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Abstract

Motivation: Alignment-based sequence similarity searches, while accurate for some type of

sequences, can produce incorrect results when used on more divergent but functionally related

sequences that have undergone the sequence rearrangements observed in many bacterial and

viral genomes. Here, we propose a classification model that exploits the complementary nature of

alignment-based and alignment-free similarity measures with the aim to improve the accuracy

with which DNA and protein sequences are characterized.

Results: Our model classifies sequences using a combined sequence similarity score calculated

by adaptively weighting the contribution of different sequence similarity measures. Weights are

determined independently for each sequence in the test set and reflect the discriminatory ability of

individual similarity measures in the training set. Because the similarity between some sequences

is determined more accurately with one type of measure rather than another, our classifier allows

different sets of weights to be associated with different sequences. Using five different similarity

measures, we show that our model significantly improves the classification accuracy over the cur-

rent composition- and alignment-based models, when predicting the taxonomic lineage for both

short viral sequence fragments and complete viral sequences. We also show that our model can be

used effectively for the classification of reads from a real metagenome dataset as well as protein

sequences.

Availability and implementation: All the datasets and the code used in this study are freely

available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html.

Contact: ivan.borozan@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequence comparison of genetic material between known and

unknown organisms plays a crucial role in metagenomic and phylo-

genetic analysis. Sequence similarity search is a method of sequence

analysis that is extensively used for characterizing unannotated

sequences (Altschul et al., 1997). It consists of aligning a query

sequence to a sequence database with the aim of determining those

sequences that have statistically significant matches to that of the

query. In this way, for example, a known biological function or

taxonomic category of the closest match can be assigned to the

query for its characterization.

Alignment-based methods, however, can produce incorrect

results when applied to more divergent but functionally related

sequences that have undergone sequence rearrangements. Sequence

rearrangements such as genetic recombination and shuffling or hori-

zontal gene transfer are observed in a variety of organisms including
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viruses and bacteria (Delviks-Frankenberry et al., 2011; Domazet-

Loo and Haubold, 2011; Shackelton and Holmes, 2004). These

processes, which produce alternating blocks of sequence material,

are at odds with the alignment-based sequence comparison, which

assumes conservation of contiguity between homologous segments

(Vinga and Almeida, 2003). Another weakness of the alignment-

based approach is in the use of different methods for scoring pair-

wise protein sequence alignments, as reported in Vinga and Almeida

(2003).

In addition to sequence rearrangements, viral genomes exhibit

gene gain and loss, gene duplication and high sequence mutation

rates (Duffy et al., 2008; Shackelton and Holmes, 2004). The cumu-

lative effect of these changes make viral genomes among the most

variable in nature. Because of this high sequence divergence and the

often small number of genes, viral genomes present a greater chal-

lenge to phylogenetic classification and taxonomic analysis when

these are based on sequence comparison by alignment only.

Improving the results of such studies is important for better under-

standing viruses and their involvement in human diseases, including

cancer (zur Hausen, 2007).

Because of these shortcomings, active research has been con-

ducted into alignment-free measures to overcome the above limita-

tions. A number of alignment-free measures have been proposed in

recent years as reported in two comprehensive reviews (Vinga,

2014; Vinga and Almeida, 2003).

In this study, we propose a new classification model that

combines similarity scores obtained from alignment-free and align-

ment-based similarity measures with the aim to exploit the comple-

mentary nature of these measures to improve the classification

accuracy. In our model, the classification of sequences is performed

by using a combined sequence similarity score (CSSS) that is calcu-

lated based on the weighted contribution of similarity scores, where

weights reflect the discriminatory ability of individual measures in

the training set. One unique feature of our model is based on the ob-

servation that the similarity between some sequences is determined

more accurately with one type of similarity measure rather than an-

other, hence in our model, different sets of weights can be associated

with different sequences (i.e. sequences to be classified).

Furthermore, we provide a mathematical framework that can in-

clude any number of additional similarity measures and show that

our model (i) is applicable to both nucleotide and amino acid se-

quences (ii) improves the classification accuracy over a purely align-

ment-based sequence comparison approach and (iii) improves the

classification accuracy for metagenomic analysis of short reads

produced by next-generation sequencing technologies.

Recently, a number of methods for metagenomic analysis have

been proposed (Brady and Salzberg, 2009; Huson and Xie, 2014;

Huson et al., 2007; Nalbantoglu et al., 2011; Patil et al., 2011;

Rosen et al., 2011; Wood and Salzberg, 2014). Of these seven meth-

ods, PhymmBL (Brady and Salzberg, 2009) is the method closest in

approach to the method presented in this study, since it classifies

reads (or contigs) using an integrated score obtained by combining

the interpolated Markov models (IMM) score (an alignment-free/

composition-based similarity measure) with the BLAST (Altschul

et al., 1997) score. PhymmBL (Brady and Salzberg, 2009) has been

shown to outperform MEGAN (Huson et al., 2007) for longer con-

tigs, while for shorter ones, the results of comparison are misleading

at best since MEGAN produces results in a form that cannot be dir-

ectly compared to those of PhymmBL (Brady and Salzberg, 2009,

2011) and the model proposed in this study. We believe that improv-

ing the classification accuracy for shorter reads (100–1000 bp) is

critical, since such metagenomic analysis does not require the

assembly of raw sequenced reads prior to classification. For these

reasons and to address the objective (iii) in the previous paragraph,

we chose to compare the classification results obtained with the

model presented in this study to four primarily composition-based

models [PhymmBL (Brady and Salzberg, 2009), NBC (Rosen et al.,

2011), PhyloPythiaS (Patil et al., 2011) and RAIphy (Nalbantoglu et

al., 2011)] and the two most recently published methods for the clas-

sification of metagenomic sequences, Kraken (Wood and Salzberg,

2014) based on the exact alignment of k-mers and PAUDA (Huson

and Xie, 2014) an alignment-based method.

2 Materials and Methods

2.1 Sequence similarity measures
In this section, we describe the five sequence similarity measures

that we chose to use in our classification model. Three of them are

alignment-free sequence similarity measures and two of them are

alignment-based sequence similarity measures.

2.1.1 Alignment-free sequence similarity measures

The choice of the three alignment-free sequence similarity measures

(see below) is based on the notion of complementarity between

these measures and the two alignment-based similarity measures

that we chose to use in this study. Specifically, similarity measures

based on k-mer frequencies [the Euclidean Distance (ED) and

Jensen–Shannon divergence (JSD)] do not depend on any assump-

tion of the contiguity of conserved segments, as the alignment-based

measures do. They do, however, depend on the choice of the k-mer

size (Wu et al., 2005). In contrast, the compression-based (CB)

measure (Li et al., 2001) built upon the concept of Kolmogorov

complexity is both independent of the k-mer size (since it is not

based on k-mer counts) and the assumption of the contiguity of con-

served segments.

The ED and JSD measures both require the number of all

possible k-mers K ¼ nk to be counted for any given sequence, where

n is the alphabet size (i.e. n¼4 for DNA sequences and n¼20 for

protein sequences) and k is the length of the k-mer sequence. To

count the number of k-mers in DNA sequences, we use the

JELLYFISH (Marais and Kingsford, 2011) algorithm and for

protein sequences, we use a Python script from Gupta et al. (2008).

The raw counts are used to form a vector Ck of all possible k-mers

of length k,

Ck ¼< ck
1; c

k
2; . . . ; ck

K > (1)

raw counts in Equation (1) are then normalized to form a probabil-

ity distribution vector

Fk ¼ Ck
.XK

i¼1

ck
i ¼< f k

1 ; f
k
2 ; . . . ; f k

K > (2)

giving the relative abundance of each k-mer.

1. The ED. The similarity score between two sequences X and Y is

the ED between their nk dimensional probability distribution vectors

Fk
X and Fk

Y as defined in Equation (3)

dED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðFk

X; F
k
XÞ � 2NðFk

X; F
k
YÞ þNðFk

Y;F
k
YÞ

q
(3)

NðX;YÞ ¼ X � Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX �XÞðY � YÞ

p (4)

where Equation (4) ensures that each vector is normalized and has

length 1 in the nk dimensional space. The choice for this metric is
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based on its simplicity, well defined mathematical properties and its

demonstrated effectiveness as an alternative to the alignment

method (Vinga and Almeida, 2003). The ED defined in Equation (3)

has values that range between 0 and 1, with lower values indicating

increasing similarity and higher values decreasing similarity.

2. The JSD. This is an information theoretic non-symmetric diver-

gence measure of two probability distributions. The JSD between

two sequences X and Y is calculated between their nk dimensional

probability distribution vectors Fk
X and Fk

Y as shown below

dJSD ¼ JSDðFk
X; F

k
YÞ ¼ 0:5 � KLðFk

X;MÞ þ 0:5 � KLðFk
Y;MÞ (5)

where Mi¼ðf k
xi
þ f k

yi
Þ=2, i¼1; . . . ;K and KL is the Kullback–Leibler

divergence defined below

KLðFk
X;MÞ ¼

XK

i¼1

f k
xi
� logðf k

xi
=MiÞ (6)

Provided that the base 2 logarithm is used in Equation (6), JSD has

values that range between 0 and 1, with lower values indicating

increasing similarity and higher values decreasing similarity. The

choice for this similarity measure is based on its ability to success-

fully reconstruct phylogenies using whole-genome sequences as re-

ported in Sims et al. (2009).

3. The CB measure. This similarity measure is based on the concept

of Kolmogorov complexity. Conditional Kolmogorov complexity K

ðXjYÞ (or algorithmic entropy) of sequence X given sequence Y is

defined as the length of the shortest program computing X on input

Y. In this way, KðXjYÞ measures the randomness of X given Y. The

Kolmogorov complexity K(X) of a sequence X is defined as KðXjeÞ
where e is an empty string. We note that Kolmogorov complexity

K(X) of a sequence X is non-computable and that in practice K(X) is

approximated by the length of the compressed sequence X, obtained

using compression algorithms such as Lempel-Ziv-Markov chain

algorithm (LZMA) or GenCompress (Chen et al., 1999). Our choice

for this measure is based on the following two properties (i) CB is

not affected by sequence rearrangements and (ii) since CB is not a

frequency-based measure, it is not affected by the choice of the k-

mer size. To calculate the CB distance between two sequences X and

Y, we chose to use the normalized compression distance (NCD)

(Cilibrasi and Vitányi, 2005) as defined below:

dCB ¼ NCDðX;YÞ (7)

where

NCDðX;YÞ ¼ CðXYÞ �minfCðXÞ;CðYÞg
maxfCðXÞ;CðYÞg (8)

where Cð:Þ denotes the length of a compressed sequence using a par-

ticular compression algorithm and where XY denotes the concaten-

ation of sequence X with sequence Y. Note that the NCD in

Equation (8) is an empirical approximation of the normalized infor-

mation distance, which is defined as a metric in Cilibrasi and

Vitányi (2005). The distance calculated using Equation (7) takes val-

ues between 0 and 1, with lower values indicating increasing se-

quence similarity and higher values decreasing sequence similarity.

The compression algorithm used in this study is plzip (http://www.

nongnu.org/lzip/plzip.html) a multi-threaded, lossless data compres-

sor based on the lzlib compression library that implements a simpli-

fied version of the LZMA algorithm. All sequences in this study

were compressed using plzip with the compression level parameter

set to 4, with matched length and dictionary size set to their default

values.

2.1.2 Alignment-based sequence similarity measures

4. The BLAST-based measure. For the classification of DNA se-

quences, the distance between the query sequence X and subject Y is

expressed in terms of the BLAST bit scores calculated using the

BLAST algorithm (Altschul et al., 1997) (blastall version 2.2.18,

blastall -p blastn), with default parameter value settings.

5. The Smith–Waterman (SW)-based measure. For the classification

of protein sequences, similarity scores expressed in terms of P values

calculated using the SW algorithm were taken from Liao and Noble

(2003).

2.2 Classification model
As mentioned in Section 1, we propose to exploit the complemen-

tary properties of the five individual similarity measures described

above to improve the accuracy with which nucleotide or amino acid

sequences are characterized. Our aim is to propose a CSSS that will

improve upon the limitations of the individual sequence similarity

scores (as described in Section 1) and lead to an improved classifica-

tion performance.

The CSSS model rests on three assumptions (i) that similarity

measures are complementary in nature (as described in the previous

section), (ii) that some sequences are better characterized with one

type of similarity measure than another and (iii) that their individual

values are in the range between 0 and 1.

Among many machine learning algorithms that are available

today, the nearest neighbour (NN) algorithm is one of the simplest

and most intuitive classification algorithms. For this reason, the NN

algorithm is often used as the reference classifier in comparative

studies. The k-NN algorithm performs the classification by identify-

ing the k-NNs that are the closest in terms of a distance/similarity

measure to a query (or test sample). It then assigns to the query the

class that occurs the most often among the k-NNs. In the case where

k¼1, the query is assigned the class of the closest single NN.

Because of these properties, we find the 1-NN algorithm to be a nat-

ural choice for the classifier in our approach, as described below.

Let S
j
X¼< sj

x1; sj
x2; . . . ; sj

xn > be an n dimensional vector of se-

quence similarities/distance scores sj
xi between the sequence X in the

test set and the ith sequence in the training set, calculated using jth

sequence similarity measure.

For each sequence X in the test set, we can now define the n

dimensional Sc
X vector of combined sequence similarity/distance

scores, to be the linear combination of S
j
X vectors across

j¼f1; . . . ; Jg similarity measures as shown below

Sc
X ¼

XJ

j¼1

wj � Sj
X

XJ

j¼1

wj

(9)

where wj is the weight of the jth sequence similarity measure calcu-

lated as the ratio of the between group variability (Ŝ
2

B) to the within

group variability (Ŝ
2

W ) (i.e. the F-test statistics) for each S
j
X vector as

shown in Equation (10).

wj ¼
Ŝ

2

BðS
j
XÞ

Ŝ
2

WðS
j
XÞ

(10)

Note that the combination of scores obtained using different

similarity measures shown in Equation (9) is performed independ-

ently for each sequence X in the test set.
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The between group variability Ŝ
2

B in Equation (10) is defined as

Ŝ
2

BðS
j
XÞ ¼

XCL

cl¼1

nclðSj
Xcl�
� Sj

X Þ
2

ðCL� 1Þ (11)

where CL denotes the total number of classes (or groups) in the

training set, Sj
Xcl�

denotes the mean of similarity/distance scores in

the clth class for the measure j, and ncl is the number of observations

(or similarity/distance scores) in the clth class.

The within group variability Ŝ
2

W in Equation (10) is defined as

Ŝ
2

WðS
j
XÞ ¼

X
cl;l

ðSj
Xcl;l
� Sj

Xcl:
Þ2

ðN � CLÞ (12)

where Sj
Xcl;l

is the lth similarity/distance score in the clth out of CL

classes of Sj
X for the measure j and N is the total number of se-

quences (or samples) in the training set.

Thus, if X represents an unknown sequence in the test set, the

k-NN algorithm will find the k nearest examples in the n dimen-

sional vector Sc
X¼< sc

x1; sc
x2; . . . ; sc

xn >, where n is the total number

of examples with known labels in the training set and sc
xi is the com-

bined similarity/distance score between the sequence X in the test set

and the ith sequence in the training set.

Prior to combining alignment-based scores (such as the ones ob-

tained with SW or BLAST algorithms) with those obtained using

alignment-free similarity measures, the n dimensional vector of

sequence similarities/distance scores SAB
X ¼< sAB

x1 ; sAB
x2 ; . . . ; sAB

xn >, is

first transformed into normalized scores as shown in Equations (13)

and (14), so that their values range between 0 and 1,

SBLAST
X norm ¼ 1� SBLAST

X

maxfSBLAST
X g

(13)

SSW
X norm ¼ SSW

X

maxfSSW
X g

(14)

with lower values indicating increasing sequence similarity and

higher values decreasing sequence similarity.

In Figure 1, we illustrate how the combination of sequence simi-

larity scores proposed in this study, and a 1-NN classifier can im-

prove the classification accuracy of a given test sample. Let M1 and

M2 be two similarity measures, and T a test sample that can be as-

signed either one of the two classes in the training set (either a ‘cir-

cle’ or a ‘triangle’) based on a single NN closest in distance to T. Let

also assume that T is known to belong to the class ‘circle’. As shown

in Figure 1a, according to the M1 measure, the test sample T is as-

signed the correct class (i.e. ‘circle’), while according to the M2

measure T is assigned the incorrect class (i.e. a ‘triangle’). In

Figure 1b, we show how by doing a simple arithmetic mean of

distances/scores (i.e. M1 and M2 have same weights) the bias of M2

can be corrected by the M1 measure. Moreover, in Figure 1c, we

show how a properly weighted arithmetic mean (in this example,

M1 was assigned a weight of 10 and M2 a weight of 2) can even fur-

ther improve the classification accuracy of T. We also see from this

simple example that 1-NN is the simplest and the most intuitive

choice for the classifier for our model since its assigns T to the class

based on the single nearest (in terms of a distance) neighbour in the

training set.

In Section 3, we demonstrate how the choice of different meas-

ures (see the previous section) and the weighting scheme proposed in

Equation (10) leads to an improved classification accuracy on the

three different datasets used in this study.

2.2.1 Selection of similarity measures prior to classification

To remove similarity measures from Equation (9) with low predict-

ive power (for more details see Section 4) the selection of similarity

measure prior to classification of test samples is performed as

follows:

• The training set is split into two sets, set A and set B, using 2/3,

1/3 splits.
• The classification performance of each similarity measure is eval-

uated on the set B using set A as the training set.
• Only similarity measures with prediction accuracy greater or

equal to 10% are selected.

2.2.2 Selection of the k-mer size

The k-mer size necessary to calculate similarity measures in

Equations (3) and (5) is a free parameter in our model and its upper

bound needs to satisfy the inequality given in Equation (15)

nk < L (15)

where n is the alphabet size and L is the length of the smallest gen-

ome in either the training or test sets. The inequality in Equation

(15) avoids calculations with k-mer sizes that are so large they pro-

duce erroneous and artificial differences between genomes that ul-

timately correlate with genome lengths rather than genome content

as described in Akhter et al. (2013). Thus to compare genomes (or

protein sequences) based on similarity measures [see Equations (3)

and (5)] that use frequency distribution vectors [see Equation (2)]

Fig. 1. A graphical representation of how the CSSS model can improve the

classification accuracy of a given test sample. M1 and M2 are two similarity

measures and T is a test sample that can be assigned either a class ‘circle’ or

a class ‘triangle’ that are present in the training set. In (a) according to M1, T

is assigned the correct class (i.e. ‘circle’), whereas according to M2, T is as-

signed the incorrect class (i.e. a ‘triangle’). In (b), we show the classification

according to the combined unweighted score. In (c), we show the classifica-

tion according to the combined weighted score
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the k-mer size should be chosen in such a way to satisfy the inequal-

ity shown in Equation (15).

2.3 Datasets
We evaluate the ability of our model to classify different types of

biological sequences using three datasets, one containing viral nu-

cleotide sequences, a second consisting of longueur nucleotide reads

(with an average of 759 bp in length) from a real metagenome and a

third consisting of protein sequences.

2.3.1 Dataset I

Because of their considerable variability, viral genomes are expected

to pose a greater challenge to phylogenetic classification than gen-

omes from other organisms. In this regard, we evaluate the classifi-

cation performance of the CSSS model using a dataset composed of

1066 complete viral genomes downloaded from the NCBI RefSeq

database. The classification of viral genomes into genera was per-

formed in three steps:

• Step 1: the 1066 viral sequences across 147 different genera were

divided into training and test sets in such a way that for each

genus the test set consisted of viral genomes that were not repre-

sented in the training set. The relative sizes of the training and

test sets were respectively set to 3/4 and 1/4.
• Step 2: selection of similarity measures prior to the classification

of test examples selected in step 1 was performed as described in

Section 2 (see Section 2.2.1) using the training set from step 1
• Step 3: Prediction of viral genera in the test set selected in step 1

is performed using the training set selected in step 1 and CSSSs

calculated using the formula shown in Equation (9) with similar-

ity measures selected in step 2. Note that the training set in this

step consists only of complete viral genomes.

The complete evaluation of the classification performance was

carried out using test samples generated in step 1 composed of com-

plete viral genomes and viral sequence fragments of 1000 bp, 500 bp

and 100 bp in length, viral fragments were sampled at random from

each complete viral genome in the test set obtained in step 1. Note

that for viral fragments the set B in step 2 (see also Section 2.2.1)

contains sequences that are of the same fragment length as those in

the test set of step 1. To evaluate the variability of results, training

and test sets were sampled randomly from the entire dataset (see

step 1), 10 times.

2.3.2 Dataset II

Next-generation sequencing promises to expand the scope of metage-

nomic projects by significantly increasing the number of organisms

that can be sequenced from any given sample. One challenge for

metagenomic analysis is the accuracy with which short reads are clas-

sified into groups representing the same or similar taxa. Improving

the classification accuracy in such studies should lead to more reliable

estimates of biological diversity in sequenced sample. For this reason,

we evaluate the ability of our model to classify reads using a real

Acid Mine Drainage metagenome (Tyson et al., 2004). This dataset

is known to contain three dominant populations; the archaeon

Ferroplasma acidarmanus and two groups of bacteria,

Leptospirillum sp. groups II and III. Reads that aligned with high

confidence to draft genomes of these three micro-organisms were first

identified using the MUMmer algorithm (Delcher et al., 2003) (with

the minimum length of a match set to 70% of the full read length). A

total of 20 907 of these reads were found (with an average of 759 bp

in length), of these 18 579 aligned to Leptospirillum sp. groups II

and III genomes and 2328 to the Ferroplasma acidarmanus genome.

The classification performance was evaluated at the phylum level

using a training set composed of complete bacterial and archaeal gen-

omes across 15 different phyla and 86 sequences downloaded from

the NCBI RefSeq database. The 15 phyla include both the

Euryarchaeota and Nitrospirae phyla to which Ferroplasma acidar-

manus and Leptospirillum sp. groups II and III belong to. The three

draft reference genomes were not used as part of the training set.

Selection of similarity measures prior to classification of the test ex-

amples was conducted as described in Section 2 (see Section 2.2.1).

Set A in this case consisted of complete bacterial and archaeal gen-

omes as described above, while set B consisted of sequences of 1000

bp in length that were sampled at random from complete bacterial

and archaeal genomes in the training set in such a way that for each

phylum, set B consisted of genomes that were not present in set A.

2.3.3 Dataset III

One of the objectives of protein sequence analysis is the inference of

structure or function of unannotated protein sequences encoded in

the genome. We test the ability of the CSSS model to correctly clas-

sify previously unseen protein families drawn from the Structural

Classification of Proteins database (Murzin et al., 1995). The protein

dataset consists of 4352 distinct protein sequences (ranging from 20

to 994 amino acids in length) grouped into 54 families and 23 super-

families (Liao and Noble, 2003). The protein sequences of the 54

families were divided into test and training sets in such a way that

proteins within the family are considered positive test examples while

proteins outside the family but within the same superfamily are con-

sidered as a positive training examples (Liao and Noble, 2003). We

note that the original dataset includes negative examples, which we

did not use in our evaluation. Selection of similarity measures prior

to classification of the test examples was conducted as described in

Section 2. In this case, the training set consisted of 1779 proteins be-

longing to the positive training examples, which were then split into

set A and set B as described in Section 2 (see Section 2.2.1).

3 Results

The evaluation of the classification performance on Datasets I and II

was carried out using the accuracy classification score defined in

Equation (16) shown below,

Accuracyðyi; ŷiÞ ¼ 1=nts �
Xnts�1

i¼0

1ðŷi ¼ yiÞ (16)

where ŷi is the predicted value of the ith sample, yi is the correspond-

ing true value, nts is the total number of test samples and 1(x) is the in-

dicator function having a value of 1 when ŷi ¼ yi and 0 when ŷi 6¼ yi.

As explained in Section 1, we decided to compare the results ob-

tained in this study on Datasets I and II to six other composition-

and alignment-based models that were developed for the classifica-

tion of metagenomic data with reads (or fragments) as short as

100 bp in length. Of these six models, PhymmBL (Brady and

Salzberg, 2009) is the method closest in approach to ours since it

combines scores from IMMs with those of BLAST resulting in a com-

bined score that achieves higher accuracy than BLAST scores alone.

3.1 Dataset I—Taxonomic classification of viral

sequences
We evaluate the classification performance of the CSSS model [see

Equation (9)] by predicting genera of viral DNA sequences in
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Dataset I (see Section 2). The training and test sets are generated as

described in Section 2—Dataset I. The classification of test examples

is then performed using the NN algorithm (1-NN) with the CSSSs

calculated as given in Equation (9). For this dataset, the combined

score in Equation (9) is calculated based on scores obtained with the

three alignment-free measures [see Section 2, Equations (3, 5 and

7)] and the normalized BLAST score [see Equation (13)]. The value

for the k-mer size is varied between 2 and 5, and the classification

performance of the individual similarity measures is determined for

each training and test sets as described in Dataset I, step 2 (see

Section 2). The optimum value for the k-mer size is then selected

based on the following two conditions (i) best classification per-

formance and (ii) k-mer size has to satisfy the inequality given in

Equation (15). Note that the optimum k-mer sizes were estimated

separately for complete viral genomes and for each of the three dif-

ferent viral fragment lengths (see Section 2.3.1).

In Table 1, we compare the classification performance of the

CSSS model to five other models, PAUDA (Huson and Xie, 2014),

NBC (Rosen et al., 2011), Kraken (Wood and Salzberg, 2014),

PhymmBL (Brady and Salzberg, 2009) and RAIphy (Nalbantoglu

et al., 2011). We note that for this dataset, we could not compare

the results obtained with the CSSS model to those of PhyloPythiaS

(Patil et al., 2011) for two reasons (i) PhyloPythiaS requires at-least

100 kb of sequence for each genus and (ii) our training set, com-

posed of 147 different genera, exceeds the file limit size of 10 MB

imposed by the PhyloPythiaS web server. We also note that

PhymmBL has been shown to perform better (see Brady and

Salzberg, 2011) for shorter read lengths (100–800 bp) than both

PhyloPythiaS and RAIphy. The results presented in Table 1 were ob-

tained using identical training and test sets.

Table 1 presents that the CSSS model and PhymmBL signifi-

cantly outperform other classification methods for short viral frag-

ments (500–1000 bp) and complete viral genomes. Furthermore,

significant improvement in classification accuracy is obtained when

using the CSSS model over that of PhymmBL for 100–500 bp viral

fragments and complete viral genomes. We found no significant dif-

ference between the CSSS model and PhymmBL for 1000 bp frag-

ments (P value¼0.23, using the two sample t-test). Also no

significant difference was found between the CSSS model and NBC

(Rosen et al., 2011) for very short 100-bp viral fragments (P

value¼0.13, using the two sample t-test). We refer the reader to

Section 4 for the explanation of these two results. Because CSSS and

PhymmBL are both hybrid models that combine the alignment-

based and the alignment-free/composition-based approaches, in

Supplementary Table S4 in Supplementary Data we compare the

performance of the CSSS model to that of PhymmBL when BLAST

scores are used for classification alone. Both models achieve higher

accuracy than BLAST scores alone (except for the CSSS model with

short 100 bp fragments). From Supplementary Table S4 in

Supplementary Data, we also note that higher accuracy is achieved

when classification is performed using BLAST scores alone with

CSSS rather than PhymmBL, we explain the reason for this discrep-

ancy in Section 4.

3.2 Dataset II—Classification of reads from a real

metagenome dataset
For this dataset, the k-mer size was set to 4 to satisfy the inequality

in Equation (15) with L¼1000 bp. The classification performance

of the CSSS model was evaluated using the training and test sets as

described in Dataset II (see Section 2). The combined score in

Equation (9) was calculated based on scores calculated with the

three alignment-free measures (see Section 2, Equations (3, 5 and

7)] and the normalized BLAST score [see Equation (9)]. In Table 2,

we compare the classification performance of the CSSS method to

that of six other models on Dataset II (see Section 2). Dataset II is

composed of 20 907 reads (with an average of 759 bp in read length)

that are known to align to three genomes as described in Section 2—

Dataset II. Both CSSS and PhymmBL achieve higher level of accur-

acy than any other model, followed by PhyloPythiaS. PhymmBL

achieves a slightly higher accuracy than CSSS for reads that align to

Leptospirillum sp. groups II and III genomes (Nitrospirae phylum),

while the CSSS model performs better at classifying reads that align

to the Ferroplasma acidarmanus genome (Euryarchaeota phylum).

Again we show in Supplementary Table S5 in Supplementary Data

that the performance based solely on BLAST scores for the two best

models (CSSS and PhymmBL) is superior for the CSSS model than

PhymmBL.

3.3 Dataset III—Classification of protein sequences
Next, we evaluated the ability of the CSSS model to classify protein

sequences in Dataset III (see Section 2). Dataset III was originally

created to evaluate methods for detecting distant sequence similar-

ities among protein sequences as described in (Liao and Noble,

2003). The results obtained with the CSSS model are compared with

those presented in Kocsor et al. (2006), where the performance of

Table 1. The classification accuracy [see Equation (16)] for Dataset I

obtained with the CSSS (1-NN classifier) and the five other models:

PhymmBL (Brady and Salzberg, 2009), NBC (Rosen et al., 2011),

Kraken (Wood and Salzberg, 2014), RAIphy (Nalbantoglu et al.,

2011) and PAUDA (Huson and Xie, 2014) when predicting 147 dif-

ferent viral genera across 266 viral DNA sequences as a function of

the viral fragment length

Classifier Full-length

genomes

accuracy (%)

Viral fragment

length 1000-bp

accuracy (%)

500-bp

accuracy

(%)

100-bp

accuracy

(%)

CSSS 91.43 6 0.99 70.02 6 2.01 63.02 6 1.49 35.94 6 3.31

PhymmBL 86.56 6 2.19 68.90 6 1.78 57.28 6 2.09 29.79 6 1.66

NBC 74.67 6 0.64 59.06 6 1.49 50.39 6 2.77 34.04 6 1.53

Kraken 48.47 6 1.85 26.66 6 1.94 23.07 6 2.19 16.26 6 1.40

RAIphy 42.03 6 1.56 30.72 6 1.66 23.97 6 1.66 14.06 6 1.17

PAUDA 0.10 6 0.15 6.73 6 1.40 21.22 6 1.32 31.89 6 2.42

Table 2. The classification accuracy [see Equation (16)] for Dataset

II obtained with the CSSS (1-NN classifier) and the six other mod-

els: PhymmBL (Brady and Salzberg, 2009), PhyloPythiaS (Patil

et al., 2011), NBC (Rosen et al., 2011), Kraken (Wood and Salzberg,

2014), RAIphy (Nalbantoglu et al., 2011) and PAUDA (Huson and

Xie, 2014) when predicting the phyla for 20 907 reads belonging to

Leptospirillum sp. groups II and III genomes (18 579 reads) and

Ferroplasma acidarmanus genome (2328 reads)

Classifier Euryarchaeota

accuracy (%)

Nitrospirae

accuracy (%)

CSSS 87.03 96.66

PhymmBL 81.14 97.67

PhyloPythiaS 72.76 95.42

NBC 16.15 82.07

Kraken 0.26 77.14

RAIphy 1.03 66.99

PAUDA 4.38 8.41
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the combined similarity measure Lempel-Ziv-Welch (LZW)-BLAST

(obtained by combining CB LZW and BLAST scores) was compared

with that of the SW algorithm and two hidden Markov model-based

algorithms using two types of classifiers the NNs (1-NN) algorithm

and the support vector machine (SVM). Instead of calculating

BLAST scores, the evaluation of the CSSS model on this protein

dataset was performed using SW P values, taken from Liao and

Noble (2003). The k-mer size for this dataset was set to 1 since the

much larger alphabet size for protein sequences (n¼20) requires se-

quences of length L�400 for the k-mer size of 2 [see Equation (15)]

a value that is much larger then the length of many of the protein se-

quences in Dataset III. The combined score in Equation (9) is calcu-

lated based on scores obtained using the three alignment-free

measures [see Section 2, Equations (3, 5 and 7)] and normalized SW

P values [see Equation (14)]. For the purpose of comparison with re-

sults presented in Kocsor et al. (2006) the classification results of the

CSSS model are expressed as the integral of the AUC curve shown in

Supplementary Figure S2 in Supplementary Data (note that since

Dataset III contains 54 families the maximum value for this integral

is 54).

In Table 3, we present that the CSSS method achieves a slightly

better performance than the SW P value similarity/distance measure

(using either the SVN or the 1-NN classifier) as reported in Kocsor

et al. (2006) and performs much better than the combined LZW-

BLAST similarity measure with the 1-NN classifier also reported in

Kocsor et al. (2006).

4 Discussion

Sequence comparison is at the core of many bioinformatics applica-

tions such as metagenomic classification, protein sequence and func-

tion characterization and phylogenetic studies to name a few. In many

of these applications, the alignment-based sequence comparison is

widely used, but this does not come without some limitations. One

important limitation is that the alignment-based similarity measure

might give erroneous information when used with sequences that

have undergone some type of sequence rearrangement. Alignment-free

similarity measures offer an alternative to the alignment-based ones in

that they are unaffected by such genetic processes.

In this study, we propose a model that combines similarity scores

obtained with alignment-based and alignment-free sequence similar-

ity measures [see Equation (9)] to gain additional discriminatory in-

formation about sequences and to improve their characterization.

In Tables 1 and 2, we present that our approach performs better

than most of the other methods used in this study when predicting

genera of unknown viral sequences (i.e. sequences that are not part

of the training set as described in Dataset I) or when predicting

phyla of metagenomic sequences. The main conceptual difference

between the CSSS model and the other classification methods used

in this study, at the exception of PhymmBL, is that the CSSS model

combines similarity scores obtained with both the alignment-based

and the alignment-free sequence similarity measures, while the other

models rely on either one of these two approaches. Thus, NBC

(Rosen et al., 2011), RAIphy (Nalbantoglu et al., 2011) and

PhyloPythiaS (Patil et al., 2011) rely on the alignment-free compos-

ition-based approaches (using k-mer frequencies or k-mer counts)

and PAUDA (Huson and Xie, 2014) relies on the alignment-based

approach and Kraken (Wood and Salzberg, 2014) on the exact

alignment of k-mers. Although in some respects, our approach is

similar to that of PhymmBL, since both methods combine scores cal-

culated using different types of similarity measures [PhymmBL uses

BLAST scores and IMMs scores (Salzberg et al., 1998)], there are

two main differences that can explain the results obtained with

Dataset I shown in Table 1.

First, the CSSS model uses four different similarity measures, so

that if sufficiently independent one from another, their combined

additive effect could confer a greater discriminatory power than the

two similarity scores combined by PhymmBL. In Supplementary

Table S6 in Supplementary Data, we show the classification accu-

racy of individual similarity measures used by CSSS and PhymmBL

models as a function of the viral fragment length.

Although the classification performance of the ED [see Equation

(3)] and JSD [see Equation (5)] measures are very similar, the classi-

fication performance of the CB [see Equation (7)] measure drops

rapidly below 10% as the length of viral fragments decreases. If,

however, we perform the classification on full length viral genomes

(see Section 2.3.1) we find that the CB measure improves the per-

formance by as much as 5.79% when combined with the other three

measures (ED, JSD and BLAST). This shows that the CB measure

contains significant additional information, only for sequences that

are similar in length to those in the training set, that is complemen-

tary to the information contained by the other three measures. This

drop in performance of the CB measure as a function of the frag-

ment length, relative to the length of the genomes in the training set,

explains also the smaller difference in performances observed be-

tween the CSSS and PhymmBL models when classifying longueur

reads in Dataset II (see Section 2) shown in Table 2.

Since the ED and JSD measures show similar classification per-

formances, we investigated the degree of independence of these two

measures by performing a principal components analysis (PCA) of

the similarity scores obtained using viral genomes from Dataset I.

We found that the first component (i.e. PCA1) is strongly associated

with the ED measure in test samples, while the second component

(i.e. PCA2) is strongly associated with the JSD measure, a result that

is independent of the viral fragment length as shown in

Supplementary Figure S3 in Supplementary Data. These results indi-

cate that these two measures can be considered as orthogonal and

thus not correlated, with the ED measure accounting for most of the

variation across viral genomes in test samples. To further determine

the effect of these two measures on the classification performance,

we removed each measure from the model one at the time and then

recalculated the accuracy scores. We found that for full viral gen-

omes, the effect of removing the ED measure reduced the classifica-

tion performance significantly by 5%, while removing the JSD

measure reduced it only slightly (0.25%). However, in the case of

shorter viral fragments, dropping either one of these two measures

from the model did not produce any significant change to the per-

formance, while removing both produced a significant drop in

Table 3. The classification performance on protein domain se-

quences for the CSSS model (1-NN classifier) with the k-mer

size¼1 (see Section 3), expressed as the integral of the AUC curve

shown in Supplementary Figure S2 in Supplementary Data

Similarity/distance measure Classification method

SVM 1-NN

SW P valuea 48.66 50.22

LZW-BLASTa 49.0 37.18

CSSS NA 50.64

Since Dataset III contains 54 protein families, the maximum value for the

integral of the AUC curve is 54, which correspond to all 54 protein families

being classified without error.
aSimilarity/distance measures presented in Kocsor et al. (2006).
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performance (up to 3% for 1000 bp reads). In the light of these re-

sults, we conclude that both of these measures contain complemen-

tary information that is useful for characterizing viral sequences.

The second important difference between our model and

PhymmBL is in the weighting scheme used. In the PhymmBL model,

the weights assigned to each similarity measure (i.e. combined

score¼ IMMþ1.2(4 - log(E)), where IMM is the score of the best

matching IMM and E the smallest E-value returned by BLAST) have

the same value for all test examples, in the CSSS model weights are

determined independently for each test example based on the dis-

criminatory ability of each measure using the training set [see

Equation (9)]. Having different sets of weights for different test,

samples (i.e. test sequences) should improve the classification per-

formance since some sequences will be better characterized with one

type of similarity measure than another. Another important differ-

ence between these two methods is in the classification performance

using BLAST results alone. As shown in Supplementary Tables

S4–S6 in Supplementary Data, we found that a significant improve-

ment in classification is obtained when the BLASTN algorithm is

used instead of mega-BLAST, the algorithm used by PhymmBL.

BLASTN is more sensitive than mega-BLAST because it uses a

shorter word size (default value of 11) that makes it better at

finding-related nucleotide sequences between more divergent bio-

logically sequences since the initial exact match can be shorter.

We found that for very short viral fragments (100 bp in length),

the CSSS model performs better than PhymmBL and achieves

slightly better accuracy (but not significant P value¼0.13, using the

two sample t-test) than the NBC model, as shown in Table 1. By

examining the individual performance of the sequence similarity

measures used by the CSSS model, we found that the composition-

based and CB similarity measures are more affected by the shorter

fragment size than the alignment based one, as shown in

Supplementary Table S6 in Supplementary Data. Despite this drop

in performance (of the composition-based and the CB similarity

measures) for short 100 bp viral fragments, by virtue of combining

different similarity measures the CSSS model still achieves better

performance than the alignment-based method PAUDA

(P value¼0.008, using the two sample t-test) or the hybrid

PhymmBL (PhymmþBLAST) (P value¼0.0001, using the two sam-

ple t-test) and performs equally well as the best composition-based

model used in this study, namely NBC.

In Section 3, we have shown that our approach can also be used

effectively for protein sequence classification. In Table 3, we show

that our model outperforms a similar but simpler LZW-BLAST 1-

NN model (Kocsor et al., 2006). The main differences between these

two approaches are the number of similarity measures used

[frequency-based measures such as those given in Equations (3) and

(5) were not used in Kocsor et al., 2006], a different method with

which similarity measures are combined and SW scores (P values)

instead of BLAST scores. Without using a weighting scheme, the

LZW-BLAST method uses a simple multiplication rule to combine

the LZW and BLAST scores (Kocsor et al., 2006). We found that

the multiplication rule used in Kocsor et al. (2006) performs signifi-

cantly better in combination with an SVM rather than a NN classi-

fier. The model proposed in this study performs better than the

SVM (LZW-BLAST) model reported in Kocsor et al., (2006) and

slightly better than the 1-NN (SW P value) as shown in Table 3. We

attribute this smaller gain in classification performance to the short

protein sequences in Dataset III, which pose a greater challenge to

the three alignment-free similarity measures examined in this study.

As shown in Equation (9), our model combines similarity scores

using a linear combination of vectors (equivalent to calculating a

weighed arithmetic mean of scores obtained with each individual

similarity measure). We did explore combining similarity scores

using a different multiplicative model which we found to signifi-

cantly under-perform (in combination with the NN classifier) when

used on datasets presented in this study.

Finally, our approach can be easily extended to any number of

additional similarity measures (such as the IMMs used by

PhymmBL) that might produce additional gain in discriminatory in-

formation about sequences and thus improve the overall classifica-

tion performance. Therefore, future work will include assessing the

performance of additional similarity measures that could be inte-

grated into our model.
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