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SUMMARY

Chromatin modifications and the promoter-associ-
ated epigenome are important for the regulation of
gene expression. However, themechanisms bywhich
chromatin-modifying complexes are targeted to the
appropriate gene promoters in vertebrates and how
they influence gene expression have remained poorly
defined.Here, usinga combination of live-cell imaging
and functional genomics, we discover that the verte-
brateSET1complex is targeted toactively transcribed
gene promoters through CFP1, which engages in a
form of multivalent chromatin reading that involves
recognition of non-methylated DNA and histone
H3 lysine 4 trimethylation (H3K4me3). CFP1 defines
SET1complexoccupancyonchromatin, and itsmulti-
valent interactions are required for the SET1 complex
to place H3K4me3. In the absence of CFP1, gene
expression is perturbed, suggesting that normal tar-
geting and function of the SET1 complex are central
to creating an appropriately functioning vertebrate
promoter-associated epigenome.

INTRODUCTION

Gene expression is controlled by transcription factors that bind

to DNA sequences in gene regulatory elements and control

how RNA polymerase engages with transcription start sites

(Levine et al., 2014). However, in eukaryotes, nucleosomes can

limit accessibility to DNA sequences and create a barrier to the

gene regulatory apparatus (Lorch et al., 1987). To counteract

this, post-translational modifications on histones at gene re-

gulatory elements can alter chromatin structure or recruit reader

proteins that regulate access to DNA and help to shape

gene expression (Piunti and Shilatifard, 2016; Venkatesh and

Workman, 2015). Many of the most prevalent histone modifica-

tions have been extensively mapped within vertebrate genomes
Cell Rep
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(ENCODE Project Consortium, 2012). However, how the chro-

matin-modifying complexes that place these modifications

recognize their appropriate target sites and affect gene expres-

sion remains poorly understood.

Methylation of histone H3 on lysine 4 (H3K4me) is evolution-

arily conserved from yeast to human and widely associated

with gene regulatory elements, where it is thought to support

gene activity (reviewed by Kusch, 2012 and Shilatifard,

2012). H3K4me can occur in distinct states, with monomethy-

lation (me1) predominating at distal regulatory elements and

dimethylation (me2) and trimethylation (me3) predominating

at active gene promoters in vertebrates (Bernstein et al.,

2005; Heintzman et al., 2007, 2009; Schneider et al., 2004).

H3K4me can be placed by six large multi-protein complexes

(van Nuland et al., 2013) that are distinguishable based on

the identity of their catalytic subunits, which correspond to

MLL1, MLL2, MLL3, MLL4, SET1A, or SET1B (reviewed by

Shilatifard, 2012). MLL3/4 complexes deposit H3K4me1 at

distal regulatory elements (Hu et al., 2013a; Kaikkonen et al.,

2013; Lee et al., 2013), whereas MLL1/2 and SET1A/B are

thought to place H3K4me at gene promoters (Andreu-Vieyra

et al., 2010; Bledau et al., 2014; Denissov et al., 2014; Milne

et al., 2002; Wang et al., 2009). In most cell types, the SET1

complexes are the predominant H3K4 methyltransferases

(Ardehali et al., 2011; Bledau et al., 2014; Hallson et al.,

2012) and H3K4me is thought to act as a nucleation site for

binding of reader proteins that elicit effects on chromatin

structure and gene regulation (Lauberth et al., 2013; Li et al.,

2006; Peña et al., 2006; Shi et al., 2006; Vermeulen et al.,

2007; Wysocka et al., 2006). Deletion of SET1A in mice results

in early embryonic lethality due to a failure of embryos to

gastrulate, illustrating a fundamental role for the SET1A com-

plex in mammalian development (Bledau et al., 2014).

Attempts to dissect the function of vertebrate H3K4 methyl-

transferases at gene promoters have been limited by our rela-

tively naive understanding of how these enzymes recognize their

target sites in the genome. In budding yeast, the recruitment and

activity of the sole H3K4methyltransferase complex is proposed

to rely on an association with RNA polymerase II (RNA PolII)
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through its phosphorylated C-terminal heptapeptide repeat

(CTD) (Ng et al., 2003). This process may be conserved in verte-

brates becauseWDR82, a component of the SET1 complex, has

also been proposed to integrate SET1 activity with gene tran-

scription via interaction with the CTD of RNA PolII (Austenaa

et al., 2015; Lee and Skalnik, 2008; Wu et al., 2008). However,

the relevance of co-transcriptional recruitment to the binding

and activity of the vertebrate SET1 complex remains unclear

because H3K4 methyltransferase targeting in higher eukaryotes

appears to be much more complex. For example, both MLL1/2

and CFP1, a component of the SET1 complex, contain a CXXC

DNA-binding domain that can recognize non-methylated CpG

dinucleotides found in promoter-associated regulatory elements

called CpG islands (CGIs) (Birke et al., 2002; Clouaire et al., 2012;

Denissov et al., 2014; Long et al., 2013a; Thomson et al., 2010;

Voo et al., 2000). However, generic CGI recognition does not

explain why theMLL1/2 and SET1 complexes appear to regulate

H3K4me at distinct subsets of target genes in a gene expres-

sion-dependent manner (Denissov et al., 2014; Hu et al.,

2013b). Furthermore, site-specific DNA binding transcription

factors or long non-coding RNAs have also been implicated in

recruiting the MLL1/2 and SET1 complexes (Voigt et al., 2013).

Therefore, the molecular mechanisms that shape how H3K4

methyltransferases select their target sites remain poorly defined

and represent a central conceptual gap in our understanding of

the promoter-associated epigenome.

Given the fundamental role that the SET1 complex plays in

depositing H3K4me and sustaining normal development, here

we have focused on understanding how this complex is targeted

to chromatin. By combining live-cell imaging and functional ge-

nomics, we discover that the CFP1 component of the SET1 com-

plex preferentially binds to CGIs of actively transcribed genes

through multivalent interaction with chromatin, which requires

recognition of non-methylated DNA and H3K4me3. We demon-

strate that CFP1 is the predominant targeting module for the

SET1A complex, whereas co-transcriptional recruitment ap-

pears to play only a minor role in SET1A occupancy. Importantly,

CFP1 guides H3K4me3 deposition by the SET1A complex and is

required for the appropriate expression of a subset of its target

genes.

RESULTS

Interaction with the SET1 Complex Is the Central
Determinant of CFP1 Dynamics In Vivo
It has been proposed that CFP1 plays a key role in regulating

SET1 complex function. This is based on work that described

CFP1 occupancy at CGI elements (Denissov et al., 2014; Thom-

son et al., 2010) and defects in H3K4me3 resulting from its dele-

tion in embryonic stem cells (ESCs) (Carlone et al., 2005; Clou-

aire et al., 2012, 2014; Tate et al., 2009). However, how CFP1

dynamics and chromatin binding are achieved in vivo, and

whether these are central determinants in guiding the SET1 com-

plex to genomic target sites, remains largely unknown. To begin

addressing these questions, we stably expressed GFP-CFP1 in

a mouse epithelial cell line (Figures S1A–S1D) that is suited to

live-cell imaging, and examined the mobility of nuclear CFP1

by fluorescence recovery after photobleaching (FRAP). This re-
2314 Cell Reports 20, 2313–2327, September 5, 2017
vealed that CFP1 is highly mobile, with t1/2 recovery times in

the nucleoplasm of�1 s (Figures 1A–1C and S1F–S1I). To under-

stand if CFP1 dynamics are determined by its capacity to

interact with chromatin, we engineered single amino acid muta-

tions into CFP1 that disrupt either the function of its non-methyl-

ated DNA-binding CXXC domain or its PHD domain, which is

proposed to bind to H3K4me (Figures 1A and S2) (Eberl et al.,

2013; Mahadevan and Skalnik, 2016). Cell lines were estab-

lished, in which individual GFP-CFP1 mutants were stably ex-

pressed at comparable levels to wild-type GFP-CFP1, and,

importantly, we verified that these mutations did not affect asso-

ciation of CFP1 with the SET1A complex (Figures S1A–S1E).

Interestingly, mutation of the CXXC or PHD domain caused a

small but significant increase in the mobility of CFP1 compared

to wild-type protein, but this was not further increased by muta-

tion of both domains (Figures 1B and 1C).

When we examined the dynamics of GFP-SET1A, we

observed that it was slightly less mobile than GFP-CFP1 (Figures

1D, S1A, and S1B), consistent with a possible role for the SET1A

interaction in limiting CFP1 mobility independent of the CXXC

and PHD domains (Figure 1E). Therefore, we generated a GFP-

CFP1 SET1 interaction domain (SID) mutant cell line, in which

CFP1 association with SET1A was disrupted by a two amino

acid substitution mutation in an alpha helix of the previously

mapped interaction domain (Figures 1D, S1A–S1E, and S2E)

(Tate et al., 2009). Strikingly, when compared to wild-type

CFP1, the CFP1 SID mutant was dramatically more mobile (Fig-

ure 1E). Importantly, combining the CXXC and PHD mutations

with the SID mutation further increased CFP1 mobility to the

point where it approached the diffusion of free GFP (Figures

1D–1F). Together, this demonstrates that inclusion in the SET1

complex predominates in defining the nuclear dynamics of

CFP1, with the CXXC and PHD domains making additional,

more modest contributions.

Targeting of CFP1 to CGIs Relies on the CXXC and PHD
Domains but Not Interaction with SET1
We next wanted to understand how individual domains of CFP1

contribute to the more stable binding of CFP1 at target sites on

the genome. To achieve this, we used chromatin immunoprecip-

itation sequencing (ChIP-seq) to map CFP1 binding genome-

wide (Figures 2A and 2B). In parallel, Bio-CAP-seq was used

to map non-methylated islands (NMIs), which generally corre-

spond to CGIs (Blackledge et al., 2012; Illingworth et al., 2010;

Long et al., 2013b). This revealed that 91.5% of CFP1 peaks

occurred at NMIs, but only 38.1% of NMIs were occupied by

CFP1 (Figure 2C), indicating that NMI occupancy of CFP1 is

not uniform, as described previously (Denissov et al., 2014).

Further analysis revealed that CFP1 was enriched at NMIs that

had features usually associated with active transcription start

sites (TSSs), including H3K4me3 and RNA PolII (Figures 2A

and 2B). Indeed, CFP1-bound NMIs were more frequently asso-

ciated with annotated TSSs and had elevated H3K4me3 and

RNA PolII compared to NMI TSSs not bound by CFP1 (Figures

2D–2F).

To explore the determinants of CFP1 binding, we carried

out ChIP-seq using a GFP-specific antibody in lines stably ex-

pressing GFP alone, wild-type GFP-CFP1, or GFP-CFP1 with
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Figure 1. The Cellular Dynamics of CFP1 Are Governed by Its Chromatin-Binding Domains and Association with the SET1A Complex

(A) A schematic illustrating the GFP-tagged versions of CFP1 stably expressed in mouse C127 cells and used in the FRAP studies in (B). These include GFP alone

(GFP), wild-type CFP1 (WT), CFP1 with a mutated CXXC domain (CXXC*), CFP1 with a mutated PHD domain (PHD*), and CFP1 with combined CXXC and PHD

mutations (P/C*).

(B) Biexponential fits describing the recovery of fluorescence intensity over time for each of the proteins described in (A). Fits were calculated using post-bleach

fluorescence intensity recovery data collected at 8 frames per second from >42 cells across biological triplicates.

(C) A boxplot indicating the half time of recovery (t1/2) in seconds for the FRAP curves in (B). Boxes show interquartile range (IQR) and whiskers extend by

1.5 3 IQR. The p values indicating statistically significant differences are indicated above the boxplot. The p value denotes statistical significance using a

Student’s t test.

(D) A schematic illustrating the GFP-tagged versions of CFP1 and SET1A used in the FRAP studies in (E). This includes GFP alone (GFP), wild-type CFP1 (WT),

CFP1 with combined PHD and CXXC mutations (P/C*), CFP1 with a mutated SET1 interaction domain (SID*), CFP1 with combined PHD/CXXC/SID mutations

(P/C/S*), and wild-type SET1A.

(E) Biexponential fits describing the recovery of fluorescence intensity over time for the proteins described in (D). CFP1 and SET1 fits were calculated using post-

bleach fluorescence intensity recovery data collected at 13 frames per second from >28 cells across biological triplicates, whereas the GFP fit was limited to 8

cells, in which the nuclear border was clearly defined.

(F) A boxplot indicating the half time of recovery (t1/2) in seconds for the FRAP curves in (E). Boxes show IQR and whiskers extend by 1.5 3 IQR. The p values

indicating statistically significant differences are indicated above the boxplot. The p value denotes statistical significance using a Student’s t test.
mutations in the CXXC, PHD, CXXC/PHD, or SID (Figures 2G–2I).

Importantly, GFP-CFP1 enrichment correlated well with endog-

enous CFP1 (Figure S3). Strikingly, mutating the CXXC domain

completely abrogated CFP1 association with NMIs, whereas

mutation of the PHD domain also resulted in a dramatic but

not complete loss of NMI occupancy. Surprisingly, mutation of

the SID resulted in the opposite effect, causing CFP1 to bind

more efficiently to NMIs (Figures 2G–2I). Together, our observa-

tions suggest that DNA and chromatin binding by the CXXC and

PHD domains define stable CFP1 accumulation at NMI target

sites, whereas SET1 association, which predominates in shaping

CFP1 nuclear dynamics, limits accumulation at these regions

(see Discussion).
Multivalent Binding to Non-methylated DNA and
H3K4me3 Determines the Occupancy of CFP1 on
Chromatin In Vivo
The CFP1 CXXC domain is known to bind non-methylated DNA

(Voo et al., 2000; Xu et al., 2011), and the PHD domain has been

reported to bind H3K4me (Eberl et al., 2013). Therefore, we set

out to examine whether CFP1 utilizes a combination of its

CXXC and PHD domains to select NMIs that have both non-

methylated DNA and H3K4me. If this was the case, we hypoth-

esized that CFP1 binding to NMIs would be related to

H3K4me3 levels and differ from stereotypical NMI-binding pro-

teins like KDM2B that only read non-methylated DNA (Black-

ledge et al., 2010, 2014; Farcas et al., 2012). To test this
Cell Reports 20, 2313–2327, September 5, 2017 2315
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Figure 2. Binding of CFP1 to Chromatin Relies on the CXXC and PHD Domains but Not Interaction with SET1

(A) A genomic snapshot of the NMI-associatedOrai1 gene promoter showing the signal from ATAC, Bio-CAP, H3K4me3, RNA Pol II, RNA, and CFP1 sequencing

experiments.

(B) Heatmaps of the sequencing signals in (A) ranked by Bio-CAP signal over all NMIs.

(legend continued on next page)
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possibility, we binned all NMIs by their H3K4me3 percentile and

plotted the relative enrichment of non-methylated DNA (Bio-

CAP), CFP1, GFP-CFP1, and KDM2B signal over these regions

(Figures 3A and 3B). As expected, KDM2B occupancy scaled

nearly linearly with non-methylated DNA despite increasing

H3K4me3 (Figure 3B). In contrast, CFP1 and GFP-CFP1

diverged from this linearity with increased occupancy at NMIs

with elevated H3K4me3 (Figure 3B). Importantly, however, re-

sidual ChIP-seq signal in the GFP-CFP1 PHD mutant exhibited

a near-linear relationship with non-methylated DNA (Figures 3A

and 3B).

Our observations indicate that CFP1 preferentially binds to

H3K4me3-enriched NMIs via its PHD domain (Figures 3A and

3B). However, given that PHD domains can display varying affin-

ities for individual methylation states (Musselman et al., 2012),

we were keen to better characterize the binding preference of

the CFP1 PHD domain. To achieve this, we generated the

recombinant CFP1-PHD domain and examined its binding to

unmodified (me0), me1, me2, and me3 H3K4 peptides in vitro

(Figures 3C–3H). First, we examined the binding of the

CFP1 PHD finger to a H3K4me3 peptide in 1H,15N heteronuclear

single quantum coherence titration experiments. Addition of

the H3K4me3 peptide to the 15N-labeled CFP1 PHD domain

induced substantial chemical shift perturbations, suggesting a

tight interaction of the CFP1 PHD domain with H3K4me3. In

contrast, interaction with H3K4me0 was considerably weaker,

as evident from small chemical shift perturbations and fast ex-

change (Figure 3D). Quantitative measurements of binding affin-

ities using intrinsic fluorescence spectroscopy (Figures 3E–3G)

further supported the NMR results and revealed that the CFP1

PHD domain binds preferentially to the H3K4me3 (Kd 1.3 mM),

with H3K4me2/me1/me0 having considerably lower affinities

(9.1 mM, 64 mM, and 373 mM, respectively) (Figure 3H). Interest-

ingly, the in vitro affinity of the PHD domain for H3K4me3 is of

similar magnitude to that of the isolated CXXC domain for non-

methylated DNA (Kd �2.5–4.4 mM) (Risner et al., 2013; Xu

et al., 2011), further supporting the idea that binding to both

H3K4me3 and non-methylated DNA are important affinity fea-

tures that define normal CFP1 occupancy at NMI target sites.

Therefore, our in vivo ChIP-seq analysis demonstrates that the

PHD domain is required for the appropriate enrichment of

CFP1 at NMIs with elevated H3K4me3 (Figures 3A and 3B) and

our in vitro analysis reveals that the PHD domain of CFP1 prefer-

entially binds to H3K4me3.

CFP1 Is the Central Determinant in SET1A Occupancy
on Chromatin
Previous CFP1 studies have utilized a mouse ESC line isolated

from a Cfp1�/� embryo. However, these Cfp1�/� ESCs display
(C) A Venn diagram illustrating the overlap between CFP1 peaks and NMIs.

(D) Bar graph illustrating the percentage of CFP1-bound and -unbound NMIs tha

(E) Boxplots illustrating the enrichment of H3K4me3 at TSS-associated NMIs t

whiskers extend by 1.5 3 IQR. The p value denotes statistical significance calcu

(F) As in (E), illustrating enrichment of RNA PolII.

(G) A genomic snapshot of the NMI-associated Orai1 gene promoter showing the

(H) Metaplot and heatmap analysis of GFP ChIP-seq signal for GFP, GFP-CFP1,

(I) Heatmap analysis of GFP ChIP-seq signal over all NMIs for the same cell lines
global reductions in genomic DNA methylation and other epige-

netic defects (Carlone et al., 2005; Clouaire et al., 2012), presum-

ably due to prolonged culture without CFP1. To overcome this

limitation, we derived an ESC line from a CFP1 conditional

knockout mouse (Cfp1fl/fl), in which addition of tamoxifen in-

duces Cfp1 deletion (Figures 4A and S4A). Following 96 hr of

tamoxifen treatment, CFP1 protein and target site occupancy

was undetectable (Figures 4B–4D and S4H), but no global

effects on DNA methylation were observed (Figure S4B).

Because CFP1 forms a complex with SET1A (Lee and Skalnik,

2005; van Nuland et al., 2013), we wanted to use the Cfp1fl/fl

ESCs to understand whether CFP1 contributes to SET1A occu-

pancy on chromatin. The genome-wide occupancy of SET1A

has remained poorly defined, and we were unable to ChIP

SET1A using commercially available antibodies. We therefore

used CRISPR/Cas9 technology to engineer epitope tags onto

both copies of the Set1a gene in the Cfp1fl/fl ESCs (Figures

S4C–S4E). ChIP-seq for epitope-tagged SET1A in the untreated

Cfp1fl/fl ESCs revealed that SET1A andCFP1 occupancy at TSSs

was highly correlated (R = 0.95) and SET1A enrichment was

greatest at CFP1-bound NMI TSSs (Figures 4E–4G and S4I).

Strikingly, following tamoxifen treatment to remove CFP1,

we observed a major reduction in SET1A occupancy (Figures

4E, 4F, 4H, and S4G), with little alteration to SET1A protein

levels (Figure S4F). Importantly, loss of SET1A binding was

highly correlated with the initial level of CFP1 at individual sites

(R = �0.81) (Figure 4H). Interestingly, following removal of

CFP1, highly transcribed genes exhibited some SET1A retention

(Figures 4I, 4J, and S4J). This suggests that at some target

sites, a secondary targeting modality contributes to SET1A

occupancy. This may involve co-transcriptional recruitment of

SET1A via direct interaction with RNA PolII or other features of

these genes. Nevertheless, our observations indicate that

SET1A is primarily recruited to chromatin by CFP1.

CFP1 Exploits Multivalent Interactions with CGI
Chromatin to Shape H3K4me3
We next wanted to examine if loss of CFP1-dependent recruit-

ment affected the ability of the SET1A complex to place

H3K4me. Western blot analysis of bulk H3K4me revealed that

H3K4me3 was reduced in CFP1-deleted cells, whereas

H3K4me1 and H3K4me2 were largely unaffected (Figure 5A).

To understand more about where H3K4me3 was lost in the

genome, we carried out native ChIP-seq for H3K4me3 in un-

treated and tamoxifen-treated Cfp1fl/fl ESCs using a calibrated

approach (Figures 5B and 5C) (Hu et al., 2015). This revealed

that H3K4me3 loss was most pronounced at the TSSs of NMI-

associated genes that had broad peaks of H3K4me3 and

higher levels of CFP1 binding (Figures S5A–S5C). Furthermore,
t overlap with transcription start sites (TSSs).

hat are bound (CFP1+) or unbound (CFP1�) by CFP1. Boxes show IQR and

lated by a Wilcoxon signed rank test.

GFP ChIP-seq signal for GFP, GFP-CFP1, and mutated forms of GFP-CFP1.

and mutated forms of GFP-CFP1 over all NMIs.

as in (H).

Cell Reports 20, 2313–2327, September 5, 2017 2317
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Figure 3. Multivalent Binding to Non-methylated DNA and H3K4me3 Determines the Occupancy of CFP1 on Chromatin In Vivo

(A) Heatmap analysis of Bio-CAP and ChIP-seq signal over all NMIs for the indicated endogenous or GFP fusion proteins. The intensity scale for GFP-CFP1 and

GFP-CFP1-PHD* mutant are indicated below.

(B) The relative enrichment of the features heatmapped at NMIs in (A) was plotted across H3K4me3 enrichment percentiles.

(legend continued on next page)
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consistent with CFP1 occupying actively transcribed gene pro-

moters, effects on H3K4me3 following CFP1 loss were prevalent

at highly transcribed, as opposed to lowly or non-transcribed,

genes (Figure 5D) and also at genes with high RNA PolII occu-

pancy (Figure S5D). This is in agreement with previous observa-

tions suggesting that CFP1 contributes to H3K4me3 at actively

transcribed genes (Clouaire et al., 2012, 2014).

We were next keen to understand if normal H3K4me3 levels

relied on the capacity of CFP1 to engage inmultivalent chromatin

interactions and bind to SET1. We therefore performed a series

of H3K4me3 ChIP-seq experiments in tamoxifen-treated Cfp1fl/fl

ESCs that had been rescued with either wild-type or mutant

forms of CFP1 (Figures S5E–S5G). Focusing our analysis on

NMIs with broad H3K4me3 peaks that are most reliant on

CFP1, we observed that GFP expression alone was unable to

rescue H3K4me3 defects, whereas GFP-CFP1 fully restored

H3K4me3 (Figures 5E–5G). In contrast, mutation of the CXXC/

PHD domains or the SID failed to rescue H3K4me3 defects (Fig-

ures 5E–5G). This demonstrates that the capacity of CFP1 to

engage in multivalent interactions with chromatin and to asso-

ciate with SET1 is required for normal deposition of H3K4me3.

Loss of CFP1 Leads to Widespread Effects on Gene
Expression
Although H3K4me3 enrichment at gene promoters correlates

with gene expression (Kusch, 2012), the contribution of

H3K4me3 to transcription remains unclear. To examine the influ-

ence of CFP1 on gene expression, we carried out quantitative

nuclear RNA sequencing (RNA-seq) in Cfp1fl/fl ESCs with or

without tamoxifen treatment. We focused our analysis on

CFP1-bound NMI-associated genes (9,979) and identified signif-

icantly misregulated genes (false discovery rate [FDR] % 0.01)

that had changes in expression of at least 1.5-fold. Importantly,

following CFP1 deletion, CFP1 target genes predominantly ex-

hibited reduced expression (1,108), whereas a smaller subset

(584) showed increased expression (Figures 6A, S6B, and

S6C). In contrast, genes not bound by CFP1 showed a similar

number of increases and decreases in gene expression (Fig-

ure S6A). These trends appear to support a role for CFP1 in

potentiating gene expression. However, given the appreciable

number of CFP1 target genes that are upregulated in response

to CFP1 deletion, this may point to uncharacterized roles for

CFP1/SET1 in gene repression or to secondary effects on gene

expression.

Interestingly, when compared to unaffected genes, CFP1

target genes with reduced expression tended to be lowly to

moderately expressed (Figure 6B). Furthermore, when

compared to upregulated CFP1 target genes, they had elevated

CpG density and CFP1 at their TSSs (Figures 6C and 6D) as well

as moderately higher levels of SET1A (Figure 6E). However, we

found no obvious correlation between the reductions in gene

expression and effects on H3K4me3 following removal of
(C) 1H,15N heteronuclear single quantum coherence titration experiments using t

(D) As in (C) for an unmodified H3K4me0 peptide.

(E–G) Measurements using intrinsic fluorescence spectroscopy for the PHD dom

(H) A table illustrating the quantitative measurements of binding affinities for th

fluorescence spectroscopy and NMR spectroscopy.
CFP1 (R = �0.11) (Figure 6F), indicating that the level of

H3K4me3 loss does not define how the associated gene will

respond transcriptionally. Together, these observations indicate

that the CFP1/SET1 complex plays an important role in shaping

gene expression from transcribed CGI-associated genes, with

moderately expressed genes appearing more sensitive to

CFP1 loss than more highly expressed genes (see Discussion).

DISCUSSION

Here, we discover that CFP1, a component of the SET1 complex,

uses a type ofmultivalent interactionwith chromatin, which relies

on its CXXC and PHD domains to identify target gene promoters

(Figures 1 and 2). This allows CFP1 to recognize actively tran-

scribed CGI-associated genes that have non-methylated DNA

and elevated H3K4me3 (Figures 2 and 3). Importantly, CFP1-

based targeting, as opposed to co-transcriptional recruitment,

predominates in defining occupancy of the SET1A complex at

target sites (Figure 4). An inability of CFP1 to engage in multiva-

lent interactions with CGI chromatin leads to reductions in

H3K4me3 at gene promoters (Figure 5), and loss of CFP1 leads

predominantly to reductions in transcription at CFP1-occupied

genes (Figure 6). Together, this reveals a central role for CFP1

in recruiting the SET1A complex to shape the promoter-associ-

ated epigenome and regulate gene expression.

The mechanisms by which chromatin-modifying factors bind

to chromatin and identify their target sites represent amajor con-

ceptual gap in our understanding of how the epigenome is

formed and regulated. To study this, FRAP can be used to cap-

ture dynamic chromatin interactions that are often too rapid to be

effectively observed by crosslinking and ChIP (Schmiedeberg

et al., 2009), but has limited spatial resolution with respect to

the genome. Conversely, ChIP captures more stable binding

events with high spatial resolution, even when these represent

a small fraction of the total protein molecules in the nucleus.

Therefore, combining these approaches, as we have done

here, can reveal dynamics and chromatin-binding characteris-

tics across a wide spectrum of temporal and spatial resolutions.

Interestingly, our FRAP analysis revealed that CFP1 is a highly

dynamic protein and that these dynamics are predominantly

driven by inclusion in the SET1 complex. We propose that these

dynamics are dictated by low affinity, widespread, and non-spe-

cific interactions that the SET1 complex makes with chromatin,

which are not effectively captured by ChIP. A mutant form of

CFP1 that does not interact with SET1 binds more effectively

to CGIs, presumably because it no longer engages in other

SET1-dependent interactions with the genome. Conversely, mu-

tation of the CXXC/PHD domains abrogates more stable binding

to CGIs, as is evident from loss of ChIP-seq signal at these re-

gions, yet this contributes modestly to FRAP dynamics. This

suggests that a small proportion of the total pool of CFP1 mole-

cules in the cell is stably bound to CGIs at any one time. In other
he CFP1 PHD domain and an H3K4me3 peptide.

ain binding to (E) H3K4me3, (F) H3K4me2, and (G) H3K4me1.

e CFP1 PHD domain bound to H3K4 substrates, as determined by intrinsic
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words, CFP1 as part of the SET1 complex appears to engage in

two general modes of chromatin binding: one that is dynamic,

possibly widespread, and SET1 dependent, and a second that

is more stable, localized to CGIs, and reliant on multivalent

CXXC/PHD domain-dependent interactions with CGI chromatin.

It is unclear whether the dynamic pool of CFP1/SET1 observed in

FRAP is of functional relevance, but it is possible that this could

represent SET1 complex search mechanisms or non-CGI local-

ized processes that the SET1 complex engages in. To further

dissect these binding features, new live-cell single molecule

approaches (Chen et al., 2014) will be required to track individual

CFP1/SET1 molecules and discover how they navigate the

nucleus to identify their target sites.

SET1 complexes are thought to play a prominent role in

depositing all three H3K4 methylation states (Bledau et al.,

2014), yet removal of CFP1 leads primarily to a reduction in

H3K4me3 (Figure 5) (Clouaire et al., 2012; Tate et al., 2009).

Notably, deletion of the budding yeast ortholog of CFP1, Spp1,

also results in a predominant loss of H3K4me3 (Kim et al.,

2013; Schlichter and Cairns, 2005). This suggests that regulating

the transition toH3K4me3 is an evolutionarily conserved function

of CFP1/Spp1, and that deposition of lower H3K4 methylation

states by the SET1 complex can occur independently of these

factors. It has been proposed that H3K4me3 functions to create

transcriptionally permissive chromatin at gene promoters (Voigt

et al., 2013). Interestingly, however, we identified only a subset of

genes that have reduced expression in the absence of CFP1

(Figure 6), despite global reductions in H3K4me3 at actively tran-

scribed genes (Figure 5). Furthermore, the level of H3K4me3

reduction did not correlate with the effects on transcription, sug-

gesting the level of H3K4me3 and capacity to transcribe are not

inextricably linked. Therefore, we favor the possibility that CFP1/

SET1 elevates H3K4me3 at actively transcribed genes, with the

transcription of some genes being more sensitive to loss of this

chromatin modification than others, in agreement with recent

observations suggesting that the effects H3K4me3 has on

gene expression are context dependent (Cano-Rodriguez

et al., 2016). The sensitivity of individual genes to the loss of

CFP1/SET1 activity may be related to the nature of their tran-

scriptional inputs. Indeed, we observe that more moderately,
Figure 4. CFP1 Is the Central Determinant in SET1A Occupancy on Ch

(A) A schematic illustrating the Cfp1fl/fl mouse ESC model, in which the addition

(B) Western blot analysis of CFP1 following a time course of TAM treatment.

(C) A genomic snapshot illustrating CFP1 ChIP-seq signal at the Ube2j2 gene in

(D) Metaplot analysis of CFP1 ChIP-seq signal at CFP1-bound NMI-associated T

denote statistical significant calculated by a Wilcoxon signed rank test comparin

(E) A genomic snapshot illustrating SET1A ChIP-seq signal at the at Ube2j2 gene

(F) Metaplot analysis of T7-SET1A ChIP-seq signal at CFP1-bound NMI-assoc

(dashed blue line). The solid black line illustrates ChIP-seq signal for the T7 ant

calculated by a Wilcoxon signed rank test comparing read counts across the rep

(G) A scatterplot of the SET1A and CFP1 ChIP-seq signal at TSSs. R value indic

CFP1-bound (CFP1+) sites.

(H) A scatterplot of the log2-fold change in SET1A ChIP-seq signal compared to

Genes right of the dotted line correspond to CFP1-bound (CFP1+) sites.

(I) Genomic snapshots illustrating a genewhere SET1AChIP-seq signal is lost follo

retains some SET1A (right panel) following removal of CFP1.

(J) Boxplots illustrating the log2-fold change in SET1A ChIP-seq signal (left pane

genes that lose or retain SET1A. Boxes show IQR and whiskers extend by 1.53 IQ

test.
as opposed to highly, transcribed genes appear to be misregu-

lated in the absence of CFP1 (Figures 6A and 6B). A possible

explanation for this may be that moderately expressed genes

are subject to weak activation signals, meaning that chromatin

features have more of an influence on transcriptional output. At

such genes, loss of CFP1/SET1 activity and the formation of

H3K4me3-depleted chromatin may create a greater barrier to

transcription. In contrast, at more highly expressed CFP1 target

genes, stronger activation signals may render chromatin fea-

tures less influential.

Genome-wide studies have revealed that individual CGIs

generally exist in one of two chromatin states: either having

high levels of H3K4me3 and being actively transcribed or being

lowly or non-transcribed and having repressive Polycomb group

protein (PcG)-associated histone modifications (Blackledge

et al., 2015). Given that H3K4methyltransferase and PcG protein

complexes contain CGI-binding domains, we and others have

previously proposed that these opposing systems may dynami-

cally sample CGIs in order to respond to the transcriptional state

of the associated gene and resolve individual gene regulatory

elements into transcriptionally permissive or repressive chro-

matin states (Blackledge et al., 2015; Deaton and Bird, 2011;

Klose et al., 2013; Steffen and Ringrose, 2014; Voigt et al.,

2013). Although feedback mechanisms inherent to the PcG

protein complexes appear to be sufficient to achieve repressive

chromatin states in the absence of gene transcription (Black-

ledge et al., 2014; Riising et al., 2014), the mechanisms leading

to the recruitment and stabilization of H3K4 methyltransferases

at actively transcribed genes have remained elusive. Our

new observations detailing SET1 targeting in vivo suggest

that CFP1 guides SET1A to CGIs that have non-methylated

DNA and H3K4me3 to ensure formation of the H3K4me3-pre-

dominating state and support normal gene expression.

Although our observations provide a potentially simple expla-

nation for how the CFP1/SET1 complex regulates H3K4me3 at

actively transcribed CGI-associated genes, it remains less clear

how the H3K4me3-predominating state would be initiated in the

first place, given that the CFP1/SET1 complex must recognize

pre-existing H3K4me3. One possibility is that the CFP1/SET1

complex binds to CGIs where the MLL1/2 complexes have
romatin

of tamoxifen (TAM) leads to deletion of CFP1.

untreated (upper panel) and tamoxifen-treated cells (lower panel).

SSs in untreated (solid line) and tamoxifen-treated cells (dashed line). p values

g read counts across the represented interval in UNT versus TAM.

in untreated (upper panel) and tamoxifen-treated Cfp1fl/fl ESCs (lower panel).

iated TSSs in untreated (solid blue line) and tamoxifen-treated Cfp1fl/fl ESCs

ibody in an untagged cell line (Mock). p values denote statistical significance

resented interval in UNT versus TAM.

ates Spearman rank correlation. Genes right of the dashed line correspond to

CFP1 ChIP-seq signal at TSSs. R value indicates Spearman rank correlation.

wing removal of CFP1 (left panel) and a gene that ismore highly transcribed and

l) and expression level based on 4SU-RNA-seq (right panel) of the top 10% of

R. The p value denotes statistical significance calculated by theMann-Whitney
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already initiated low-level deposition of H3K4me3. However,

removal of MLL1/2 has little effect on the levels of H3K4me3 at

actively transcribed genes in ESCs, suggesting that the MLL1/

2 and SET1 complexes do not act in a simple linear pathway or

that MLL1/2 is not required to maintain elevated H3K4me3

once it has been initiated (Denissov et al., 2014; Hu et al.,

2013b). Alternatively, the process of initiating gene transcription

could result in transient co-transcriptional recruitment of the

SET1 complex to seed low levels of H3K4me3 at actively tran-

scribed sites and provide a signal that stabilizes multivalent

binding by CFP1/SET1. In support of the latter possibility, we

observe residual SET1A occupancy at highly transcribed genes

in the absence of CFP1 (Figure 4). Furthermore, initiation and for-

mation of the H3K4me3-predominating state appears to be

required for the normal expression of some genes (Figure 6). It

is therefore tempting to speculate that the SET1 complex could

form part of a simple activity-based epigenetic switch, whereby

transcription initiation leads to low-level H3K4me3 deposition at

CGIs. This could in turn support multivalent binding of the CFP1/

SET1 complex, amplification of the H3K4me3-predominating

state, and the formation of chromatin that is more permissive

to subsequent rounds of transcription. Although speculative in

nature, these proposed feedback mechanisms could, in the

context of stochastic models of gene transcription (Lenstra

et al., 2016), provide a localized form of chromatin-based epige-

netic memory to ensure future rounds of gene transcription once

the initial decision to transcribe has beenmade or to achieve new

gene expression programs during developmental transitions.

Although it is clear that more detailed mechanistic studies are

required to examine the relevance of these proposed feedback

mechanisms, they could provide a simple explanation for how

genes transition into and maintain the H3K4me3-predominating

state to sustain transcription.
EXPERIMENTAL PROCEDURES

FRAP

FRAP experiments were performed on an UltraView spinning disk microscope

(Perkin Elmer) equipped with an EM-CCD camera (Hamamatsu) using a

60x/1.4NA oil objective. 50 pre-bleach and 1,000 post-bleach images

were captured at a rate of 8 frames per second (fps) (Figures 1B and C) after

bleaching a circular diffraction limited spot of �2.5 mm diameter using a

488-nm laser line at 100% transmission. Alternatively, to capture the rapid re-

covery of the P/C/S* mutant effectively, we used an acquisition rate of 13 fps

(Figures 1E and F). FRAP curves were calculated in MATLAB, normalizing for
Figure 5. CFP1 Exploits Multivalent Interactions with CpG Island Chro

(A) Western blot analysis of bulk H3K4me in untreated (UNT) and TAM-treated C

(B) Genomic snapshot illustrating H3K4me3ChIP-seq signal at theAp3d1NMI, wh

(right panel). The H3K4me3 ChIP-seq signal without tamoxifen treatment is repre

black (TAM) in the overlay.

(C) H3K4me3 signal around CFP1+ (left) and CFP1� (right) NMI-associated TSS

(D) A scatterplot illustrating that highly (left panel) but not lowly (right panel) exp

scatterplots correspond to non-divergent genes with an H3K4me3 peak overlapp

than �2.5 log2 FPKM nuclear RNA seq signal over the gene body.

(E) Genomic snapshot illustrating H3K4me3 ChIP-seq signal at the Hexim1 NMI i

blue and black in the overlay, respectively. The upper panel corresponds to the

rescued with at GFP, GFP-CFP1, GFP-P/C*, or GFP-SID* transgenes.

(F) Metaplot and boxplot analysis of the H3K4me3 signal at TSSs as described i

(G) Boxplot analysis of H3K4me3 signal at CFP1+ NMI-associated TSSs +/- 1 kb
the initial conditions (brightness of the cell and brightness of the spot) and cor-

rected for acquisition photobleaching over time (Mueller et al., 2012). Half re-

covery times (t1/2) were calculated using a biexponential fit. Briefly, this

involved deriving t1/2 values from individual cells (Figures S1F and S1G) and

then collecting the distribution of t1/2 values across biological triplicates for

the same transgene (Figures S1H and S1I). To compare the dynamics of indi-

vidual GFP-CFP1 transgenes, a Student’s t test was then used to calculate the

probability (p) that there was no difference between the wild-type and mutant

versions of CFP1.

NMR Titrations of Histone Peptides

The 1H,15N HSQC spectra of 0.1–0.2 mM uniformly 15N-labeled CFP1 PHD

finger in 20 mM Tris-HCl buffer, pH 6.8, 100 mM NaCl, 2.5 mM DTT, and 7%

D2O were collected on a Varian INOVA 600 MHz spectrometer. Spectra

were recorded at 298K using 1,024 3 128 increments, and a spectral width

of 8,820 3 1,974 Hz in the 1H and 15N dimensions, respectively. The binding

was characterized by monitoring chemical shift changes as histone tail pep-

tides (synthesized by the University of Colorado Denver Peptide Core Facility)

were added stepwise. The dissociation constants (Kds) were determined as

described in the Supplemental Information.

Fluorescence Spectroscopy

Spectra were recorded at 25�C on a Fluoromax-3 spectrofluorometer (HO-

RIBA). The samples containing the CFP1 PHD finger in 20 mM Tris-HCl buffer,

pH 6.8, 100 mM NaCl, and 2.5 mM DTT and progressively increasing concen-

trations of the histone peptide were excited at 280 nm. Emission spectra were

recorded over a range of wavelengths between 320 and 380 nm, with a 1-nm

step size and a 1-s integration time and averaged over 3 scans. The Kd values

were determined as described in the Supplemental Information.

ChIP and ChIP-Seq

ChIP was performed as described previously (Farcas et al., 2012), with minor

modifications (see Supplemental Experimental Procedures). Sequencing

libraries were prepared with the NEBNext Ultra DNA Library Prep Kit for Illu-

mina and sequenced on either an Illumina HiSeq2500 or NextSeq500.

Calibrated Native ChIP-Seq

ChIP sequencing for H3K4me3 in ESCs was performed using a previously

described calibrated native ChIP-seq approach (Rose et al., 2016), in which

untreated or tamoxifen-treated Cfp1fl/fl cells were spiked with a fixed number

of Drosophila SG4 cells (see Supplemental Experimental Procedures).

Libraries were prepared with NEBNext Ultra DNA Library Prep Kit for Illumina

and quantified by qPCR using KAPA Illumina DNA standards as reference.

Libraries were sequenced on an Illumina NextSeq500.

4sU RNA-Seq

Cells were treated with 500 mM4-thiouridine (4sU) for 20min and then RNAwas

isolated by TRIZOL (Thermo Fisher Scientific) extraction. RNA was incubated

with Biotin-HPDP and biotinylated RNA was captured with mMACS streptavidin

beads (Miltenyi). Biotinylated RNA was depleted of ribosomal RNAs using the

Low Input RiboMinus Eukaryote System v2 kit (Thermo Fisher Scientific).
matin to Shape H3K4me3

fp1fl/fl mouse ESCs.

ich is bound by CFP1 (left panel) and the Smoc2NMI that is not bound by CFP1

sented in blue (UNT) and the signal with tamoxifen treatment is represented in

s in untreated (solid line) and tamoxifen-treated cells (dashed line).

ressed genes lose H3K4me3 at their TSS following tamoxifen treatment. The

ing their TSS, and a gene was considered to be lowly expressed if it had less

n UNT and TAM-treated cells. The UNT and TAM-treated samples are colored

parental Cfp1fl/fl line, with the lower panels corresponding to the parental line

n (C) for cell lines described in (E) without and with tamoxifen treatment.

. Boxes show IQR and whiskers extend by 1.5 3 IQR.
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Figure 6. Loss of CFP1 Leads to Widespread

Effects on Gene Expression

(A) An MA plot showing log2-fold change in the

nuclear RNA-seq signal of CFP1-bound NMI-asso-

ciated genes in UNT and TAM-treated Cfp1fl/fl cells.

Red and green points depict significantly down-

regulated (1,108) and upregulated genes (584) that

change in expression by more than 1.5-fold.

(B) Boxplots indicating the expression of genes that

are downregulated (red), not significantly (N.S.)

changing (gray), or upregulated (green).

(C–E) Mean distribution of CFP1 ChIP-seq signal

(C), CpG density (D), and SET1A ChIP-seq signal

(E) around TSSs of downregulated (red) and upre-

gulated (green) genes. p values denote statistical

significance calculated by Mann-Whitney test com-

paring ChIP-seq read counts across a 200-bp in-

terval flanking the TSS in downregulated versus

upregulated genes.

(F) Correlation density plot of changes in gene

expression (nucRNA-seq) and H3K4me3 at TSSs of

CFP1-bound NMI genes. Only genes whose TSSs

overlap an H3K4me3 peak and do not have a

divergent TSS within 2 kb were considered. R value

indicates Spearman rank correlation.
cDNA libraries were prepared using the NEBNext Ultra Directional RNA Library

Prep Kit and subjected to sequencing on the Illumina NextSeq500 platform.

Quantitative Nuclear RNA-Seq

Cfp1fl/fl ESCs were cultured for 96 hr in the presence or absence of 4-OHT. For

each condition, 4 3 106 cells were spiked with 1 3 106 Drosphila SG4 cells.

Nuclei were extracted, and an aliquot of nuclei corresponding to 43 105 cells

was collected for genomic DNA extraction, whereas the remaining nuclei were

subject to conventional RNA extraction using TRIZOL (Thermo Fisher Scienti-

fic). Nuclear RNA was depleted of ribosomal RNAs using the NEBNext rRNA

Depletion kit, and cDNA libraries were prepared using the NEBNext Ultra

Directional RNA Library Prep Kit. In parallel, genomic DNA (gDNA) was used

to prepare ‘‘input’’ DNA libraries using the NEBNext Ultra DNA Library Prep
2324 Cell Reports 20, 2313–2327, September 5, 2017
Kit. Nuclear RNA (nucRNA) and gDNA libraries were sequenced on the Illumina

NextSeq500 platform.
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