–accuracy tradeoff for different neural network architecture is presented in 

Figure 8b. The figure plots the ratio ୡୡ୳୰ୟୡ୷୬ୣ୰୷ େ୭୬ୱ୳୫୮୲୧୭୬ (%/mJ)  and the raw accuracy 
figures, both as a function of the number of weights. The ratio expresses how much sip 
detection accuracy is achieved for each unit of expended energy, which is a scarce resource 
in an embedded platform such as the one used in this work. It can be observed that ୡୡ୳୰ୟୡ୷୬ୣ୰୷ େ୭୬ୱ୳୫୮୲୧୭୬ ratio is maximum for the network with two neurons in its hidden layer, 
and it falls with increase in the number of weights. 

However, from the accuracy plot, it is seen that the sip classification indicates that 
the network that provides maximum accuracy per-unit energy does not provide an 
acceptable level of accuracy. For the model with three neurons in the hidden layer, the 

1 neuron 2 neurons

3 neurons
4 neurons

5 neurons

120

130

140

150

160

170

180

190

200

210

0 5 10 15 20 25 30 35 40C
om

pu
ta

tio
n 

Ti
m

e 
(µ

s)

# of weights

Computation Time (µs) vs. weights

(a)

(b)

1 neuron

2 neurons

3 neurons

4 neurons

5 neurons

0
10
20
30
40
50
60
70
80
90
100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40

O
ve

ra
ll 

ac
cu

ra
cy

(%
)

A
cc

ur
ac

y/
En

er
gy

 (%
/m

J)

# of weights

Energy -Accuracy trade-off

Overall Accuracy/Energy Consumption (%/micro-J) Overall Accuracy

Figure 8. (a) Average computation time (µs) for each sip classification. (b) Energy–accuracy tradeoff.

5.3. Classification Computation Time

Figure 8a reports sip classification computation duration for different network ar-
chitectures. With increase in the number of neurons in the hidden layer, the number of
network weights increases. This results in increase in number of computations and time
taken by the hardware to carry out each classification operation.

5.4. Energy–Accuracy Tradeoff

Energy–accuracy tradeoff for different neural network architecture is presented in
Figure 8b. The figure plots the ratio Accuracy

Energy Consumption (%/mJ) and the raw accuracy
figures, both as a function of the number of weights. The ratio expresses how much
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sip detection accuracy is achieved for each unit of expended energy, which is a scarce
resource in an embedded platform such as the one used in this work. It can be observed
that Accuracy

Energy Consumption ratio is maximum for the network with two neurons in its hidden
layer, and it falls with increase in the number of weights.

However, from the accuracy plot, it is seen that the sip classification indicates that
the network that provides maximum accuracy per-unit energy does not provide an ac-
ceptable level of accuracy. For the model with three neurons in the hidden layer, the
accuracy improves to 94%, but the Accuracy

Energy Consumption ratio falls by about 0.5%. This network
provides the best balance between the acceptable accuracy and accuracy per unit energy,
thus making it our network of choice. As a result, this network is used for the volume
estimation mechanism presented in the next section. Note that for applications in which
a lower accuracy is acceptable, the network with two neurons in its hidden layer can be
a more appropriate choice from the standpoint of maximizing accuracy per unit energy
expenditure.

6. Predictive Drink Volume Estimation

Runtime drink volume estimation is performed using sip detections as described in
Sections 2–5. The algorithmic framework of the system is shown in Figure 9. The input to
the volume estimator is a time series of the sip events along with the heights of the specific
sip events. The height represents the maximum inclination of the bottle during a sip event.
The first sip after a bottle refill requires the minimum amount of maximum inclination of
the bottle during a sip. Leveraging this property, the system detects the first-sips since
bottle refill. From the detected first-sips and the known bottle volume, the system estimates
the cumulative drink volume, as shown in Figure 9. All the algorithmic details executed by
each component of the schematic are given in Section 6.3.
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This framework solves the problem of volume estimation directly using only bottle
inclination information reported in [8,9]. The amount of bottle tilt cannot provide accurate
volume intake estimation measure because the drinking pattern and the volume of fluid
intake per sip vary from person-to-person. Here, the neural network models detect the
sips and first-sips (i.e., after a bottle refill instance) using the extracted features from the
accelerometer readings and the fluid intake volume is computed using that information.
Additionally, the self-error correction mechanism after every first sip detected avoids the
estimation error being accumulated. Thus, this framework provides a generalized and
robust way of estimating fluid intake volume which is person non-specific.
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6.1. Data Collection and Feature Extraction

For training, sip data were collected using the bottle mounted IMU sensor shown in
Figure 1. In total, 300 sip events (12 per participant), labeled as a “first-sip” or “non-first-sip”
after bottle refill, were recorded for five participants. For real time testing, experiments
involving drinking events were conducted for the same five participants to determine
accuracy–complexity tradeoffs.

F1(i) = p(i)− p(i− 1) (10)

F 2(i) = p(i)− p(i− 2) (11)

F3(i) = p(i)− p(i− 3) (12)

Here F1(i), F2(i), F3(i) represent three features as inputs to the neural network and
p(i) is the sip height of the ith sip from the sip classifier module.

All three features capture the temporal gradient of the sip heights (i.e., bottle inclina-
tion) in discrete time. The rationale behind using these features is that while drinking, the
inclination of the bottle increases with decrease in fluid level. As a result, the sip height
values increase with the increase in sip counts until the bottle is refilled.

These three features are computed each time a sip is detected, and the features are
then used by the pre-trained neural network model stored in the device for detecting a first
sip since bottle refill. The neural network gives decision on whether a sip from the previous
module a first sip is or not. Based on this decision, the volume of fluid intake by the user
can be estimated using the algorithm discussed in Section 6.3.

6.2. First-Sip Detection Using Neural Network

Similar to the sip detection part of the system, we retain the design goal of low
classification–computational complexity, which is suitable for embedded on-device hard-
ware. Experiments are performed with a one-hidden-layer model for varying number of
neurons, and with general NN features summarized in Table 4. The first-sip detection
results using that NN are presented in Figure 10. As expected, with an increase in the
number of neurons (i.e., corresponding number of weights in the network), the overall
accuracy and true positive rate increases. They eventually reach 100% for three neurons in
the hidden layer. At the same time, the false positive rate decreases to zero. These results
are noteworthy given the fact that such a high accuracy is achievable with an NN with a
single hidden layer. The fact that such a high accuracy is achieved using only one hidden
layer can be justified by the observation that the neural network for first-sip detection takes
the input of time-series data of sip heights from the sip classification module. As explained
in the prior sections, the sip detection accuracy of the sip classifier module is high (∼ 95%).
As the accuracy of the first-sip detection module depends on the sip classifying module, it
is possible to achieve such high accuracy with only one hidden layer.

Table 4. Neural network architecture details.

Model Sequential

Layer Connectivity Fully Connected

Optimizer Adam

Loss Function Binary Cross Entropy

Training Epochs 150

Train–Validation Split 80:20

Batch Size 10
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6.3. Volume Estimation

Algorithm 1 describes the logic of cumulative volume estimation based on sip de-
tection and the other conditions described above. The algorithm is executed upon each
instance of a new sip detection, after which the current cumulative consumed volume is
reported. These estimation results and their accuracies are reported in Figure 11.
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Figure 11. Predictive volume estimation and percentage error for 8 drinking cycles using 1 hidden
layer and 2 neurons for the NN sip classifier.

As explained in Section 6.1, the volume estimation module takes time-series data of
sip heights as inputs from the sip classifier module. The neural network takes the features
computed using Equations (10)–(12) as inputs for detecting a first sip since bottle refill. For
each sip detected as first-sip, all the sips prior to that are considered as the sips required to
make the bottle empty. The number of such” non-first sips” is then mapped to the bottle
volume V. The running estimation of volume per sip can be computed as VSip = V

Scount
,

where Scount is the number of sips prior to a first sip. This quantity is continuously updated
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as new sip events arrive from the sip detection module. For each incoming ith sip from the
sip classifier, the intake volume is updated as Vintake(i) = Vintake(i− 1) + VSip.

There can be certain scenarios when some sips are not detected by the sip classifier
module, but to reduce the effect of these misclassifications, the algorithm uses a self-
correction mechanism for every first sip detected by resetting the estimated volume for that
drinking cycle equal to the known bottle volume.

This is done by computing the intake volume estimation error after each first-sip detected:

Verr = min
{

Vintake(i)−Vintake(i− Scount)− k× Vmeasured
bottle

}
, k ∈ I (13)

Algorithm 1 Predictive Volume Estimation

1: Input: Time-series data of Sip heights (p(i) from Sip Classifier module // p(i) is the peak
height of ith sip
2: Output: Estimated Volume of intake fluid (Vintake
3: Initialize Sip Counter Scount
4. for ∀ sips with peak p(i)
5: Compute features of p(i)
6: Predict if p(i) is a first sip using Neural Network
7: if p(i) ! = First Sip then:
8: Increment Scount
9: Vintake(i) = Vintake(i− 1) + VSip //Estimate volume intake
10: end if
11: if p(i) == First Sip then
12: Vintake(i) = Vintake(i− 1) + VSip //Estimate volume intake

13: Verr = min
{

Vintake(i)−Vintake(i− Scount)− k× Vmeasured
bottle

}
, k ∈ I //Estimate

error
14: Update Vintake (i) = Vintake (i) + Verr
15: Update Vsip = Vintake

Scount
16: Reset Scount
17: end if
18: end for

Here, Vmeasured
bottle is the known measured volume of the bottle and Scount is the number

of sips prior to a first sip.
The performance of the volume estimation module using Algorithm 1 is presented in

Figure 11. The neural network for the sip classifier module used here has two neurons in
its only hidden layer. The figure plots the estimated and true volume intake over a span of
eight drinking cycles. The true volume indicates the volume intake calculated from the fill
height of the bottle recorded after each drink. Here, each drinking cycle represents a period
between two bottle refills. In the figure, the dotted lines separate two drinking cycles. The
plot is updated with an increase in volume intake value each time a sip is taken by the user
and/or a sip is detected by the sip classifier module. This indicates that the plot is updated
only at certain time instances, which describe its stepped behavior. It can be observed that
there are some sips that are not detected by the sip classifier module.

The sips not detected by the classifier are shown by the green circles in the figure. In
those instances, where the sips are not detected, the estimated volume does not increase.
This leads to an increase in the error percentage in volume estimation. However, because
of the self-correction mechanism used by the volume estimator as described above, the
error does not accumulate and reduces each time when a first sip is detected. Although the
estimation error lies in the range 0–28%, the error reduces whenever a first sip is detected.
This makes the system robust to the sip classification errors from the sip classifier. Note
that for each first-sip detected, the estimation error does not always decrease to zero. This
is because of the estimation error associated with the first-sip intake, that is, the difference
between the estimated and true first-sip volume.
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Note that the self-error correction mechanism of this framework of volume estimation
works even in scenarios of missed first-sip detection or if the bottle is not fully refilled. This
can be observed from Figure 11, where there is an instance of missed first-sip detection. In
this case, the error accumulates until the estimated volume equals full bottle volume. After
that, the estimated volume intake remains constant at the known bottle volume (Vmeasured

bottle )
and the volume estimation error also stops accumulating until the next first-sip detection.
Thus, this mechanism is robust to the scenarios where the bottle is partially filled, or the
neural network model misses a first sip.

7. Summary and Conclusions

A lightweight liquid consumption estimation system is developed using an on-device
neural network classification of user gestures while drinking from consumer grade bottles.
The system first detects a sip from the bottle gestures recorded by the embedded IMU
sensors using a pre-trained neural network model with a maximum accuracy of around
95%. The volume estimation framework detects the first sip after every bottle refill using
another pre-trained neural network and estimates the volume intake by the user from
the sip height of a detected sip. The predictive volume estimation framework also uses a
self-correction algorithm that minimizes the estimation error after every fill-up cycle, thus
reducing the effect of error from the sip-classification module. The system consumes a total
energy of around 119 mJ to detect a sip and the volume consumed in that sip. Future work
on this topic includes the development of volume estimation system in scenarios of limited
labeled data availability using unsupervised and semi-supervised learning. Moreover, use
of more energy-efficient hardware, with hardware sleep- and activity-based wakeup, can
be included to reduce the power consumption by this fluid intake monitoring system; thus,
detailed characterization of energy consumption using the mechanisms mentioned in [26]
can be explored.
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