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Topologically associating domains, or TADs, play important roles in genome organization and gene reg-
ulation; however, they are often altered in diseases. High-throughput chromatin conformation capturing
assays, such as Hi-C, can capture domains of increased interactions, and TADs and boundaries can be
identified using well-established analytical tools. However, generating Hi-C data is expensive. In our
study, we addressed the relationship between multi-omics data and higher-order chromatin structures
using a newly developed machine-learning model called PredTAD. Our tool uses already-available and
cost-effective datatypes such as transcription factor and histone modification ChIPseq data.
Specifically, PredTAD utilizes both epigenetic and genetic features as well as neighboring information
to classify the entire human genome as boundary or non-boundary regions. Our tool can predict bound-
ary changes between normal and breast cancer genomes. Among the most important features for predict-
ing boundary alterations were CTCF, subunits of cohesin (RAD21 and SMC3), and chromosome number,
suggesting their roles in conserved and dynamic boundaries formation. Upon further analysis, we
observed that genes near altered TAD boundaries were found to be involved in several important breast
cancer signaling pathways such as Ras, Jak-STAT, and estrogen signaling pathways. We also discovered a
TAD boundary alteration that contributes to RET oncogene overexpression. PredTAD can also successfully
predict TAD boundary changes in other conditions and diseases. In conclusion, our newly developed
machine learning tool allowed for a more complete understanding of the dynamic 3D chromatin struc-
tures involved in signaling pathway activation, altered gene expression, and disease state in breast cancer
cells.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

The human genome consists of more than three billion
nucleotides, spanning over two meters in length. In order to fit this
vast genomic material in a small nuclear space, the chromatin
undergoes multiple levels of organization. The genome is
beautifully organized into fractal globular-like structures with
extensive but specific looping and folding [1–4]. Furthermore, the
chromatin is organized into sub-mega base regions with increased
self-interaction frequency and decreased interactions with
neighboring domains. The chromatin structure is dynamic and
plays a critical role in targeted transcription and regulation of
genes [5–7]. Unfortunately, in abnormal or cancer cells, the chro-
matin structure is altered, leading to aberrant gene regulation
and disease states [8–11].

1.1. Chromatin organization and their epigenomic and genomic
patterns

High-throughput chromosome conformation capture technolo-
gies such as 3C, 4C, ChIA-PET, and Hi-C have been developed to
experimentally map long- and short-range chromatin interactions
[12–14]. Large-scale 3D chromatin structures such as topologically
associating domains (TAD) and TAD boundaries can be detected
from analyzing these datatypes [1,15]. TADs are self-associating
domains with increased interaction frequencies and TAD bound-
aries are insulating regions that separate two neighboring TADs
[16]. There are a number of well-established TAD prediction tools,
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such as Arrowhead [17] and TopDom [18]. TAD boundaries are
important in gene regulation in that it insulates and prevents
neighboring regions from interacting with each other. This region
limits the interactions between the two adjacent TADs and may
limit the interactions between enhancers and promoters [19–21].

It has been noted that chromatin structures are associated with
TF binding, namely architectural-related protein CTCF, and histone
modifications [19–21]. There is an enrichment of CTCF binding and
transcription start sites of housekeeping genes at TAD boundaries.
Previous studies have also reported distinct patterns of histone
marks around TAD boundaries in H1 hESC and IMR90 cell lines
[15,17,22,23]. Histone modifications (acetylation, methylation,
phosphorylation and ubiquitination) serve as distinct markers for
transcription regulation, and function to control the accessibility
of the chromatin and the recruitment of DNA binding proteins.
DNA methylation and DNA accessibility has also been known to
affect TF binding and histone methylation [24–26]. Despite an
enrichment of CTCF and housekeeping genes at TAD boundaries,
distribution of CTCF alone is not sufficient to predict boundaries
and housekeeping genes were only enriched in some TAD bound-
aries [22]. This suggests that computational models using a combi-
nation of ChIP-seq and other forms of data are needed to predict
and understand large-scale chromatin structures.

1.2. Machine learning and computational tools for multi-omics data
analyses

A number of studies have already begun to predict TAD interac-
tion hubs and TAD boundaries using readily available ChIP-seq
data [22,23,27]. One group developed a tool called HubPredictor
which uses the computational classifier – Bayesian additive regres-
sion tree (BART) to successfully predict TAD boundaries in IMR90
with a good prediction accuracy (AUC = 0.77) [23]. Another group
used a Bayesian Ridge algorithm to develop a computational model
called Position-specific linear model (PSLM) which considered both
position and density of various genomic elements. Then, they
devised a heuristic search algorithm called Population Greedy
Search Algorithm (PGSA) to identify the combination of genomic
elements that best describe TAD boundaries. They also classified
genomic segments as TAD boundaries or non-TAD boundaries with
an AUC of 0.826 [22]. A third group developed a computational
method called TAD-Lactuca which uses histone modification and
CTCF ChIPseq data, as well as frequency of k-mers, to predict
TAD boundaries from non-boundaries (AUC = 0.817 in IMR90 cell
line) [28]. However, these studies have not considered a vast com-
bination of both genomic and epigenomic data. They also did not
create a universally applicable model and they did not consider
alterations found in disease genomes. As an improvement to these
previous studies, various epigenomic data such as DNA methyla-
tion, transcription factor binding, histone modifications, and chro-
matin accessibility as well as several genomic data such as
transcription start site, gene density, and location information
were utilized in our study. Not only that, but previous studies only
focused on a very small portion of the genome: TAD boundaries
and randomly selected non-TAD boundary regions at a 1:1 ratio.
Alternatively, our study interrogates the entire genome by binning
it into 10 kb regions. This allowed the most information to be
retained while providing a reasonably high resolution. Feature
information for each bin’s neighbors were also included in our
model.

Due to the sheer size and volume of the multi-omics ‘‘big” data
(e.g. genomics, epigenomics), more powerful data science
approaches are needed so that we can obtain deeper insights into
living systems. There is a need to develop computational tools to
study the 3D chromatin structures in human genomes. Thus, the
advanced machine learning algorithm, Gradient Boosting Machine
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(GBM) [29,30], was applied to multi-omics data to classify a geno-
mic region as TAD boundary or non-TAD boundary. GBM is a pow-
erful classification method because it is based on an ensemble of
decision trees. Unlike Random Forest (RF), which builds an ensem-
ble of deep independent trees, GBM builds shallow trees one at a
time with each new tree correcting the errors made by previously
trained trees [29]. Other advantages of GBM include capability of
handling missing data, not requiring pre-processed data, and being
a better learner than RF. However, due to its sequential manner,
GBM models take longer to train and are more sensitive to
overfitting.

1.3. Breast cancer as a global challenge and epigenomic aberrations.

Breast cancer is a globally prevalent disease. The 5-year survival
rate for people diagnosed with breast cancer ranges from 90% in
high-income countries to about 66% in India and 40% in South
Africa [31–34]. In the U.S., about 1 in 8 women will develop breast
cancer in her lifetime [35]. It is estimated that there will be more
than 280,000 new cases of invasive breast cancer and 49,000
new cases of non-invasive (in situ) breast cancer in 2021 [32].
There are currently more than 3.8 million women with a history
of breast cancer in the U.S and more than 7.8 million women
worldwide who were diagnosed with breast cancer in the past
5 years [33]. Although the overall death rate from breast cancer
is decreasing by about 1% per year due to advances in treatment
and early detection through screening [36–40], there is still an esti-
mated 43,600 breast cancer related deaths in U.S. women in 2021
[35].

Only 5–10% of breast cancers are linked to inherited gene muta-
tions with the most common being mutations in the BRCA1 and
BRCA2 genes [37,41]. A number of cases rise from accumulated
genetic mutations that occur as a result of aging process [42].
Other cases are not explained genetically, but may be a result of
epigenetic alterations [43,44]. For example, DNA hypermethylation
is significantly enriched in luminal B subtype and DNA
hypomethylation is associated with basal-like subtypes [45].
Others have found that changes in histone acetylation and methy-
lation patterns might represent an early sign of breast cancer [46].
Certain chromatin remodeling genes, such as the SWI/SNF gene,
was shown to have altered levels of methylation, and these alter-
ations could be involved in breast cancer signaling pathways such
as TGF-b pathway silencing and overexpression of MYC [47].

In addition to changes in methylation, other epigenomic aberra-
tions such as alterations 3D chromatin organization plays a role in
breast cancer disease and progression [19,48–51]. However, the
roles of 3D structure and its dynamic in breast cancer are largely
unknown. Previous studies have observed associations between
altered expression of ER-regulated genes and dynamic remodeling
of ER pathways accompanying the development of endocrine resis-
tance [19]. They have observed that loss of 3D chromatin interac-
tions occurs coincidently with hypermethylation and loss of ER
binding. Alterations in active and inactive chromatin compart-
ments are also associated with atypical interactions and gene
expression in breast cancer, suggesting that the 3D epigenome
remodeling is a key mechanism in endocrine resistance in
ER + breast cancer. Moreover, Barutcu et al. also identified changes
in the 3D chromosome clustering between normal epithelial breast
cells and breast cancer cells [52]. They found that small, gene-rich
chromosomes displayed decreased interaction frequency with
each other in breast cancer cells compared to chromosomes in nor-
mal epithelial cells. They also found that altered compartment
regions are associated with up-regulation of genes related to the
repression of WNT signaling and other signaling pathways. Fur-
thermore, estrogen-induced chromatin decondensation and
nuclear re-organization was linked to local epigenetic regulation
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in breast cancer [53]. Estrogen is linked to long-range changes in
higher-order chromatin organization which suggests that 3D chro-
matin architecture could be used as a target for breast cancer treat-
ment [50,53,54].

Taken all together, the 3D chromatin structure, namely TADs
and TAD boundaries, are important in orchestrating proper
enhancer-promoter activity and cell-specific gene expression.
Alterations in chromatin structures in breast cancer leads to a dys-
regulation of enhancer-promoters interactions and promotion of
tumor suppressive functions [54–57]. It is particularly important
to address the 3D chromatin organization differences between nor-
mal and cancer genomes. Therefore, we developed a novel machine
learning model called PredTAD to decipher the relationship
between epigenomic and genomic features and higher-order chro-
matin structures. We hypothesize that epigenomic and genomic
features from readily accessible data types such as ChIPseq can
be used to predict TAD boundaries. We also hypothesize that our
tool can uncover large-scale structural changes that contribute to
breast cancer disease state. Our analysis of the chromatin organiza-
tion offers an in-depth understanding of gene regulation, signaling
pathways activation, and disease state.
2. Materials and methods

2.1. Hi-C data and TAD boundaries

Normal breast epithelial cell line data (MCF10A) and breast can-
cer luminal A subtype (ER+/Her2-) cell line data (MCF7 and T47D)
were obtained from GEO and ENCODE. MCF10A and MCF7 Hi-C
data was obtained from Barutcu et al GSE66733 [56]. Paired-end
reads were mapped to hg19. Due to aneuploidy of MCF7 cells, iter-
ative correction and eigenvalue decomposition (ICE) was per-
formed as previously described [56,58]. TAD calling and TAD
boundary identification was performed using the insulation square
analysis at a 40 kb resolution as previously described [56]. The
widths of the boundaries were extended by 80 kb on both side to
account for the variation between replicates. The final width of
the TAD boundaries spans 200 kb. Weak boundaries with a bound-
ary strength of < 0.15 were excluded. A total number of 3305 and
3273 boundaries were used for MCF10A and MCF7, respectively.
T47D TAD data was obtained from ENCODE (ENCFF437EBV). TAD
boundaries were defined as the region between two TADs. Each
TAD boundary region was standardized to 200 kb width. A total
number of 3166 boundaries were used for T47D. High-depth
GM12878 Hi-C data was obtained from GSE63525 [17]. Processed
TAD data was used. TAD boundaries were defined as 200 kb
regions in between two TADs. There are 3097 boundaries for
GM12878.
2.2. Epigenomic and genomic elements

GM12878, MCF10A, MCF7, and T47D histone modification and
DNA binding protein ChIP-seq data were obtained from the
ENCODE project and GEO database [59,60]. DNA chromatin acces-
sibility was determined by ATAC-seq, which was also obtained
from GEO [61,62]. Fastq sequence files of ChIP-seq and ATAC-seq
data were mapped to hg19 with BWA-MEM and narrow peaks
were called with MACS2 [63,64]. If hg38 narrow peak files were
used, the location of the peaks was converted to hg19 using UCSC’s
liftover. Average narrow peaks per 10 kb bin were normalized to 0–
1 to allow for application of the trained model across different cell
lines. MCF7 and MCF10A DNA methylation were obtained from
ENCODE. T47D DNA methylation, also Illumina Methylation
450 K BeadChip array, was obtained from Uehiro, et al.
GSE87177 [65]. GM12878 was obtained from GSE62111 [66]. All
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DNA methylation data were from Illumina Methylation 450 K
BeadChip array. Transcription factor binding sites for 161 tran-
scription factors were obtained from UCSC (wgEncodeRegTfbsClus-
teredV3 table) [60]. Location of coding, noncoding, and
housekeeping genes were obtained from UCSC. Gene density was
calculated based on the number of TSS of each gene in each geno-
mic bin. Chromosome length and location of centromeres and
telomeres were also obtained from UCSC. Distance to centromere
is defined as the percentage of the chromosomal arm the region
is in, where 0 is at the centromere and 1 is at the telomere.

2.3. PredTAD boundary prediction model

The entire genome is binned into 10 kb regions. Regions in the
centromere and telomere were excluded from the study due to lack
of Hi-C reads in these regions. Training and test sets were ran-
domly selected at a 7:3 ratio per chromosome. Epigenomic and
genomic information of each bin as well as information of neigh-
boring bins were used as the features. Specifically, ten 10 kb bins
to the left (or downstream) and ten 10 kb bins to the right (or
upstream) were included as features. This method keeps spatial
feature information instead of averaging out the signals in the
200 kb region. For ChIP-seq and ATAC-seq data, the mean signal
values of narrowPeaks peaks per bin were used. For methylation
data, the average methylation signal values of all CpG sites in each
bin was used. For transcription factor binding sites and transcrip-
tion start sites, number of each genomic element in each bin was
counted.

The machine learning technique Gradient Boosting Machine or
GBM was used to classify each 10 kb genomic bin as either TAD
boundary or non-TAD boundary. The number of trees built in the
models was set at 500 and the max depth was 10. Although deeper
trees may provide better accuracy on a training set, it is prone to
overfitting. In total, there are 3305 TAD boundaries for MCF10A,
3273 for MCF7, 3166 for T47D, and 3097 for GM12878. For
MCF10A, there were 65,453 positive samples (10 kb regions within
a TAD boundary) and 227,588 (10 kb regions not within a TAD
boundary). For MCF7, there were 64,547 positive and 228,494 neg-
ative samples. For T47D, there were 64,784 positive samples and
231,867 negative samples. For GM12878, there were 63,325 posi-
tive samples and 232,714 negative samples. Any 10 kb regions par-
tially located in a TAD boundary were also excluded.

2.4. Boundary alterations prediction

A modification of PredTAD was used to predict TAD boundary
alterations between normal breast MCF10A cell line and breast
cancer MCF7 or T47D cell lines. Similar to PredTAD, 10 kb regions
were used as samples. Each region could be one of three classes:
normal, cancer, or conserved. Normal boundaries are boundaries
found in normal MCF10A but not in breast cancer MCF7 or T47D
cell lines (also considered as MCF10A-specific boundaries). Cancer
boundaries are defined as boundaries that are not in normal but
are found in breast cancer cell lines (they are also considered as
MCF7-specific boundaries or T47D-specific boundaries). Conserved
boundaries are defined as boundaries found in MCF10A, MCF7, and
T47D.

2.5. Gene expression analysis

MCF10A and MCF7 RNAseq libraries were obtained from Bar-
utcu et al GSE71862 [56]. The libraries were generated with TruSeq
Stranded Total RNA with Ribo-Zero Gold Kit and sequenced as 100-
bp single-end reads using HiSeq 2000. Gene expression (transcripts
per million) was quantified by RSEM v.1.2.7 as previously
described [56,67]. T47D RNAseq library was obtained from Lee
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et al GSE142171. DNA library was generated using TruSeq
Stranded Total RNA LT Sample Prep Kit (Gold) and sequenced with
NovaSeq 6000 sequencer. Differentially expressed genes were
defined as log2FC > 1 with a p-value < 0.05, n = 3 biological repli-
cates. There were 6271 differentially expressed genes between
MCF10A and MCF7 cell lines.

Estrogen related gene list was curated from analysis of two
independent datasets: Lin CY, et al GSE11352 [68] and Nagarajan,
et al. GSE55922 [69]. In the first dataset by Lin CY, et al, MCF7 cells
were treated with 10 nM of 17b-estradiol (E2, estrogen) or vehicle
control for 12 hrs. RNA was extracted and gene expression was
profiled with Affymetrix U133 A and B GeneChips. Data was nor-
malized using the Robust Multichip Average (RMA) normalization
method as previously described [68,70]. Differentially expressed
genes were defined as log2FC > 1 with an adjusted p-value < 0.2,
n = 3 biological replicates. The second dataset is from Nagarajan,
et al [69]. Here, MCF7 cells were treated with 10 nM of 17b-
estradiol or vehicle control for 2 hrs. RNA was extracted and
sequenced with HiSeq 2000 from Illumina. RNAseq was mapped
to hg19 using Bowtie2 v.2.1.0 and differential expression was mea-
sured using DEseq v.1.14.0 as previously described [71,72]. Differ-
entially expressed genes were defined as log2FC > 1 with a p-
value < 0.05, n = 2 biological replicates. A total number of 521
unique genes were considered as estrogen-related genes.

Breast cancer patient RNAseq data was obtained from TCGA
cohort. Luminal A (ER+/Her2-) patients were selected because
MCF7 and T47D were both a luminal A breast cancer cell line. In
total, there are 315 tumor samples and 40 matched normal breast
samples. There were 3947 differentially expressed genes
(log2FC > 1, p-value < 0.05) between breast cancer tumor samples
and matched normal control.
3. Results

3.1. Epigenetic and genetic features in TAD boundaries

Similar to other cell lines, there is also an enrichment of certain
TFs, histone modification marks, and TSS of housekeeping genes at
TAD boundaries of MCF10A, MCF7, and T47D cells (Fig. 1). DNA
methylation has been reported to be negatively correlated with
transcription factor binding, namely the TAD boundary associated
protein CTCF (Supplementary Fig. 1, p < 0.05) [26]. Thus, it is pos-
sible to utilize both epigenomic and genomic data in the modeling
and prediction of TAD boundaries.
3.2. PredTAD predicts TAD boundaries in breast cancer cell lines using
epigenomic and genomic information

PredTAD model overview is described in Fig. 2. Specifically, a
machine learning technique called Gradient Boosting Machine, also
known as Generalized Gradient Model or GBM, was built to classify
genomic regions as boundaries or non-TAD boundaries. The entire
genome was binned into 10 kb sample regions. Telomere and cen-
tromeres regions were excluded due to lack of Hi-C reads in these
regions. In total, there were 296,651 genomic regions and 70% of
the samples was used training while 30% were withheld for testing.

For epigenomic features, nine histone modifications (H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K9me3, and H4K20me1), 15 DNA binding proteins (CTCF,
ELF1, EGR1, EP300, FOXA1, GABPA, GATA3, MAX, PML, POLR2A,
RAD21, SIN3A, SMARCA5, SMARCE1, and SRF), DNA accessibility
(ATAC-seq), and DNA methylation were used in the model. For
genomic features, chromosomal location, relative distance on chro-
mosome (determined by relative distance from the centromere),
gene density (number of transcription start sites (TSS) of noncod-
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ing, coding, and housekeeping genes), and number of binding sites
for 161 transcription factors were included. To improve accuracy,
the information of each sample’s neighboring regions was also
included as features. That is, epigenomic and genomic features
for each bin’s ten upstream and ten downstream bins were
included in PredTAD.

AUCs of 0.7954, 0.7993, and 0.7487 were attained for MCF10A,
MCF7, and T47D, respectively. The top features for MCF10A were
chromosome number, transcription factor binding sites of SMC3,
RAD21, and CTCF, histone modifications (H3K9ac, H3K27me3,
and H3K9me3), gene density of noncoding genes, relative distance
on chromosome, and DNA methylation. For MCF7, the top features
were also chromosome number, ChIP-seq and transcription factor
binding sites of CTCF, RAD21, and SMC3, gene density of noncoding
genes, DNA accessibility, and DNAmethylation. T47D also had sim-
ilar top features (Fig. 3). These results suggest that there are higher
order chromatin structures that is dependent on not just CTCF and
other chromatin remodeling proteins such as SMC3 and RAD21,
but also the basic properties of the chromosome region (i.e. chro-
mosome number and location), gene density, chromatin accessibil-
ity, and DNA methylation.

PredTAD was then re-evaluated without chromosome number
as one of the features. Different independent training and testing
datasets was created using chromosome random-split strategy.
Using this method, training and testing datasets consisted of dif-
ferent chromosomes. Specifically, samples from every chromo-
some except chromosomes 1, 8, and 19 were used in training
and samples from chromosomes 1, 8, and 19 were tested indi-
vidually. The 5-fold cross validation AUC is 0.7166 for the train-
ing set and the test AUC is 0.7338, 0.75172, and 0.6081 for
chromosomes 1, 8, and 19, respectively (Supplementary Fig. 2).
Without chromosome information there is a slight decrease in
accuracy, however, PredTAD is still capable of predicting TAD
boundaries.

Next, selected features were used to re-train the model to
evaluate whether a subset of features is sufficient in predicting
TAD boundaries. Only top 5, 10, and 15 features were used to
retrain PredTAD, which yielded a 5-fold cross validation AUC of
0.7101, 0.7860, and 0.7860 and a test AUC of 0.7236, 0.8034,
and 0.8036, respectively. ROC curves were plotted, and top
importance features were re-ranked (Supplementary Fig. 3).
When chromosome number was removed as a feature from the
top 15 subset, a 5-fold cross validation AUC of 0.7537 and a test
AUC of 0.7615 were obtained.
3.3. Comparison to other models

PredTAD is better at predicting TAD boundaries compared to
three other previously published methods: HubPredictor, PGSA,
and TAD Lactuca. HubPredictor is based on Bayesian Additive
Regression Trees (or BART) which is a ‘‘sum of trees” model that
averages results from an ensemble of regression trees. However,
their model only uses CTCF and histone modification ChIP-seq
data. Additionally, they use 300 kb samples with no additional
sub-bins. PGSA is a position-specific linear model (or PSLM) with
regularized linear regression. It uses DNA binding and histone
modification ChIP-seq as well as transcription start sites and tran-
scription factor binding sites. They use 300 kb samples which are
further divided into 11 sub-bins and the number of each genomic
element in each sub-bin was counted. TAD-Lactuca uses 21 bins of
40 kb widths (840 kb region total). Only CTCF and 8 histone mod-
ifications were included as features. When HubPredictor, PGSA,
and TAD-Lactuca were applied to the MCF7 cell line, lower AUCs
were obtained (Fig. 4).



Fig. 1. Epigenomic and genomic features. Distribution of ChIPseq, TFBS, and TSSs centered on TAD boundaries for MCF10A, MCF7, and T47D cell lines (±1 MB).

Fig. 2. Overview of PredTAD. The entire genome is binned into 10 kb bins. For each 10 kb bin, 192 epigenomic and genomic features were measured. Feature information for
ten upstream and ten downstream bins were also included in the modeling. Gradient Boosting Machine (or GBM) was used to classify each 10 kb samples to either a TAD
boundary or non-TAD boundary.
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3.4. TAD boundary alterations between normal and breast cancer cells
are controlled by CTCF, H3K9ac, RAD21, and SMC3

Higher-order chromatin organization is important for the
proper regulation of genes. However, TAD and TAD boundaries
are often perturbed in cancer [56,73]. Although majority of TAD
boundaries in normal epithelial breast and breast cancer cell line
overlapped, roughly 17–21% of the boundaries are different. There
are 566–570 new TAD boundaries found in the breast cancer cell
2874
lines (MCF7 and T47D) that is not found in the normal epithelial
breast cell line MCF10A. There is also a loss of 516 normal TAD
boundaries (Fig. 5A). Studying altered TAD boundaries offers great
insight on gene regulation and disease state of breast cancer.

To examine which features was most involved in TAD boundary
changes between normal MCF10A cells and breast cancer MCF7
and T47D cells, a modified PredTAD model was used. The same
epigenomic and genomic features were used to predict if a bound-
ary region is gained, lost, or conserved. A boundary gain is a bound-



Fig. 3. PredTAD top predictive features. Top 20 most informative epigenomic and genomic features are listed for normal cell line MCF10A (left) and breast cancer cell lines
MCF7 and T47D (right). Feature importance is determined by calculating the relative influence of each variable. Feature importance are scaled between 0 and 1.

Fig. 4. Comparison of TAD prediction models. ROC curve is plotted for three TAD
prediction models: PredTAD, PSLM, and BART. The AUC for testing sets are shown in
the table.
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ary found in breast cancer cell lines MCF7 and T47D but not in the
breast normal cell line MCF10A. A TAD boundary loss is a boundary
found in MCF10A but not in MCF7 or T47D cell lines. A conserved
TAD boundary or ‘‘no change” is one that is found in all three cell
lines. The 5-fold cross validation accuracy is 0.7545. The topmost
important features are listed in Fig. 5B. The top most important
features include CTCF, H3K4me1, H3K9ac, and H3K27me3. A closer
analysis of these top features reveals that a number of these fea-
tures are significantly enriched in conserved boundaries (Fig. 6).
They include CTCF, H3K9ac, RAD21, and SMC3.
Fig. 5. A: TAD boundaries in normal (MCF10A) and breast cancer (MCF7 and T47D)
cell lines. B: Top 15 most informative epigenomic and genomic features for
predicting TAD boundary alterations between normal and breast cancer cell lines.
3.5. Altered chromatin organization contributes to oncogenic pathway
activation in breast cancer cells

TAD boundary alterations can affect the expression of nearby
genes. Genes near (±1 MB) MCF7 boundary gain and loss were
examined. There are 6443 genes near gained boundaries. Of those
genes, 1375 gene are differentially expressed in cell line RNAseq
data (p-value < 0.05) and 108 are estrogen related genes. For lost
boundaries (boundaries found in MCF10A but not in MCF7), 7298
genes are affected. T47D did not have RNAseq replicates for statis-
2875
tical analysis. Of those genes, 1551 genes are differentially
expressed in cell line (p-value < 0.05) and 106 were estrogen
related genes.



Fig. 6. Expression of features in conserved and perturbed TAD boundaries. (Top) Mean signal values for CTCF, H3K4me1, H3K9ac, and H3K27me3 ChIPseq are shown for
boundaries found in MCF10A only (Normal), MCF7 or T47D only (Cancer), and in all three cell lines (Conserved). (Bottom) Transcription factor binding site counts for CTCF,
CEBPB, RAD21, and SMC3 are shown for normal, cancer, and conserved TAD boundaries. TAD Boundary regions are 200 kb in length. Two-sided t-test was used to evaluate
significance. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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To examine which KEGG pathways these genes were involved
in, David’s Gene Ontology online tool was used [74]. KEGG PATH-
WAY is a collection of pathway maps on the molecular interaction,
reaction, and relation networks for: metabolism, genetic informa-
tion processing, environmental information processing, cellular
processes, organismal systems, human diseases, and drug develop-
ment [75]. The differentially expressed genes near gained bound-
aries were involved in pathways such as hippo signaling
pathway, estrogen signaling pathway, and Ras and Jak-STAT signal-
ing pathways. The differentially expressed genes near lost bound-
aries were involved in estrogen signaling pathway and metabolic
pathways. The full list is shown in Table 1.
3.6. Loss of TAD boundary promotes RET oncogene expression and
breast cancer

Out of the 1375 differentially expressed genes near boundary
alterations, RET may play a vital role in breast cancer. RET is a
receptor tyrosine kinase that phosphorylates PTK2/FAK1. PredTAD
predicted a boundary loss in chr10:43,600,000–43,800,000 in both
MCF7 and T47D cell lines. This boundary is upstream of the RET
gene Fig. 7A. Closer analysis indicates low H3K4me1 ChIP-seq sig-
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nals and DNA hypermethylation. As a result, the TAD boundary is
lost and RET is significantly overexpressed in MCF7 cells compared
to MCF10A cells (log2FC > 1, p-value < 0.05, n = 3). RET is also over-
expressed in T47D cell line. There is also an increase in RET gene
expression in TCGA breast cancer patients compared to matched
normal breast tissue samples (log2FC > 1, p-value < 0.05) Fig. 7B.
Overexpression of RET gene leads to a poor prognosis on breast
cancer (Cox p-value = 0.038) Fig. 7C. There are several tyrosine
kinase inhibitors that can either enhance sensitivity of breast can-
cer to tamoxifen therapy and/or re-sensitize tumors that have
developed tamoxifen resistance [76].
3.7. Application of PredTAD in predicting TAD boundaries in other cell
lines

Finally, PredTAD was trained using high-depth Hi-C data from
GM12878 cell line and tested with breast cancer samples. Only
commonly available and important epigenomic features (12 TF
and 8 histone medication ChIPseq data and DNA methylation) as
well as generic genomic features such as gene density and tran-
scription factor binding sites was used in this model. A 5-fold
AUC of 0.8082 and a testing AUC of 0.7471 was obtained. This



Table 1
Signaling pathway analysis of differentially expressed genes near boundary
alterations.

KEGG Pathways for Genes near Boundaries Gained p-Value

Hippo signaling pathway 9.7E-2
Estrogen signaling pathway 9.6E-2
Inflammatory mediator regulation of TRP channels 9.1E-2
GABAergic synapse 8.8E-2
Pathways in cancer 8.3E-2
Fc gamma R-mediated phagocytosis 8.3E-2
Ras signaling pathway 8.0E-2
Jak-STAT signaling pathway 7.5E-2
Chagas disease (American trypanosomiasis) 6.4E-2
Ether lipid metabolism 6.3E-2
Focal adhesion 6.3E-2
Alcoholism 5.6E-2
MAPK signaling pathway 5.4E-2
Serotonergic synapse 4.8E-2
Adrenergic signaling in cardiomyocytes 4.3E-2
Circadian entrainment 3.7E-2
Cysteine and methionine metabolism 3.1E-2
Steroid hormone biosynthesis 2.9E-2

KEGG Pathways for Genes near Boundaries Lost p-Value

Estrogen signaling pathway 9.2E-2
Vasopressin-regulated water reabsorption 8.9E-2
Glioma 8.8E-2
Metabolic pathways 8.6E-2
Sphingolipid signaling pathway 8.3E-2
Insulin secretion 7.8E-2
Platelet activation 7.7E-2
Tryptophan metabolism 6.1E-2
Glutamatergic synapse 6.0E-2
Serotonergic synapse 5.0E-2
Hypertrophic cardiomyopathy (HCM) 4.8E-2
Inflammatory mediator regulation of TRP channels 4.4E-2
Regulation of lipolysis in adipocytes 4.3E-2
Non-small cell lung cancer 4.3E-2
RAP1 signaling pathway 4.2E-2
Mineral absorption 4.2E-2
GABAergic synapse 3.7E-2
Focal adhesion 3.5E-2
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result suggests that PredTAD can be trained with one cell line and
applied to cell lines of other diseases to predict TAD boundaries
with high accuracy.
4. Discussion

Breast cancer is a highly prevalent disease, with more than 7.8
million cases worldwide [33]. Fortunately, the overall death rate
has been steadily decreasing due to advances in early detection
and treatments [36–40]. Breast cancer is a genetically and epige-
netically heterogeneous disease. Mutations in the BRCA1 and
BRCA2 have been linked to breast cancer, but this is not the sole
driver for the development of breast cancer. Other characteristics
of the genome, such as hyper- or hypo-methylation in gene-rich
regions, abnormal chromatin remodeling, and miRNA-tumor sup-
pressor silencing, can play a major role in breast cancer develop-
ment and progression.

In our work, we focused on the prediction of 3D chromatin
structures in breast cancer cells. The 3D chromatin organization
plays an important role in gene regulation. Chromatin structures
such as TAD and TAD boundaries regulate gene expression by dic-
tating genomic interactions. To detect these structures, Hi-C data is
often analyzed, however the generation of Hi-C and other high-
throughput chromatin conformation capturing assays are expen-
sive, time consuming, and not readily available. Previous studies
have shown that TAD boundaries are enriched with certain factors
such as the core architectural protein CTCF and house-keeping
genes. In fact, TAD boundaries can be characterized by a combina-
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tion of multiple epigenomic and genomic elements. Therefore, we
developed a machine learning computational tool that uses the
GBM algorithm to predict TAD boundaries in breast cancer cells
using readily available and cost-effective ChIP and genetic infor-
mation. More importantly, we applied our tool to study the epige-
netic changes in a pervasive disease.

In our analysis, CTCF and histone modifications were important
in the prediction of TAD boundaries. This finding was to be
expected. What was a surprise, however, was that chromosome
number was found to be one of the top predictive features in
MCF10A, MCF7, and T47D TAD boundary predictions. We suspect
the reasoning is because genes are not evenly distributed among
the 23 pairs of chromosomes. For example, chromosomes 16–22,
but not chromosome 18, are considered as small gene-rich chro-
mosomes, and these tend to cluster together in the nucleus. A large
portion of these chromosomes are often active and will have differ-
ent combinations of histone marks compared to gene-poor chro-
mosomes. Therefore, including chromosome number in our
model increased the accuracy in our TAD boundary prediction.

We also noticed another one main difference between the top
predictive features of MCF10A and MCF7: the type of feature. For
MCF10A, it was the transcription factor binding sites of multiple
genes, but in MCF7 and T47D, it was a mix of transcription factor
binding sites and ChIP-seq mean signal values. This was not a sur-
prise since transcription factor binding sites are generated from
their corresponding proteins’ ChIP-seq data and offer similar,
redundant information. Since MCF10A is a normal cell line, the
generic transcription factor binding sites were more informative,
whereas for abnormal breast cancer cell lines which have genomic
alterations, ChIP-seq signals were a more accurate representation
of current status and thus, more informative.

The machine learning algorithm GBM was used in PredTAD
because it is a good learner. It trains models in an additive and
sequential manner – with each subsequent tree learning from
the previous trees’ errors. Parameters of 500 trees at a 10 max
depth were selected to offer a deep model without overfitting. A
higher number of trees increases the run time drastically and does
not significantly increase the accuracy. A lower number of trees
such as 100 trees decreases the run time but offer an AUC of
around 0.77 compared to 0.80 for MCF7. When compared to other
TAD boundary prediction methods, PredTAD performed the best.
PredTAD utilizes more epigenomic and genomic features than the
other prediction models. Moreover, much smaller bin sizes were
considered which increases the resolution and prevents averaging
high and low values together. Additionally, ten upstream and ten
downstream neighboring bin’s information were included in the
prediction. When predicting TAD boundaries that were gained,
lost, or conserved between MCF10A, MCF7, and T47D cell lines,
SMC3 and RAD21 were among the most important features. This
was not surprising since both SMC3 and RAD21 are part of the
cohesin complex and plays important roles in gene regulation,
DNA damage repair, and stabilization of the genome [77,78].
H3K9ac marks active enhancers and is highly correlated with
active promotors [79,80].

One major advantage of PredTAD is its application to any cell
type and conditions. Once the model is trained, we can apply it
on other cells lines (using other cell line data) to predict TAD
boundary formations. When trained with high depth GM12878
Hi-C data, PredTAD can be used to predict TAD boundaries in
breast cancer cells and other cell lines under different conditions
or diseases. This allows users to understand changes in chromatin
organization without the need of generating Hi-C data. A limitation
for our tool is the need for experimentally generated ChIPseq data.
Furthermore, with advancements in next generation sequencing
such as micro-C or single-cell Hi-C data [81,82], PredTAD can be
fine-tuned to incorporate these data types.



Fig. 7. RET gene in breast cancer. A: Hi-C heatmap of MCF10A and MCF7 is shown for the region around RET (chr10:41750000–46500000). Conserved TAD boundaries are
indicated with black dots. MCF710A specific boundary is indicated with a red dot. The location of RET is marked with a star. B: RET log2 expression for TCGA breast cancer
tumor samples and matched normal samples are shown (p-value = 1.4069e�15). C: Kaplan-Meier curves for TCGA breast cancer patients are shown (Cox regression p-
value = 0.038). Patients were stratified into two groups: high and low expression of RET. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Further analysis revealed that altered chromatin organization is
associated with a dysregulation of important genes and pathways.
Changes in the 3D epigenome led to a significant up- or down-
regulation of over a thousand genes, of which, over 100 were
related to estrogen signaling pathway. Estrogen signaling are
implicated in breast cancer progression, and many human breast
cancers are estrogen-dependent. In fact, other studies have found
that estrogen stimulation induces enhancer-promoter looping
and a more global higher-order recompartmentalization of chro-
matin domains [53,83–86]. Endocrine therapy, such as estrogen
receptor modulators and other aromatase inhibitors, have been
used to treat ER-positive breast cancer and these treatments have
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substantially improved disease-free survival [87–89]. However,
altered chromatin organization pattern and differential chromatin
interactions are associated with endocrine resistance [19,85], sug-
gesting that targeting cancer-related chromatin remodeling and 3D
architecture may be a new avenue for breast cancer treatment
[50,52–54,90].
5. Conclusions

Studying the 3D chromatin architecture of breast cancer gen-
omes allows for a better understanding of cancer progression and
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cancer treatment resistances. Major characteristics of chromatin
structure include TADs and TAD boundaries, and these features
influence long-range chromatin interactions, which may regulate
the expression of many key genes. The generation of high-
throughput chromatin conformation data such as Hi-C is expen-
sive. Fortunately, previous studies have found that chromatin
structures are associated with a combination of genetic and epige-
netic features such as histone modification and house-keeping
genes. Thus, we developed PredTAD, a novel machine learning tool
that accurately predicts TAD boundaries from non-boundaries
using a diverse set of epigenomic and genomic features. In our
work, we found that chromosome number was the most informa-
tive feature. When predicting conserved or perturbed boundaries
in breast cancer cell lines, features such as CTCF, H3K4me1,
H3K9ac, H3K27me3, RAD21, and SMC3 were found to be the most
important. Further analysis revealed that genes near perturbed
boundaries were involved in a number of oncogenic pathways
including hippo signaling pathway, estrogen signaling pathway,
and Ras and Jak-STAT signaling pathways. A breast cancer related
boundary loss near the oncogene RET was identified. This was
associated with an overexpression of RET in cell line and breast
cancer patient data. RET has previously been implication in endo-
crine resistance and has an impact on tumor growth and metasta-
sis [91–95]. In conclusion, studying chromatin organization offers a
better understanding of gene regulation, signaling pathways acti-
vation, and disease state. Our work offers great insights on target-
ing 3D chromatin remodeling for breast cancer therapies.
6. Data availability

The datasets analyzed during this study are available on GEO
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