
Hindawi Publishing Corporation
Clinical and Developmental Immunology
Volume 2010, Article ID 539519, 9 pages
doi:10.1155/2010/539519

Review Article

Tumor Antigen Cross-Presentation and the Dendritic Cell:
Where it All Begins?

Alison M. McDonnell,1 Bruce W. S. Robinson,1, 2 and Andrew J. Currie1, 3

1 School of Medicine and Pharmacology, University of Western Australia, Perth, WA 6009, Australia
2 National Centre for Asbestos Related Diseases, Perth, WA 6009, Australia
3 School of Veterinary and Biomedical Sciences, Murdoch University, WA 6150, Australia

Correspondence should be addressed to Andrew J. Currie, ajcurrie@cyllene.uwa.edu.au

Received 2 July 2010; Accepted 25 August 2010

Academic Editor: Dennis Klinman

Copyright © 2010 Alison M. McDonnell et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that are critical for the generation of effective cytotoxic T
lymphocyte (CTL) responses; however, their function and phenotype are often defective or altered in tumor-bearing hosts, which
may limit their capacity to mount an effective tumor-specific CTL response. In particular, the manner in which exogenous tumor
antigens are acquired, processed, and cross-presented to CD8 T cells by DCs in tumor-bearing hosts is not well understood, but
may have a profound effect on antitumor immunity. In this paper, we have examined the role of DCs in the cross-presentation of
tumor antigen in terms of their subset, function, migration, and location with the intention of examining the early processes that
contribute to the development of an ineffective anti-tumor immune response.

1. Introduction

MHC class I-restricted tumor antigens derived from periph-
eral solid tumors can be presented by host APCs to naı̈ve
CD8+ T cells in a process known as cross-presentation.
Though the contribution of this pathway to the generation
of antitumor immunity has been challenged [1, 2], there
is convincing evidence that tumor antigens are efficiently
cross-presented in vivo [3–8]. Despite this, the coexistence
of an antitumor immune response with tumor progression
suggests that tumor-specific CD8+ T cells are not properly
activated in vivo or that tumor evasion mechanisms operate.
Indeed, many have suggested that the inherent response
of the host immune system to the cross-presentation of
tumor antigens is the induction of T-cell tolerance [9–13].
Several studies have shown that incomplete activation of
CD8+ T cells in the tumor draining lymph node (TDLNs)
is due to the effect of the tumor on dendritic cells (DCs),
which are thought to be the major cross-presenting APC,
rather than on the T cells themselves [5, 8, 10, 14–16].
Indeed, DCs detected in tumor tissue or local tumor draining
lymph nodes (TDLN) of cancer patients display an immature

phenotype defined by low expression of CD80, CD86 or
CD83, and altered APC function [5, 15, 17–19]. Since
CD8+ T cells are critical for the surveillance, control, and
rejection of tumors [20, 21], an understanding of how
existing tumor-specific responses are initially generated, and
how this leads to their dysfunction, may ultimately lead to
improved immunotherapy’s for cancer.

2. Mechanism of Cross-Presentation

The process of cross-presentation was first identified by
Bevan and colleagues in the mid-1970s where they showed
that immunization with lymphoid cells congenic for minor
histocompatibility antigens resulted in the generation of
CD8+ T cells that were restricted by the host MHC class I
molecules [22, 23]. Thus, minor histocompatibility antigens
must have been transferred from the donor cells to host
APCs for priming of CD8+ T cells [22, 23]. Whilst the exact
mechanisms allowing exogenous antigen into the MHC class
I processing pathway have not been fully elucidated, two
main pathways have been described, both of which have been
comprehensively covered in a review by Lin and colleagues
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[24]. Following uptake, exogenous antigens are internalized
into specialized organelles that are termed phagosomes for
particulate/cell-associated antigens, or endosomes, for solu-
ble protein antigens [25]. The “cytosolic pathway” involves
escape of exogenous antigen from the endosome/phagosome
into the cytosol for proteasomal degradation. Similar to
direct presentation, this pathway is TAP dependent. How-
ever the mechanism allowing transfer of proteins into the
cytosol, or the site at which peptides are loaded onto
MHC class I molecules, is not fully known [26]. Several
models have been proposed including (1) formation of a
pore in the phagosome/endosome via the ER-associated
degradation pathway (ERAD) translocon, Sec61, (2) ER-
phagosome fusion for particulate antigens, and (3) ER-
endosome fusion for soluble protein antigens [25, 26]. In
contrast, the “vacuolar pathway” is TAP independent and
suggests exogenous proteins are degraded into peptides by
lysosomal proteases within the lumen of the phagosome (or
endosome) [25, 26]. These peptides are then loaded onto
recycling MHC class I molecules by peptide exchange. Of
the two, the “cytosolic pathway” is believed to be the most
physiologically relevant [24, 27]. However it may depend
on the type of antigen, and the mechanism of uptake that
decides the internal route to cross-presentation [25].

3. Dendritic Cell Subsets and
Cross-Presentation of Tumour Antigen

DCs are believed to play a pivotal role in the initiation and
programming of tumor-specific T-cell responses [14, 15, 28].
Indeed, DCs residing in the TDLN have been found to
cross-present tumor antigen to naive CTL [3, 5, 8, 10].
Despite this, there is little information concerning the role of
specific DC subsets in antitumor immune responses. Studies
of DC cross-presentation in mouse models of viral infection
have clearly demonstrated that different DC subsets display
different capacities for cross-presenting antigens [29, 30]. For
instance, the lymph node resident CD8α+ DC appears to be
specialized for cross-presentation of exogenous antigens to
naı̈ve CD8+ T cells [31–34], whereas migratory CD8α− DCs
are required for presentation on MHC class II to CD4+ T
cells [33, 35, 36]. However, recent findings have challenged
this clear dichotomy, as cross-presentation by CD8α− DCs
can be induced by triggering through TLR or FcR [33, 37–
39], and CD8α− DCs are required for cross-presentation of
antigen derived from saccharomyces cerevisiae [40]. Finally,
CD8α−CD103+/− migratory DCs are able to cross-present
viral antigen in the lung and skin [41–43] and may be the
major cross-presenting subsets in these tissues. Therefore,
the capacity of any DC subset to cross-present may depend
on the nature of antigen encountered, and the state and
location of the tissue where the DC resides, all of which may
have important bearing on tumor antigen cross presentation.

Considering the importance of DCs in determining the
fate of tumor-specific T cells, it is perhaps not surprising that
studies examining DC subset-specific cross-presentation of
tumor antigen are now emerging. For instance, Murphy and
colleagues demonstrated that CD8α+ DCs were absolutely
required for the generation of protective tumor-specific CTL

using transgenic mice lacking expression of the transcription
factor Batf3 [28]. Lack of Batf3 in mice led to a selective loss
of CD8α+ DCs in the spleen and lymph nodes of these mice,
whilst all other DC subsets remained intact. When these
mice were challenged subcutaneously (s.c.) with syngeneic
fibrosarcomas that are normally rapidly rejected in a CD8+

T-cell-dependent manner, tumors grew out [28]. This was
associated with a failure to develop tumor-specific CTLs
and hence tumor-infiltrating CD8+ T cells were reduced
in these animals. Thus while CD8α+ DCs appear crucial
to the development of effective antitumor immunity, their
role in the generation of ineffective CD8+ T cells associated
with progressing tumors, has not been fully elucidated. In
a murine model of melanoma, only CD8α+ DCs isolated
from TDLNs were able to cross-present the secreted tumor
antigen, ovalbumin (OVA) [10]. In this case, generation of
ineffective CTL was thought to be due to defective processing
and presentation on MHC class II, rather than defective
cross-presentation [10]. In contrast, we have recently shown
that both CD8α+ and CD8α− TDLN DCs were able to
cross-present the membrane tumor antigen, hemagglutinin
(HA) [5]. In this instance, the cross-presenting DC subsets
differed significantly in their expression of the inhibitory B7
molecule, B7-DC, with abundant expression found only on
the CD8α− subset. Thus B7-DC expression on the CD8α−

DC subset might act to limit CTL generation because upon
interaction with PD-1, B7DC has been shown to mediate
suppression of CD8+ T cells [44].

The different conclusions drawn from these studies
may be due to fundamental differences between the HA
and OVA tumor models, secreted OVA versus membrane
bound HA. A study by Burgdorf et al. demonstrated that
mannose-receptor-mediated uptake of soluble OVA by DCs
was required for cross-presentation to CD8+ T cells [45] and
expression of the mannose receptor was observed exclusively
on murine CD8α+ DCs [46]. Thus, the fact that CD8α− DCs
played an equivalent role in cross-presentation of HA tumor
antigen in our system might reflect the cell-associated form
in which the tumor antigen was delivered. This may have
relevance for human cancer as in humans, several membrane
associated tumor molecules have been shown to be antigenic,
including gp100, tyrosinase, MUC-1, and carcinoembryonic
antigen (CEA) in melanoma, mesothelioma and ovarian
cancer, respectively [47–49]. The nature of the tumor antigen
(i.e. membrane, nuclear, cytoplasmic, secreted) may there-
fore dictate the DC subsets required for cross-presentation
and ultimately the CD8+ T-cell response that ensues.

While much is known regarding the phenotype of cross-
presenting DCs in mouse models of disease, their human
counterpart has remained elusive. However, several recent
studies have suggested that the human equivalent of mouse
CD8α+ DCs is the minor population of human blood DCs
expressing blood dendritic cell antigen (BDCA)-3 (CD141)
[50–55]. BDCA-3+ DCs share a similar transcriptional
profile [55] and are known to express TLR3 [53], Clec9A
[51, 54], Necl2 [53, 54], and XCR1 [50] like CD8α+ DCs.
In addition, they display an increased capacity for cross-
presentation of soluble and cell-associated viral antigens
[50, 53, 54]. However, due to their rarity in human blood
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(0.04% ± 0%–30% SD, [50]), little is known regarding
their role in the tumor setting. BDCA-3+ DC are known
to infiltrate renal cell carcinoma [56] and are decreased
in the peripheral blood of patients with hepatocellular
carcinoma compared with healthy controls [57]. Further
studies are required to determine the role of this subset in the
cross-presentation of tumor antigen, and how they may be
exploited for generation of a functional antitumor immune
response.

4. Tumour Location and Cross-Presentation of
Tumour Antigen

Solid tumors originate from diverse cell types and con-
sequently can occur in many different locations in the
body. Likewise the distribution, subset, and phenotype of
DCs is known to differ between healthy peripheral tissues.
In mice and man the lung, liver, kidney, and colonic
mucosa are examples of sites that harbor different DCs
subsets in different proportions, for example, murine lung
DCs can be broadly subdivided into CD103+CD11b− and
CD103−CD11bhi subsets that in the steady state are pheno-
typically and functionally immature [58, 59]. In contrast,
colonic mucosa DCs are predominantly CD11b+ with a
small proportion positive for CD103 [60]. Similarly human
livers contain predominantly immature conventional BDCA-
1+ DCs that produce IL-10 upon interaction with LPS
[61]. In contrast pDC represent a greater fraction of the
human kidney than conventional DC [62]. This most likely
reflects the capacity of tissue resident DC to sample the
local environment for innocuous and pathogenic antigen,
yet it may also determine the generation of tumor-specific
immunity at these sites. Murine studies have demonstrated
that the antigen-presenting function of distinct DC subsets
differs with the type and location of antigen exposure [41–
43, 63–65]. A study by Chung et al. showed that anatomic
location defined antigen presentation by DCs in response to
soluble protein [65]. Following systemic injection of OVA,
CD8α+CD11b− DCs were responsible for cross-presentation
of OVA protein in the spleen whereas CD8α−CD11b+ DCs
cross-presented OVA in the mesenteric lymph nodes. Consis-
tent with this result, CD8α−CD11b+ DCs in the mesenteric
LN were found to mediate cross-tolerance to intestinal
antigens [66]. In response to innocuous inhaled antigen
migratory CD103+ DC mediate cross-presentation in the
thoracic lymph nodes, whereas CD103− DC present antigen
on MHC II to CD4+ T cells [43]. However upon influenza
infection CD103−CD11bhiCD70+ DCs capture exogenous
antigen in the lung and directly cross-prime CD8+ T cells
in the draining lymph nodes [41]. Thus biological events
in lymphoid tissue draining different sites may have direct
relevance to tumor immunology because it is possible that
the location in which a tumor is growing alters the response
of the tumor-specific T cells. In support of this, IKDC were
found in an experimental model of melanoma metastasis
to be the dominant CD11c-expressing cells in the tumor
bearing lung [67]. This subset developed preferentially in the
lungs and was not detected in the adjacent lymph nodes [67].
In human cancer, analysis of peripheral blood DC revealed

a disparity in the proportion of lymphoid to myeloid DC
between patients with breast cancer and NSCLC, suggesting
that the number of circulating DCs in cancer patients may
correspond to the type of neoplasm [68]. Thus tumor growth
at different locations may recruit specific DC subsets. Such
knowledge may be crucial to the development of tumor
immunotherapy’s targeting-related tumors in different
sites.

5. What Is the Source and Form of
Tumour Antigen for Cross-Presentation?

According to current dogma, efficient priming of CTL
against viral and self-antigens requires migration of DCs
transporting antigens from peripheral tissues, followed by
presentation in draining lymph nodes [69]. This is supported
by evidence from viral systems whereby DCs migrating from
the site of infection transport antigen to the TDLN for cross-
presentation [70, 71]. DC infiltration of solid tumors is well
documented in both tumor-bearing animals and patients
[15, 18, 19, 72–74]. As such, generation of tumor specific
responses might then be expected to involve migration of
DCs from tumor tissue to the TDLN for cross-presentation
of antigens. However, this model may not properly represent
the generation of tumor-specific T-cell responses that occur
in the steady state for several reasons; firstly, tumor growth
is associated with a lack of proinflammatory signals and
pathogen byproducts that may interact with tumor-resident
DCs and induce their activation and subsequent migration
to the TDLN [14]. Secondly, tumors produce a variety of
immunosuppressive soluble factors that inhibit DC matu-
ration and differentiation, leading to the recruitment and
accumulation of immature DCs at the tumor site [14, 75].
Thirdly, several studies have shown that DC migration is
impaired in the presence of a solid growing tumor [10, 76–
78]. Finally, sentinel lymph node metastasis is a hallmark of
human disease [79–84] and represents a mechanism whereby
tumor antigen is delivered directly to the TDLN. While it
is possible that DCs in the TDLN acquire antigen from
metastatic tumor cells for cross-presentation to naı̈ve T cells,
the true form(s) of antigen required to induce an antitumor
response in vivo is yet to be fully elucidated.

Tumor progression is associated with rapid proliferation
of viable tumor cells and differing levels of tumor cell death
in the form of apoptosis and necrosis. In addition, tumor
cells are known to secrete soluble proteins [27, 85, 86] and
antigen carrying exosomes [87, 88]. However the form of
tumor antigen that is captured by DCs for cross-presentation
is not known. Most of the information regarding the
mechanisms operating in the capture, processing and cross-
presentation of tumor antigens to CD8+ T cells have been
generated from in vitro culture systems. A previous review
of the literature highlighted the potential mechanisms for
transfer of tumor antigen to DCs for cross-presentation [15]
including; (1) phagocytosis of cell associated antigens, (2)
pinocytosis/endocytosis of soluble antigen, (3) capture of
soluble antigen bound to heat shock proteins (HSP), (4) gap
junction transfer, (5) capture of exosomes, (6) “nibbling” of
live tumor cell membranes, and (7) “cross-dressing” whereby
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DCs acquire peptide MHC complexes from contact with
necrotic cells. While several of these mechanisms have been
shown to mediate effective tumor antigen responses in the
vaccination/treatment setting, their physiological relevance
for generation of CD8+ T cells during normal tumor
progression is not known, but could be vital for improving
cancer treatment.

Future studies should explore not only the form of tumor
antigen required for effective cross-presentation but also
any DC subset specificity. A study by Smyth et al. showed
that splenic CD8α+ and CD8α− DC subsets differ in their
capacity to capture antigen for cross-presentation. Of note,
CD8α− DCs induced CD8+ T-cell responses only when
MHC:peptide complexes were acquired from neighboring
cells, whereas CD8α+ DC were more efficient at phagocytosis
and cross-presentation [89]. While these mechanisms have
not been explored in the context of antitumor immunity,
they suggest that capture of tumor antigen from live tumor
cells may favor cross-presentation by both DC subsets. In
contrast, apoptotic cells have been shown to be preferentially
captured by CD8α+ DCs in vivo [90]. Since CD8α+ DCs
are required for rejection [28], therapies favoring capture of
tumor antigen by this subset may facilitate more effective
tumor-specific T-cell responses. Indeed, cellular destruction
is known to enhance cross-presentation [91] and chemother-
apy induced apoptosis of tumor cells has been shown to
enhance tumor antigen cross-presentation [6]. As such,
this concept may be explored using chemotherapy-induced
apoptosis of tumor cells in vivo to determine whether there is
a shift in the capacity of DC subsets to cross-present tumor
antigen in the presence of apoptotic versus live tumor cells.

6. The Outcome of Cross-Presentation:
Priming or Tolerance

Cross-presentation is required for the maintenance of
peripheral tolerance (cross-tolerance) as well as the gener-
ation of CTL against infection (cross-priming). The balance
between these two situations is believed to be mediated by
the activation status of the cross-presenting DC [92]. Indeed,
several studies have shown that the difference between toler-
ance and immunity is the presence or absence of appropriate
inflammatory signals together with co-stimulation [92–94].
Such signals include pathogen-associated molecular patterns
(PAMPs), derived from bacterial and viral infection, such as
LPS and unmethylated CpG motifs that are recognized by
specific receptors on DCs, including TLRs. Likewise, CD40-
CD40 ligand (CD154) interaction with activated CD4+ T
cells can result in DC activation. Together with soluble
mediators such as type I IFNs, these interactions induce
DC differentiation and activation characterized by increased
surface expression of MHC molecules and costimulatory
signals such as CD80, CD86, and CD70 a process often
referred to as “licensing” [92]. Such signals are critical for
the effective stimulation and enhanced survival of antigen-
specific CD8+ T cells [95]. Conversely, cross-presentation
by “unlicensed” or immature DCs stimulates an abortive
CD8+ T-cell response culminating in deletion or anergy
(tolerance), rather than the induction of effector CTL [94].

In both cancer patients and tumor-bearing animals, DCs
infiltrating tumor tissue, or those found in local TDLNs bear
an immature phenotype [14, 15]. Tumor beds have been
shown to mediate this immune suppression by secretion of
tumor-derived soluble factors such as IL-10, transforming
growth factor-β (TGF-β), IL-6, vascular endothelial growth
factor (VEGF), prostaglandin E-2 (PGE-2), and gangliosides
that act to prevent DC differentiation and function [14, 75].
Similarly, altered levels of these cytokines in peripheral blood
correlate with the presence of immature DC phenotypes [57]
indicating that immunosuppression is not restricted to the
local site. These immature DCs can induce tolerance through
the generation of regulatory CD4+ T cells (Treg) [96],
production of indoleamine 2,3-dioxygenase (IDO) [97–99]
and expression of inhibitory B7 molecules, B7H1, and B7-
DC, all of which act to suppress CD8+ T-cell activation and
differentiation. Therefore, given the absence of inflammatory
stimuli and local immunosuppression, cross-presentation of
tumor antigens by immature DCs during normal tumor
progression may result in CD8+ T-cell tolerance.

Given this, strategies aimed at activating the cross-
presenting DC subset(s) and reducing immunosuppression
show great promise for the treatment of cancer. Local and
systemic administration of activating anti-CD40 antibody
either alone or in conjunction with other therapies has
been shown to alter the phenotype of DC subsets and
augment tumor specific CD8+ T-cell responses in vivo
[8, 100–103]. TLR agonists including polyI:C [104], CpG
[74] and the TLR7/8 agonist Imiquimod [100, 105] have
shown similar results. Of clinical relevance is a study by
Stary et al. where treatment of basal cell carcinoma with
Imiquimod promoted the recruitment of tumor infiltrating
DCs expressing perforin and granzyme B, indicating that
they may exert cytotoxic effects directly against tumor cells
[105]. In addition to DC activating agents, several studies
have shown that blocking interaction of B7 inhibitory
molecules on DCs with their receptors on CD8+ T cells
can promote productive antitumor responses in vivo [106–
108], providing evidence that expression of these molecules
by cross-presenting DCs may promote a defective T-cell
response. However, it is not only new and emerging therapies
that have garnered interest recently for their capacity to
augment tumor-specific immune responses. In recent years,
chemotherapy, used in the treatment of many primary
cancers has been investigated not only for its role in tumor
cell death, but also its ability to stimulate the immune
system [6, 102, 109–115]. This immunoadjuvant effect of
chemotherapy is thought to occur by altering the context
of the dying tumor cell [109–111], increasing the amount
of tumor antigen available for cross-presentation [6] or
through side effects that stimulate the immune system [112,
116–118]. All of which may primarily rely on the capacity
of DCs to capture, process and present tumor antigen
from dying cells. A series of elegant experiments by the
Zitvogel and Kroemer groups showed that DCs were exclu-
sively required for the generation of protective immunity
following injection with chemotherapy-treated tumor cells
[110, 111]. Anthracyclin or oxaliplatin treatment induced (i)
translocation of calreticulin (CRT) to the tumor cell surface,
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(ii) release of the TLR4 ligand high mobility group box 1
(HMGB1) protein, and (iii) release of ATP by dying tumor
cells, all of which act in concert to promote IL-1β secretion
by DCs and ultimately result in a protective tumor-specific
CD8+ T-cell response [119]. The chemotherapeutic agent
cyclophosphamide (CY) has been shown to enhance tumor
specific immunity at low doses by specific depletion of
CD4+CD25+ Tregs, [116, 120, 121]. High doses of CY induce
lymphoablation and immunosuppression; however, this may
set the stage for homeostatic proliferation, which may
enhance any additional immunological intervention [121].
Furthermore, treatment of established solid tumors with a
combination of CY and etoposide resulted in significant uric
acid accumulation at the tumor site [122]. Uric acid has
been shown to activate DCs and promote tumor rejection
[122, 123]. In a similar vein, the chemotherapeutic agent
gemcitabine can modulate the immune response to solid
tumors by increasing the amount of antigen available for
cross-presentation [124] and regulating tumor suppression
by elimination of CD11b+Gr1+ myeloid-derived suppressor
cells (MDSC) [112, 125, 126]. Importantly, gemcitabine
has been shown to prime the host immune system for
adjuvant immunotherapy. Treatment of tumour-bearing
mice with activating anti-CD40 antibody following gemc-
itabine chemotherapy induced long-term cures in >80% of
mice bearing malignant mesothelioma’s (MM) [102]. This
effect was not solely due to the debulking effects of the
drug as surgical resection did not augment the effects of
immunotherapy. Likewise gemcitabine chemotherapy prior
to treatment with an adenovirus-expressing IFN-β led to
regression of large established tumours [112]. While such
effects are yet to be determined in humans, a study by Plate
et al. demonstrated that following the initial infusion of
gemcitabine in patients with pancreatic cancer the number
of BDCA-1+ DCs in peripheral blood decreased, and this
was countered by a reciprocal increase in the BDCA-
3+ DC population [127]. BDCA-3+ DCs being a minor
population in peripheral blood that are suggested to be the
human equivalent of the murine CD8α+ DC [50–55]. While
numbers returned to normal during subsequent treatment
this suggests that there may be a defined window during
chemotherapy to apply immune modulating agents to favor
cross-presentation of tumor antigens by particular subsets of
DCs.

A knowledge of which DC subsets are present in
tumors under basal and therapeutic conditions, along with
information on their capacity to respond to various immune
stimuli (such TLR agonists) is likely to guide the rationale
design of future multimodality therapies.

7. Conclusions

DCs are a heterogeneous population of APCs that play an
important role in the generation of effective CTL responses
[30, 128]. Unfortunately, their function has been shown to
be defective in tumor bearing animals and cancer patients
[129], leading to an ineffective antitumor T-cell response,
and ultimately, uncontrolled tumor growth and metastatic
spread. While DCs have been studied extensively for their

therapeutic or vaccine potential, their role during the
effector phase of the antitumor response has not been fully
elucidated. It has been demonstrated that DCs enriched from
TDLNs are able to cross-present tumor antigen [3, 5, 8, 10]
and importantly, that host dendritic cells are absolutely
required for the generation of a protective CTL response
leading to tumor regression [28]. Given this, it is not
surprising that treatment strategies targeting endogenous
DCs via CD40-CD40L interaction or TLR ligands have
produced promising results. Therefore, a full understanding
of the complex interactions between tumors and host DCs
may reveal the reasons why the immune system fails to
generate a protective antitumor response.

Development of future therapies for cancer may be
required to (1) alter the context of tumor antigen for
presentation by host DCs, (2) sufficiently activate DCs in
the local TDLN and at the tumor site, (3) target antigen
to specific DC subsets, and (4) limit immunosuppressive
mechanisms in the tumor microenvironment to enable
reactivation of tumor-infiltrating T cells. Such outcomes will
most likely be achieved through a combination therapies
acting to induce tumor cell death and augment the host
antitumor immune response.
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Kurts, “Distinct pathways of antigen uptake and intracellular
routing in CD4 and CD8 T cell activation,” Science, vol. 316,
no. 5824, pp. 612–616, 2007.

[46] S. Burgdorf, V. Lukacs-Kornek, and C. Kurts, “The mannose
receptor mediates uptake of soluble but not of cell-associated
antigen for cross-presentation,” Journal of Immunology, vol.
176, no. 11, pp. 6770–6776, 2006.

[47] C. Castelli, L. Rivoltini, G. Andreola, M. Carrabba, N.
Renkvist, and G. Parmiani, “T-cell recognition of melanoma-
associated antigens,” Journal of Cellular Physiology, vol. 182,
no. 3, pp. 323–331, 2000.

[48] J. Creaney, A. Segal, G. Sterrett et al., “Overexpression and
altered glycosylation of MUC1 in malignant mesothelioma,”
British Journal of Cancer, vol. 98, no. 9, pp. 1562–1569, 2008.

[49] A. Malkin, J. A. Kellen, G. M. Lickrish, and R. S. Bush,
“Carcinoembryonic antigen (CEA) and other tumor markers
in ovarian and cervical cancer,” Cancer, vol. 42, no. 3, pp.
1452–1456, 1978.

[50] A. Bachem, S. Guttler, E. Hartung et al., “Superior anti-
gen cross-presentation and XCR1 expression define human
CD11c+CD141+ cells as homologues of mouse CD8+ den-
dritic cells,” The Journal of Experimental Medicine, vol. 207,
no. 6, pp. 1273–1281, 2010.

[51] I. Caminschi, A. I. Proietto, F. Ahmet et al., “The dendritic
cell subtype-restricted C-type lectin Clec9A is a target for
vaccine enhancement,” Blood, vol. 112, no. 8, pp. 3264–3273,
2008.

[52] L. Galibert, G. S. Diemer, Z. Liu et al., “Nectin-like protein 2
defines a subset of T-cell zone dendritic cells and is a ligand
for Class-I-restricted T-cell-associated molecule,” Journal of
Biological Chemistry, vol. 280, no. 23, pp. 21955–21964, 2005.

[53] S. L. Jongbloed, A. J. Kassianos, K. J. McDonald et al.,
“Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent
a unique myeloid DC subset that cross-presents necrotic cell
antigens,” Journal of Experimental Medicine, vol. 207, no. 6,
pp. 1247–1260, 2010.

[54] L. F. Poulin, M. Salio, and E. Griessinger, “Characterization
of human DNGR-1+ BDCA3+ leukocytes as putative equiv-
alents of mouse CD8alpha+ dendritic cells,” The Journal of
Experimental Medicine, vol. 207, no. 6, pp. 1261–1271, 2010.

[55] S. H. Robbins, T. Walzer, D. Dembélé et al., “Novel insights
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