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Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease
(ESRD)–related mortality and has become a high concern in patients with diabetes mellitus
(DM). Bone is considered an endocrine organ, playing an emerging role in regulating
glucose and energy metabolism. Accumulating research has proven that bone-derived
hormones are involved in glucose metabolism and the pathogenesis of DM complications,
especially DKD. Furthermore, these hormones are considered to be promising predictors
and prospective treatment targets for DM and DKD. In this review, we focused on bone-
derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and
lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.

Keywords: bone-derived hormone, fibroblast growth factor 23 (FGF23), osteocalcin (OCN), sclerostin, diabetes
mellitus (DM), diabetes kidney disease (DKD)
INTRODUCTION

The incidence and prevalence of diabetes mellitus (DM) are rapidly growing worldwide (1). With
advances in medical therapies and the increase in life expectancy, the prevalence of DM
complications is also expected to rise substantially. Diabetic kidney disease (DKD) is one of the
most devastating microvascular complications of DM. DKD manifests with albuminuria regression,
rapid decrease in glomerular filtration rate (GFR), or non-proteinuric or non-albuminuric DKD (2).
The initiation of DKD is hyperglycemia associated, whereas the promotion of DKD is strongly
related to hyperglycemia, albuminuria, hypertension, insulin resistance, and so on (3). Because of
the lack of effective prevention and treatment, DKD leads to the major cause of end-stage renal
disease (ESRD) and mortality in patients with DM (4). Thus, a deeper mechanistic understanding of
DKD is needed.

The bone is classically considered a structural organ for supporting the human body and physical
movement, safeguarding internal organs, and storing and maintaining mineral homeostasis. In
recent years, bone has been established as an endocrine organ, and bone-derived hormones are
involved in regulating glucose and energy metabolism (5, 6). The bone-derived hormones, as part of
endocrine systems, reinforce the tight link between bone and other organs and maintain
homeostasis (7).
Abbreviations: DKD, diabetes kidney disease; ESRD, end-stage renal disease; DM, diabetes mellitus; FGF23, fibroblast growth
factor 23; OCN, osteocalcin; LCN2, lipocalin-2.
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It is conceivable that abnormalities of bone-derived hormones
may lead to disorders in glucose metabolism and dysfunctions in
glucose regulatory organs, such as the pancreas, liver, adipose,
and kidney. From another perspective, the higher fracture risk in
patients with DM also suggests that bone health and endocrine
functions can be strongly affected by long-term exposure to a
hyperglycemia environment (8). Among the DM complications
related to bone metabolism, DKD stands out for its direct effects
on mineral homeostasis (9). In this review, we focus on classical
bone-derived hormones, summarize the physiological regulation
of glucose metabolism, and discuss how those factors influence
the DKD population. We propose that bone-derived hormones
are promising therapeutic targets. In addition, in-depth studies
could contribute to the prevention of DKD and improvement of
patients’ quality of life.
BONE-DERIVED HORMONES AND DKD

Fibroblast Growth Factor 23
Physiological Function and Regulation of FGF23
Fibroblast growth factor 23 (FGF23), the first bone-derived
hormone to be discovered, is primarily produced by osteoblasts
and osteocytes (10). FGF23 mainly acts on the kidney via the FGF
receptor (FGFR)–Klotho complex co-receptor and plays a key role
in regulating calcium and phosphate homeostasis (11). In the renal
distal convoluted tubule, FGF23 reduces renal calcium excretion
by upregulating the expression of calcium-selective channel
protein TRPV5 (transient receptor potential vanilloid channel
subfamily member 5) (12). In the renal proximal tubules, FGF23
induces phosphaturia by inhibiting the expression of type IIa and
IIc sodium–phosphate cotransporters (Na-Pi IIa/IIc) (13). At the
same time, FGF23 also suppresses the production of 1,25-
dihydroxy vitamin D3 [1,25(OH)2D3] by inhibiting renal 1a-
hydroxylase activity and switching from 24-hydroxylase (13).
The reduction of 1,25(OH)2D3 synthesis downregulates calcium
and phosphate absorption in the intestine, leading to further
decreased serum levels (13). The parathyroid glands also express
the FGFR-Klotho complex, and the binding of FGF23 and FGFR-
Klotho complex activates the mitogen-activated protein kinase/
extracellular signal-regulated kinase 1/2 signaling pathway to
inhibit parathyroid hormone (PTH) synthesis and secretion
(14). In addition, FGF23 suppresses the secretion of PTH by
Klotho-independent calcineurin-mediated signaling pathway (15).
Renin–angiotensin–aldosterone system (RAAS) plays important
role in the progression of CKD. Moreover, the RAAS inhibitors
show clinical evidence to slow disease progression, not only rely on
the blood pressure control but also reduce proteinuria, and inhibit
RAAS activity. The effect of FGF23 on the RAAS is also
noteworthy. FGF23 could suppress renal angiotensin-converting
enzyme 2 (ACE2) and facilitates the production of angiotensin II
(Ang II), which is both prohypertensive and proinflammatory
(16). However, the direct association between FGF23 and blood
pressure remains unclear. Mice with X-linked hypophosphatemic
rickets (XLH) characterized by high FGF23 levels do not show
hypertension, suggesting that FGF23may not affect blood pressure
directly (17). Calcitriol, PTH, and dietary phosphate are the major
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systemic regulators of FGF23 levels (13). The high blood levels of
calcitriol and PTH stimulates biosynthesis of FGF23 in bone (13,
18). Only high-phosphate diets result in FGF23 secretion, and
phosphate infusion did not affect FGF23 levels in healthy humans
(19, 20). It is reported that other factors, such as iron deficiency,
hypoxia, chronic inflammation, adipokines, leptin, and acidosis
metabolic acidosis, also affect the circulating FGF23 level (13).
However, the accurate mechanism of FGF23’s local regulation via
paracrine remains unclear (13).

FGF23 in Glucose Metabolism
Serum phosphate is an important mediator between FGF23 and
blood glucose. In an animal study, hypophosphatemia impairs
adenosine triphosphate (ATP) production in pancreatic islet cells
and results in decreased insulin secretion (21). In healthy
individuals, low serum phosphate levels are associated with
reduced insulin resistance (IR) (22); phosphate supplementation,
especially when co-ingested with glucose, can, in turn, improve
insulin sensitivity (23). Moreover, serum phosphate level is
disturbed in the early progression of diabetes and the phosphate
deregulation adversely affects glucose metabolism (24). In Fgf23
gene-deficient mice, hypoglycemic and increased peripheral
insulin sensitivity is observed, and subcutaneous glucose
tolerance is improved (25). However, the effects of FGF23 on
glucose metabolism in humans are less known. A clinical trial in
healthy adults reported that the increased FGF23 concentrations
induced by diet did not affect fasting glucose or insulin levels (26).
In addition, in vitamin D–deficient patients with impaired glucose
metabolism, oral glucose loading decreased the secretion of FGF23
(26). On the other hand, the association of FGF23 with IR is
controversial. Wojcik et al. indicated that FGF23 contributes to
insulin sensitivity and negatively correlates between FGF23 and
homeostatic model assessment of IR (HOMA-IR) in adolescents
with obesity (27, 28). Hanks et al. showed that FGF23 was
positively associated with HOMA-IR in community-dwelling
adults (29). A large cohort of 3,115 elderly subjects with diabetes
demonstrated that FGF23 levels were not related to the IR (30).
More investigations are needed to explain the causal association
between FGF23 and glucose metabolism in humans.

FGF23 in DM and DKD
The fluctuations of blood FGF23 levels are complex in patients
with DM. Recently, it is reported that insulin is a negative
regulator of FGF23 (31). Several studies demonstrated that
blood FGF23 levels are increased in patients with T2DM (32,
33). Chronic inflammatory conditions in T2DM may result in
raising FGF23 levels by overruling the suppressive effect of
hyperinsulinemia (34). Furthermore, leptin, advanced glycation
end products (AGEs), early renal tubular dysfunction, and the
application of sodium-glucose cotransporter-2 inhibitors (SGLT-
2is) may also contribute to the elevated serum levels of FGF23
(24). SGLT-2is shows significant glucose-lowering and
cardiovascular-renal protective effect (35). The Empagliflozin,
Cardiovascular Outcomes, and Mortality in Type 2 Diabetes
(EMPA-REG OUTCOME) and the CANag l ifloz in
cardioVascular Assessment Study (CANVAS) program showed
improvements in renal outcomes, and SGLT-2is are helpful in
July 2022 | Volume 13 | Article 938830
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the prevention of the development and progression of DKD (35).
However, randomized studies in the last several years have
discovered that the treatment of Canagliflozin, Dapagliflozin,
and Empagliflozin increases serum phosphate, PTH, and FGF23
(36–38). In the CANVAS trial, it was even observed that a
possible association between canagliflozin and increased
fracture risk (39). SGLT-2is inhibits SGLT-2 in renal proximal
tubules, directly upregulate the Na-Pi reabsorption viaNa-Pi IIa/
IIc cotransporter, and then increase serum phosphate and
circulating FGF23 levels. Thus, the increase in the FGF23 levels
generated by SGLT2i is noticeable, as it may result in adverse
diabetes outcomes including fracture and cardiovascular events.
FGF23 levels started to increase early in the course of chronic
kidney disease (CKD), which occurs before the increase of blood
phosphate level (40). In parallel with declining kidney function
and decreasing phosphate clearance, FGF23 levels will elevate
further and be more than a thousand-fold higher in end-stage
renal disease (ESKD), compared with normal value (41). In
addition, Carlson et al. reported the intradialytic clearance of
FGF23 occurs in patients undergoing chronic hemodialysis, and
the clearance of FGF23 is related directly to the ultrafiltration
rate (42). However, the intradialytic plasma concentrations of
FGF23 remained unchanged (42). A cross-sectional study
revealed that patients with DM with IR exhibited higher
FGF23 levels in the CKD stages 3–5 (43). Osteoporosis is also
common in the DM population. A prospective study of 126
patients with T2DMwith CKD stages 2–3 suggested that patients
with a fracture event displayed higher levels of FGF23, and
FGF23 could independently affect the occurrence of fracture
(44). On the other hand, increased serum FGF23 levels increase
all-cause and cardiovascular mortality in patients with T2DM,
especially under the CKD conditions (45). Some studies revealed
possible mechanisms by which FGF23 affects CKD progression.
In wild-type mice, elevating FGF23 levels increase hepatic and
circulating cytokines and drive inflammatory states, which is
associated with poor clinical outcomes of CKD (46). FGF23
signaling also impairs leukocyte recruitment in vitro and in vivo
during CKD, and the disordered leukocyte recruitment increased
predisposition to infections by weakening host response (47).
However, in patients with CKD with hemodialysis, high FGF23
is not the cause of infection or systemic inflammation but is
positively associated with vascular calcification (VC) (48, 49). VC
is highly prevalent in DM and is deemed to participate in the
pathogenesis of uremic VC (50). Because elevated circulating
FGF23 level is associated with cardiovascular mortality and
progression in CKD, the effect of phosphorus restriction diet–
induced FGF23 reduction was investigated. The result suggested
that a standard low-phosphorus diet reduced circulating FGF23
level in both early and advanced CKD. In addition, serum PTH
was decreased in the advanced CKD group, and 1,25(OH)2D3

levels was increased in the early CKD group (51). Another
randomized controlled crossover study suggested that very
low–protein diet with a consequently low intake of phosphorus
could rapidly reduce FGF23, serum phosphate, and urinary
phosphate excretion within 1 week (52). In nephrectomized
(Nx)–induced uremia rat model, serum phosphate, urinary
Frontiers in Endocrinology | www.frontiersin.org 3
phosphate excretion, serum FGF-23, and PTH were
significantly lower in the low dietary phosphate group.
Modification of phosphorus concentration in the diet affected
the apoptosis of enterocytes and type IIb sodium–phosphate
cotransporters (Na-Pi IIb) and phosphate inorganic transporter-
1/2 (PiT-1/2) expression in jejunum mucosa (53). Those studies
suggest that early control of phosphorus intake prevent FGF23
increasing and improve the VC and CKD progression. Further
studies are warranted to clarify the potential role of high plasma
FGF23 levels in CKD. FGF23 could be new hope for the
prevention and treatment of DKD.

Osteocalcin
Physiological Function and Regulation of OCN
OC is an osteoblast-secreted and vitamin K–dependent protein
and is comprised of two forms: undercarboxylated osteocalcin
(ucOCN) and carboxylated osteocalcin (cOCN) (54, 55).
Circulating OC is accessible to measurement, and ucOCN is
considered to be the bioactive form of OC that plays a role in
regulating energy metabolism and glucose homeostasis (56). OCN
maintains calcium homeostasis and facilitates bone mineralization
and growth (55). The specific receptor of ucOCN is G protein–
coupled receptor class c group 6 member A (GPRC6A), expressed
broadly in various organs except for the brain. In mice models,
ucOCN affects adipocyte gene expression and reduces fat mass
(57). In addition, ucOCN is also required and sufficient to
strengthen the exercise capacity of skeletal muscle (58). More
importantly, OCN could directly stimulate b-cells proliferation,
insulin secretion, and insulin sensitivity (59, 60). Mizokami et al.
further found that ucOCN also induces glucagon-like peptide-1
(GLP-1) release from the gut that plays a main role in insulin
secretion stimulated by ucOCN (61). Beyond that, OCN makes it
possible that a more mixed regulation between bone and islet b
cells. Insulin could increase OCN activity and suppress
osteoprotegerin (OPG) expression that enhances bone
resorption via osteoclasts (62). On the other hand, Delta-like 1
(DLK1) produced by pancreatic b cells could be stimulated by
ucOCN and negative feedback regulate the OCN production in
osteoblasts (63). In addition, ucOCN modulates reproductive
function by situating testosterone secretion from the testis (64).
G protein–coupled receptor 158 (GPR158) acts as the receptor for
ucOCN in the brain, and through binding to which ucOCN
enhances the brain’s cognitive function (65).

OCN in Glucose Metabolism
The above summary of OCN functions, based on the
experimental models, provides preliminary evidence for the
connection between OCN and glucose metabolism. The
evidence of OCN that directly impacts glucose metabolism is
also accumulating in humans. A cross-sectional study of 2,353
participants showed that the serum OCN level was highest in the
normal glucose tolerance (NGT) group and gradually reduced in
the impaired glucose tolerance (IGT) group and T2DM
participants (66). After this, 1,049 participants with no diabetes
and 983 participants with NGT were follow-up for 4 years, and
researchers reported that the low serum OCN level group
July 2022 | Volume 13 | Article 938830
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(<23.33 ng/ml) exhibited an increased risk of T2DM, impaired
fasting glucose (IFG), and IR (66). A prospective community-
based cohort study, which consists of 6,595 middle-aged to
elderly Chinese participants, demonstrates that high circulating
OCN was significantly associated with decreased blood glucose
level, IR, triglyceride (TG), and body mass index (BMI) (67).
Thus, OCN may correlate positively with glycemic metabolism
status, and lower serum OCN concentration is associated with
incident T2DM, which was also justified in different populations
by the subsequent studies by Urano et al. and Ye et al (68, 69).
However, a prospective investigation showed that there was no
evidence of an association between ucOCN and incident T2DM
in older participants (70). Aside from this, OCN is a medium
through which some medication affects glucose metabolism.
Randomized clinical implementation trials have proved that
the glucocorticoid through decreasing OCN concentrations
reduces hepatic insulin sensitivity and induces basal and
postexercise IR (71, 72). Interestingly, the decline of OCN
caused by medication is not always influencing blood glucose
levels. Lewis et al. discovered glycated hemoglobin (HbA1c) did
not alter clearly although OCN was fall in older women after 1
year of calcium supplementation (73). Future research may
assess whether treatment with more profound effects on OCN
interferes with glucose metabolism.

OCN in DM and DKD
Many basic experimental studies have proved OCN engages in
different stages of DM development and play a protective role
through influencing adipose tissue metabolism, pancreatic
function, and oxidative stress (74). In a clinical trial involving
75 middle-aged to aged Japanese without any anti-diabetic agent
administration, it was observed that ucOCN is correlated with
HbA1c and insulinogenic index (IGI) in the DM group, and
ucOCN plays more vital roles in insulin secretion than in insulin
sensitivity in patients with DM (75). In a study of children with
newly diagnosed DM, serum C-peptide levels are related to a
higher ucOCN and ucOCN/cOCN rat io (76) . The
abovementioned research suggested OCN favors insulin
secretion in patients with DM, but the relationship between
OCN and glucose homeostasis, which is crucial for controlling
the progression of DM complications, is uncertain. A previous
study investigated the community-based adults with type 1 DM
(T1DM), finding that OCN is unrelated to any glucose
homeostasis marker (77). Nevertheless, the relationship
between OCN and DKD has been well documented. A 4.6-year
prospective study of 1,174 patients with DM with normal kidney
function concluded that lower OCN levels were relevant to an
increased risk of incident DKD (69). A cross-sectional study
induced 374 men and 364 postmenopausal women showed that
patients with T2DM with micro or macro-albuminuria had
lower OCN levels compared with patients with normal
albuminuria (78). In addition, the decreased OCN levels could
affect osteogenesis in T2DM with proteinuria (78). Similar to
FGF23, OCN also independently affected the occurrence of bone
fracture in patients with DKD and was lower in patients with a
fracture event compared with patients without fructure (44).
Frontiers in Endocrinology | www.frontiersin.org 4
Hemodialysis is an important therapeutic choice for patients
with ESKD. Carlson et al. observed that OCN blood
concentrations declined during hemodialysis but rebounded
within 6 h, and the intradialytic plasma concentrations of
OCN did not change significantly (42). Fusaro et al. found that
patients with DM undergoing hemodialysis had a higher risk of
all-cause mortality and total OCN and ucOCN were lower,
compared with patients without DM undergoing hemodialysis,
which might indicate that OCN plays a potential protective role
in patients with ESKD (79). A lower OCN level is unfavorable for
blockading the onset and progression of DKD. Given that
ucOCN is the active form of OCN, more clinical research
studies are necessary to evaluate the role of ucOCN in the
DKD population.

Sclerostin
Physiological Function and Regulation of Sclerostin
Sclerostin is a glycoprotein predominantly produced by mature
osteocytes, and it can inhibit bone formation by occupying Wnt
coreceptors low-density lipoprotein receptor-related proteins 5
(Lrp5) and Lrp6 to suppress Wnt signaling pathway (80). The
latest study supplemented that the binding of sclerostin to Lrp4
enhances this suppression by facilitating sclerostin-Lrp6 binding
(81). The changes in Wnt signaling also stimulate bone
resorption by repressing the expression of OPG, a downstream
target of the Wnt signaling pathway that can inhibit bone
resorption (82). Therefore, sclerostin effectively reduces bone
mass and volume, and antisclerostin monoclonal antibody has
gradually held an important place in the treatment of
osteoporosis (83). In addition, sclerostin can affect mineral
metabolism by altering mineral homeostasis-related hormones.
Sost is the gene encoding sclerostin, and Sost−/− mice display
lower FGF23 levels, reduced calcium excretion, and elevated
serum phosphorus (84). On the other hand, the Wnt pathway is
also been linked to adipogenesis (85). Sost−/− mice exhibit a
notable increase in bone formation and a decrease in visceral and
subcutaneous adipose, which are explained by the sclerostin
deficiency, blocking the differentiation of adipocyte progenitors
to mature adipocytes (86). In addition to white adipose tissue, the
major component of visceral and subcutaneous adipose,
sclerostin, also increased the brown adipose tissue (BAT)–
specific gene expression and the bone marrow adipose tissue
(BMAT) formation that were confirmed in other experiments
(87, 88). Thus, inhibiting sclerostin also contributes to the
treatment of obesity. In addition, it has been proposed that
sclerostin’s regulation of adipogenesis also affects the immune
cell maintenance, and sclerostin depletion is disadvantageous
for B lymphopoiesis and myelopoiesis, even hematopoiesis (89).
Mechanical force can promote bone formation, and the Wnt
signaling pathway represents a critical role in the regulation of
mechanical stress-induced bone formation (90). Hence,
sclerostin then becomes an obligatory step for this process and
can be downregulated by mechanical force to increase bone
formation (90). Furthermore, Sost transcription is negatively
regulated by PTH, and Lrp4 plays an integral role in this
process (91).
July 2022 | Volume 13 | Article 938830
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Sclerostin in Glucose Metabolism
As stated above, sclerostin promotes adipogenesis. Adipose
tissue has endocrine function and exerts an impact on energy
metabolism. Numerous studies showed that sclerostin could
influence glucose metabolism. Lrp4 is necessary for normal
sclerostin function and is expressed in both adipocyte and
osteoblast (92). Kim et al. found that mice with Lrp4-deficient
adipocytes showed increased glucose and insulin tolerance and
that mice with Lrp4-deficient osteoblasts developed impairments
in glucose tolerance and insulin sensitivity (92). Following this
experiment, Kim et al. conducted another study in Sost−/− mice
and observed improvements in glucose metabolism (86). Similar
research was also performed on children and adolescents.
Wedrychowicz et al. identified that sclerostin correlated
negatively with HOMA-IR, and this correlation was stronger
in obese children and adolescents (93). These investigators also
found an inverse association between sclerostin and insulin in
the obese group and an inverse association between sclerostin
and C-peptide in the health cohort (93). These results are
complemented by a recent study that sclerostin was also
inversely related to fasting glucose in obese children and
adolescents, and the negative relationship between sclerostin
and fasting insulin levels has been also observed (94).
Consequently, sclerostin is closely correlated to blood glucose
level and insulin resistance. In addition, to better understand
how sclerostin affects glucose metabolism in the human body,
further in-depth research focusing on the potential mechanism
is required.

Sclerostin in DM and DKD
In an in vitro experiment, investigators found high glucose (HG)
and AGEs significantly increased sclerostin expression in
osteocytes, and this function can be antagonized by PTH (95).
The increased expression of sclerostin is also observed in
streptozotocin-induced DM rats, which further confirmed the
detrimental effects of sclerostin on bone in patients with DM
(96). A case-control study including 40 T1DM cases and 28
healthy controls showed that serum sclerostin levels were
negatively associated with HbA1c in patients with T1DM and
the sclerostin levels were significantly greater compared with
healthy participants (97). Another clinical study involving
T2DM postmenopausal women found that T2DM upregulates
the expression of Sost and AGEs, contributing to the impairment
of bone microarchitecture (98). A prospective cohort that
included 1,778 individuals revealed no clear association
between sclerostin and T2DM risk (99). However, in the cross-
sectional study, Napoli et al. and Shalash et al. suggested that
serum sclerostin levels in patients with T2DM were noticeably
higher than those subjects without DM (100, 101). In addition,
the positive correlation between sclerostin and VC, sclerostin
and atherosclerosis, and sclerostin and arterial stiffness in
patients with T2DM was well-proved by cross-sectional studies
(101–103). In addition, a protective role of sclerostin in VC
development was demonstrated in Sost−/− mice (104). Moreover,
Jean et al. found higher sclerostin levels are associated with a
better survival rate in patients undergoing hemodialysis (105).
Like the two mentioned hormones, the concentrations of
Frontiers in Endocrinology | www.frontiersin.org 5
sclerostin also remained nearly constant, although it can be
cleared during hemodialysis (42). In patients with DKD, Kim
et al. detected the sclerostin level begin to elevate in CKD stage 3
and dramatically elevate in CKD stage 4/5 (106). In addition, Wu
et al. found that urinary sclerostin is positively related to
fractional excretion of magnesium in patients with DKD or
patients with T2DM without CKD (107). The above results
implied that the increased sclerostin level is probably a
protective phenomenon and that urinary sclerostin also plays a
potential role in renal electrolyte excretion in patients with DKD.
Addit ional research is warranted to shed light on
this phenomenon.

Lipocalin-2 (LCN2)
Physiological Function and Regulation of LCN2
LCN2 is a 198–amino acid adipocytokine, also termed neutrophil
gelatinase–associated lipocalin (NGAL) (108). It exists in a wide
variety of cells, such as neutrophils, hepatocytes, adipose tissue,
renal cells, and bone marrow (108). Megalin/glycoprotein
(gp) 330 and solute carrier family 22 member 17 (SLC22A17)
or 24p3 cell-surface receptor (24p3R) are two receptors that bind
human LCN2 and LCN2 mouse protein, respectively (108).
LCN2 plays an essential role in normal bone formation and
participates in the endocrine function of the bone (109, 110).
Some experiments in mice have demonstrated that osteoblast-
secreted LCN2 can promote adaptive b-cell proliferation, induce
insulin secretion, improve insulin sensitivity, and inhibit food
intake (110, 111). The melanocortin 4 receptor (MC4R) is a key
receptor for controlling food intake (110). LCN2 can activate the
MC4R-dependent anorexigenic (appetite-suppressing) pathway,
decreasing fat mass and body weight (110). In addition, LCN2
has bacteriostatic properties that make it competent for
combating infection, injury, and other cellular stress (108,
112). LCN2 also plays an important role in cell differentiation,
apoptosis, cancer progression, and metastasis (108). Pathologic
conditions such as inflammation and metabolic diseases can
upregulate the expression of LCN2, and LCN2 can be found in
the brain, heart, and skeletal muscle that do not express LCN2
under normal conditions (108, 113–115). Moreover, AGEs,
insulin, and dexamethasone are strong facilitators of LCN2
expression and secretion (108).

LCN2 in Glucose Metabolism
LCN2 has been shown an intimate association with the
metabolism of glucose. Capehorn et al. confirmed that
improved insulin sensitivity and suppressed gluconeogenesis
were present in LCN2 knockout (LCN2KO) mice (116). Currò
et al. also reported that LCN2 was positively correlated to the
homeostatic model assessment (HOMA) index in normal
subjects, which suggests a regulatory role of LCN2 in IR (117).
Furthermore, Capulli et al. observed that LCN2KO mice showed
lower fasting glucose and higher glucose tolerance compared
with wild-type mice (109). These investigators also found that
insulin levels were increased and the insulin tolerance remained
mostly unchanged in LCN2KO mice (109). In addition to this,
Mosialou et al. considered that the elevated circulating LCN2
levels are a protective reaction to resist obesity-induced glucose
July 2022 | Volume 13 | Article 938830
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intolerance (110). In addition, a cross-sectional study involving
2,519 Chinese aged 50–82 years observed that the serum LCN2
was remarkably higher in subjects with IFG and/or IGT and
newly diagnosed T2DM than in healthy individuals (118).
Another notable finding is that the circulating levels of LCN2
are related to intrapancreatic fat deposition but not to fatty liver
(119). The effect of this ectopic fat deposition on glucose
metabolism merits further investigation.

LCN2 in DM and DKD
DM, considered a circumstance of metabolic inflammation,
could lead to a certain impact on plasma LCN2 concentrations.
Takaya et al. reported that the levels of LCN2 were higher in
adolescents with T2DM compared with the normal control
group (120). Shahnawaz et al. stated that LCN2 was
significantly increased in subjects with T2DM with chronic
hepatitis B infection (121). The findings from Huang et al.
suggested that the elevated serum LCN2 is independently
correlated with T2DM in middle-aged and elderly Chinese
patients (118). A 5-year prospective study in postmenopausal
women with prediabetes found that there was a strong positive
association between circulating LCN2 levels and insulin levels,
HOMA-IR, homeostatic model assessment of b-cell function
(HOMA-B), and BMI (110). However, De la Chesnaye et al. and
Wang et al. observed that the levels of LCN2 were decreased in
individuals with long-term T2DM and inversely related to
HbA1c and BW in diabetes (122, 123). From this, the actual
changes in LCN2 levels are more complicated than expected.
Interestingly, the relationship between LCN2 and the neuropathy
of diabetes is well demonstrated. In mouse models of DM, LCN2
plays a critical role in the pathogenesis of diabetic
encephalopathy (124). In addition, a recent study of subjects
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with T2DM revealed the role of LCN2 in diabetic peripheral
neuropathy (DPN) and highlighted the value of LCN2 in the
evaluation of DPN severity (125). Otherwise, LCN2 is also
identified as the biomarker for acute and chronic kidney injury
(108). Capulli et al. found that LCN2KOmice exhibited polyuria,
glycosuria, proteinuria, and renal cortex vacuolization (109). Li
et al. reported that the variants of LCN2 in human urine were
correlated with renal dysfunction (126). In the kidneys of obese
prediabetic rats, the elevated LCN2 expression occurred earlier
than the biomarkers of inflammation, oxidative stress, and
fibrosis, which means that LCN2 is an important predictor of
early kidney injury (127). Whether the clearance of LCN2 is affected
in DKD is not clear, and more comprehensive studies determining
the role of LCN2 in human DKD are urgently needed.
FUTURE PROSPECTS

With the aid of bone-derived hormones, an intimate relation
between bone and glucose metabolism has been noticed
(Figure 1). Bone-derived hormones play an emerging role in
the treatment, prevention, and prediction of DM. In addition, we
summarized the relevant therapeutic studies around the bone-
derived hormones in DM and DKD.

The description of FGF23 hinting to reduce its serum level is a
reliable treatment option. The reduction of FGF23 levels was
observed in the studies on pharmacological treatments (for
example, dapagliflozin) of DKD (37). On the other hand,
anemia is common in patients with CKD, and targeted therapy
against it, for example, erythropoietin (EPO)–stimulating
agent treatment, can induce increased FGF23 serum levels (128).
Thus, more therapy strategies for patients with DKD should be
FIGURE 1 | The emerging role of bone-derived hormones in glucose metabolism and cross-talk in kidney, pancreas, and other diabetic complication target organs.
Bone acts as the endocrine organand links kidney and glucose metabolism. Bone-derived hormone FGF23 is secreted from osteocytes and regulates urinary
phosphorus excretion from kidney. FGF23 suppresses 1 a-hydroxylase activity, inhibits 1,25(OH)2D3, and reduces parathyroid hormone (PTH) level. Osteocalcin
(OCN) acts on pancreas and adipose tissue to regulate glucose and energy metabolism, insulin secretion, and insulin resistance. Sclerostin plays important role in
vascular calcification, which promotes chronic kidney disease progression directly and indirectly. Osteoblast secreted lipocalin-2 (LCN2) regulates central food intake
and pancreatic b-cell proliferation, to maintain glucose and energy homeostasis. The bone-derived hormones would be potential therapeutic target for DM and
complications based on their effect on maintaining glucose homeostasis and bone health.
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considered associated with FGF23. Burosumab, the monoclonal
antibody that targets and blocks the activity of FGF23, has been
studied comprehensively in the treatment of mineral disorder and
is expected to provide a potential choice for improving mineral
metabolism in patients with DKD (129, 130). It leads an important
future direction that evaluating the efficacy and safety of the anti-
FGF23 monoclonal antibody in patients with DKD, which is
beneficial in reducing the risk of fracture and lowering the
incidence of adverse cardiovascular events. In addition, deity
phosphorus restriction in patients with CKD reduces circulating
FGF23 level and then improves the VC, cardiovascular outcomes,
bone metabolism, and disease progression. Previous studies of
mice showed that OCN appears to be a viable therapeutic method
in obesity and insulin resistance. A recent study provided further
evidence that the short- and long-term treatment of
decarboxylated OCN (dcOCN), a kind of uncarboxylated OCN,
can increase glucose uptake in MG63 cells (human osteoblast-like
osteosarcoma cells), which implies that dcOCNmay be a potential
approach for T2DM (131). Otherwise, the clinical application for
OCN as a predictor of DM complications is also underway. Zhu
et al. found that circulating OCN can emerge as a predictor of
ketosis in T2DM (132). In recent years, the role of OCN in
gestational DM (GDM) is also arousing attention. Song et al.
demonstrated that the synthesis of OCN can occur in the placenta
and that a lower OCN concentration in umbilical vein serum is
related to GDM (133). Inhibition of sclerostin is an effective way to
lower T2DM-associated fracture risk. However, a meta-analysis
indicated this therapeutic approach may lead to increased
cardiovascular events (134). Thus, it calls for utmost vigilance
that the cardiovascular safety of the application of sclerostin
inhibitors in patients with DM and DKD. LCN2, as a novel
bone-derived hormone, plays an active role in energy
metabolism. The administration of exogenous LCN2 can reduce
food intake and fat mass (110). On the other hand, it is also
noticeable that LCN2 is a promising diagnostic biomarker and
drug target in neuropathy of diabetes (135). The small-molecule
LCN2 inhibitors and neutralizing antibodies against LCN2 are
important future directions for the treatment of diabetic
neuropathy (135). Moreover, the activation of epidermal growth
factor receptor (EGFR) and the expression of LCN2 are often
found in the same pathologic conditions, such as CKD (136). In
addition, in the CKD model, the inactivation of the LCN2 gene
Frontiers in Endocrinology | www.frontiersin.org 7
can prevent EGFR recycling to the plasma membrane, which is
related to a dramatic reduction of renal lesions (136). Thus, the
therapeutic suppression of LCN2 may be useful to counteract
kidney damage.

In short, studies on bone-derived hormones have just begun,
and large prospective studies are still necessary to infer more
causal relationships. In future work, more novel agents for the
treatment of DM will emerge by focusing on the endocrine
function of bone.
CONCLUSION

Bone has long been known for its supportive and protective
function. However, the endocrine function of bone deserves
more attention in recent DM studies. Bone-derived hormones
correlate with insulin secretion, insulin resistance, and glucose
metabolism and are implicated in the development and
outcomes of DM and DKD. Bone-derived hormones would be
promising therapeutic targets for DM and complications based
on their potential effectiveness in maintaining glucose
homeostasis and bone health.
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